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Abstract

In label-noise learning, the noise transition matrix, bridging the class posterior for
noisy and clean data, has been widely exploited to learn statistically consistent
classifiers. The effectiveness of these algorithms relies heavily on estimating the
transition matrix. Recently, the problem of label-noise learning in multi-label clas-
sification has received increasing attention, and these consistent algorithms can be
applied in multi-label cases. However, the estimation of transition matrices in noisy
multi-label learning has not been studied and remains challenging, since most of the
existing estimators in noisy multi-class learning depend on the existence of anchor
points and the accurate fitting of noisy class posterior. To address this problem, in
this paper, we first study the identifiability problem of the class-dependent transition
matrix in noisy multi-label learning, and then inspired by the identifiability results,
we propose a new estimator by exploiting label correlations without neither anchor
points nor accurate fitting of noisy class posterior. Specifically, we estimate the
occurrence probability of two noisy labels to get noisy label correlations. Then,
we perform sample selection to further extract information that implies clean label
correlations, which is used to estimate the occurrence probability of one noisy label
when a certain clean label appears. By utilizing the mismatch of label correlations
implied in these occurrence probabilities, the transition matrix is identifiable, and
can then be acquired by solving a simple bilinear decomposition problem. Empiri-
cal results demonstrate the effectiveness of our estimator to estimate the transition
matrix with label correlations, leading to better classification performance. Source
codes are available at https://github.com/tmllab/Multi-Label-T.

1 Introduction

In real-world scenarios, an instance is naturally associated with multiple labels, and these labels have
complex entangled correlations [7]. Recently, the problem of label-noise learning in multi-label
classification has received more and more attention [29, 34, 54, 50, 46, 47], since it is time-consuming
and expensive to collect large-scale accurate labels and the noisy labels are much cheaper and easier
to acquire. In the setting of noisy multi-label learning, the multiple labels assigned to an instance may
be corrupted simultaneously. That is to say, any label for each class can be flipped with its respective
transition matrix that denotes the transition relationship from clean labels to noisy labels.

Transition matrix has been utilized to build a series of statistically consistent algorithms for noisy
multi-class learning [32, 52, 48, 8]. The main advantage of these consistent algorithms is that they
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can guarantee to vanish the differences between the classifiers learned from noisy data and the optimal
ones from clean data by increasing the size of noisy examples [28, 33, 52, 39].

Fortunately, these statistically consistent algorithms for noisy multi-class learning can also be applied
in such noisy multi-label learning with a little modification [54] (more details can be found in
Appendix B). However, the effectiveness of these algorithms heavily relies on estimating the transition
matrix. Although the estimation of the transition matrix has been investigated in noisy multi-class
learning, the estimation of the transition matrix in noisy multi-label learning has not been studied
and remains challenging. Specifically, a series of methods [28, 33, 57, 52, 26] has been proposed to
estimate the transition matrix for noisy multi-class learning. Most of them assume the existence of
anchor points [28, 33, 57] that are defined as the training examples belonging to a particular clean
class surely. Nevertheless, the assumption is strong and hard to check when we only have noisy
data [52]. Also, the methods need to accurately fit the noisy or intermediate class posterior of anchor
points, which are rather difficult in multi-label cases, due to severe positive-negative imbalance [36].

In this paper, to address the problem of estimating the transition matrix in noisy multi-label learning,
we consider utilizing label correlations among noisy multiple labels. Specifically, some label
correlations that should not exist in practice are included in noisy multi-label learning. For example,
“fish” and “water” always co-occur, while “bird” and “sky” always co-occur. But, due to label errors,
there is a slight correlation between “fish” and “sky”, which is impractical. At a high level, we can
utilize the mismatch of label correlations to identify the transition matrix without neither anchor
points nor accurate fitting of noisy class posterior.

In more detail, we first focus on the identifiability problem of the class-dependent transition matrix
in noisy multi-label learning. Accordingly, a new method that estimates the transition matrix by
exploiting label correlations is proposed. That is, motivated by the identifiability result that the label
correlation of two noisy labels can not suffice to identify the transition matrix in noisy multi-label
learning, we utilize sample selection to extract useful information from noisy data, which implies
clean label correlations to achieve the identifiability. Afterward, we not only estimate the occurrence
probability of two noisy labels in noisy data, but also of one noisy label when a certain clean label
appears in selected data. By utilizing the mismatch of label correlations implied in these occurrence
probabilities, we can prove the identifiability, and transform the problem of estimating the transition
matrix using label correlations into a problem of bilinear decomposition. Finally, with easy frequency
counting, we can get a good estimation of the noise transition matrix.

Empirical results illustrate the effectiveness of the proposed estimator for estimating the transition
matrix in noisy multi-label learning, and the consistent algorithms with our estimator can achieve
better classification performance.
The rest of the paper is organized as follows. In Section 2, we briefly present the problem setting
of label-noise learning in multi-label classification. In Section 3, we discuss the identifiability of
the transition matrix under such a noisy multi-label setting, and introduce our estimation method.
Experimental results are provided in Section 4. The limitations of this work are discussed in Section 5.
Finally, we conclude the paper in Section 6.

2 Problem Setting
In this section, we introduce the problem setting of label-noise learning in multi-label classification.
In what follows, scalars are in lowercase letters, vectors are in lowercase boldface letters, and
matrices/variables are in uppercase letters. For simplicity, let [q] = {1, . . . , q}.
Preliminaries. Let D be the distribution of a pair of random variables (X,Y ), where X ∈ X ⊆ Rd
denotes the variable of instances, and Y = {Y 1, Y 2, ..., Y q} ∈ {0, 1}q denotes the variable of
targets with q possible class labels. As for Y , Y j = 1 indicates that the instance X is associated
with the class j; Y j = 0, otherwise. In multi-label learning, the goal is to learn a function from D
which maps each unseen instance x ∈ X to proper labels y. However, as discussed, Y is hard to be
annotated precisely. Before being observed, their true labels are independently flipped and what we
can obtain are noisy training examples Dt = {(xi, ȳi)}

n
i=1, where ȳi denotes noisy labels. Let D̄ be

the distribution of the noisy random variables (X, Ȳ ) ∈ X × {0, 1}q . In noisy multi-label learning,
our goal is to infer proper labels for each unseen instance by only using the noisy training examples.

Noise transition matrix. The random variables Ȳ j and Y j for the class j are related through a
noise transition matrix T j ∈ [0, 1]2×2, j ∈ [q]. Generally, the transition matrix depends on instances,
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i.e., T jik(x) = P (Ȳ j = k | Y j = i,X = x). Nevertheless, given only noisy examples, the
instance-dependent transition matrix is non-identifiable without any additional assumption [52, 56].
For example, both P (Ȳ j = k|X = x) =

∑1
i=0 T

j
ikP (Y j = i|X = x) and P (Ȳ j = k|X =

x) =
∑1
i=0 T

′j
ikP
′(Y j = i|X = x) are valid, when T ′jik(X = x) = T jik(X = x)P (Y j = i|X =

x)/P ′(Ȳ j = i|X = x). Therefore, in this paper, we assume that the transition matrix is class-
dependent and instance-independent [33], i.e., P (Ȳ j = k | Y j = i,X = x) = P (Ȳ j = k | Y j =

i) = T jik. The definition of the class-dependent label noise can be found in Appendix A, where we
further discuss its differences with the class-dependent label noise in multi-class cases.

Consistent algorithms. The transition matrix bridges the class posterior probabilities for noisy and
clean data, i.e., P (Ȳ = k | X = x) =

∑1
i=0 TikP (Y = i | X = x). Thus, it has been exploited

to achieve many statistically consistent algorithms in noisy multi-class learning. Specifically, it has
been utilized to build risk-consistent estimators via correcting loss functions [28, 33, 52], and to
design classifier-consistent estimators via limiting hypotheses, e.g., [33, 9, 62]. Since the multi-label
task can be decomposed into multiple conditionally independent binary classification problems, we
also can apply these consistent methods in noisy multi-label learning [54]. In this paper, without
loss of generality, we adopt a risk-consistent algorithm, i.e., Reweight [28, 52], to learn statistically
consistent classifiers with estimated transition matrices. More details can be found in Appendix B.

Transition matrix estimation. As inaccurate transition matrices will degenerate the performances of
these consistent algorithms, a series of estimation methods [28, 51, 57, 63, 26] have been proposed for
noisy multi-class learning to efficiently identify the transition matrix. However, most of them require
the assumption of anchor points [33, 57, 26], which is strong and hard to check in multi-label cases
when only noisy data are provided [52]. Besides, severe positive-negative imbalance in multi-label
learning [36] will make it difficult to accurately approximate the noisy or intermediate class posterior
of anchor points, which is crucial for these methods. This motivates us to seek for a better estimator
that can do without anchor points and avoid estimating noisy posterior in noisy multi-label learning.

3 Estimating Transition Matrices using Label Correlations
In this section, we first study the identifiability problem [30] of class-dependent transition matrices in
multi-label cases. Furthermore, inspired by these results, we propose a new estimator to approximate
the transition matrix by utilizing label correlations. It is worth pointing out that our estimator demands
neither the existence of anchor points nor accurate fitting of noisy class posterior.

3.1 Identifiability of transition matrix
Recently, Liu et al. [30] built identifiability of the noise transition matrix on the Kruskal’s identifia-
bility results. Inspired by them, with the complex correlations among class labels, we can get some
identifiability results of the class-dependent transition matrix in noisy multi-label learning.

Following [30], to define identifiability, we denote an observation space by Ω. For a general parametric
space Θ, denote the distribution (probability density function) induced by the parameter θ ∈ Θ on the
observation space Ω as Pθ [2]. The identifiability for a general parametric space is defined as follows:
Definition 1 (Identifiability [30]). The parameter θ is identifiable if Pθ 6= Pθ′ ,∀θ 6= θ′.

For the class-dependent transition matrix T j for class j, the identifiability can be defined as the
following, when T j is a part of θ.

Definition 2 (Identifiability of T j). T j is identifiable if Pθ 6= Pθ′ for θ 6= θ′, up to the label
permutation of class j.

Here, the label permutation of class j means swapping 1 and 0 class values in class j, and the rows
of T j will also swap. Note that Ω does not necessarily include all observable variables. We use an
example to better understand it. For example, let Ω := {Ȳ j ,X}, θ := {T j , P (Y j |X)}, and Pθ :=
P (Ȳ j |X), the identifiability of T j can be achieved with the anchor point assumption [33, 57, 26].

To use notations without confusion, for the identifiability of T j using label correlations, we
let Ω := {Ȳ j , Ȳ −j}, where −j means other classes having correlations with class j, θ :=

{T j , P (Y j), P (Ȳ
−j |Y j)}, and Pθ := P (Ȳ j , Ȳ

−j
). Also, Ω does not necessarily include all

noisy class labels. We need Ω to provide useful information to achieve the identifiability. The
exploration of an effective Ω and necessary conditions is one of the focuses of the paper.
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Assumption 1. P (Ȳ j = 0 | Y j = 1) + P (Ȳ j = 1 | Y j = 0) < 1, j ∈ [q].

Assumption 1 means that the noisy label is agreed with the clean label on average, which is a standard
condition for analysis under the class-dependent transition matrix [32, 31].
Assumption 2. P (Y i = 0 | Y j = 0) 6= P (Y i = 0 | Y j = 1), i, j ∈ [q] and i 6= j.

Assumption 2 means that the multiple labels have correlations between each other, which is satisfied
by the most of (i, j) pairs in the real-world dataset (see Appendix C). When considering multi-label
learning, the simplest case is having two class labels. In this case, the following theoretical results
can be obtained.
Theorem 1. Two noisy labels {Ȳ j , Ȳ i} will not suffice to identify T j .

This result tells us that the label correlations of two noisy labels can not offer enough information
to achieve the identifiability of T j . We provide Theorem 2 based on the Kruskal’s identifiability
result [21, 40].
Theorem 2. If Ȳ i and Ȳ k are independent given Y j , three noisy labels {Ȳ j , Ȳ i, Ȳ k} are sufficient
to identify T j .

The assumption that Ȳ i and Ȳ k are independent given Y j can be satisfied in certain cases, e.g., the
occurrences of “blue” and “dolphin” may be independent given “sea” appearing or not. Nevertheless,
due to the complex correlations among labels, this assumption is hard to hold in most cases. When
the assumption can not hold, these label correlations are no more sufficient to determine T j , as shown
in Theorem 3 in the following.
Theorem 3. If Ȳ i and Ȳ k are not independent given Y j , three noisy labels {Ȳ j , Ȳ i, Ȳ k}will not
suffice to identify T j .

The inspiration from Theorem 3 is that, the increase of the number of noisy labels may make the
identifiability decrease due to the entangled correlations (see Appendix G and I). To handle this
problem, we prove Theorem 4 by assuming the transition relationship between noisy label for class i
and clean label for class j is known.

Theorem 4. If P (Ȳ i | Y j) is known, two noisy labels {Ȳ j , Ȳ i} are sufficient to identify T j .

Theorem 4 theoretically guarantees that the identifiability of the class-dependent transition matrix
can be achieved by utilizing the occurrence probabilities P (Ȳ i, Ȳ j) and P (Ȳ i | Y j). Note that
P (Ȳ i, Ȳ j) can represent noisy label correlations, and P (Ȳ i | Y j) = P (Ȳ i | Y i)P (Y i | Y j), which
can imply clean label correlations. At a high level, the mismatch of label correlations implied in the
occurrence probabilities can achieve the identifiability.

The detailed proof of Theorem 1-4 is provided in Appendix E-H.

3.2 Our estimator
Our estimator is based on Theorem 4, which needs extra information to estimate P (Ȳ i | Y j).
Recently, the memorization effect [4] of deep networks has received much attention in learning with
noisy labels, which shows that deep networks will first memorize the training data with clean labels
and then those with noisy labels. Prior works utilize this characteristic to develop sample selection
methods [16, 13, 22, 17, 25], where we select some examples with more likely clean labels for
each class j respectively in the early learning phase. The selected examples can serve as the useful
extra information that implies clean label correlations, through which we can achieve estimation via
counting. However, when implementing sample-selection-based methods, a major concern is whether
the sampling bias will lead to large estimation errors.

Generally speaking, according to the memorization effect, the sampling bias is about selecting easy
examples for class j, which usually means these examples have easy-to-discriminate features. We
can reasonably assume that given Y j , the distribution of the features about class j is biased, while
the distribution of the features about another class i is unbiased, i.e.,

PDjs(Ȳ
i|Y j) =

∫
PDjs(Ȳ

i|Xi)PDjs(X
i|Y j)dx =

∫
PD̄js(Ȳ

i|Xi)PD̄js(X
i|Y j)dx = PD̄js(Ȳ

i|Y j),
(1)

whereDj
s is the distribution of (X,Ys), Ys = {Ȳ 1, Ȳ 2, ..., Y j , ..., Ȳ q}, D̄j

s is the biased distribution
of (X,Ys), and Xi is the part of X , which represents all information about class i appearing or
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not. When the assumption is satisfied, the sample selection will not lead to large estimation errors on
P (Ȳ i | Y j), and it can converge to zero exponentially fast by counting [6]. In real-world scenarios,
due to the complex label correlations, this assumption will not strictly hold. While, it may be roughly
met when class labels i and j do not share the major discriminative features. Intuitively speaking, the
classifying of simplest examples for one label is not easily affected by the presence or absence of
other significantly different labels. Also, since most label pairs from typical real-world multi-label
datasets are significantly different (see Appendix D), the assumption can be roughly hold for those
label pairs in typical cases. In Section 4.1, our empirical results justify this by showing a little gap
between the estimation error of our estimator with a biased sample selection and an unbiased one.

Based on the above discussions, we can approximate P (Ȳ i, Ȳ j) and P (Ȳ i | Y j) with frequency
counting, and utilize the mismatch of label correlations implied in these occurrence probabilities to
estimate the transition matrix. In this work, we propose to estimate transition matrices {T j}qj=1 by
following two stages.

In the first stage, we utilize sample selection to obtain useful information that implies clean label
correlations. Specifically, we train a classifier with the standard multi-label classification loss on
noisy training examples Dt for a few epochs, and then perform sample selection to get a selected
clean set Djs for each class label j. Specially, we use a commonly used sample selection way [3, 22]
in learning with noisy labels, which extracts the subset of examples with small losses by modeling
the distribution of losses for class j with a Gaussian mixture model (GMM).

In the second stage, we perform co-occurrence estimation by frequency counting, and then estimate
the transition matrix by solving a simple bilinear decomposition problem. For class label j, we first
choose another class label i and estimate P (Ȳ i, Ȳ j) and P (Ȳ i | Y j) via counting, i.e.,

P̂ (Ȳ i = v, Ȳ j = k) =
1

n

∑
(xxx,ȳyy)∈Dt

I[ȳj = v, ȳi = k] and (2)

P̂ (Ȳ i = v | Y j = k) =

∑
(xxx,ȳyy)∈Djs I[ȳ

i = v, ȳj = k]∑
(xxx,ȳyy)∈Djs I[ȳ

j = k]
, (3)

where I[·] is the indicator function which takes 1 if the identity index is true and 0 otherwise.

Then, these co-occurrence probabilities, which imply the mismatch of label correlations, can lead to
four equations involving T j :

P
(
Ȳ j = 0, Ȳ i = 0

)
= P (Y j = 0)T j00P (Ȳ i = 0|Y j = 0) + P (Y j = 1)T j10P (Ȳ i = 0|Y j = 1),

P
(
Ȳ j = 0, Ȳ i = 1

)
= P (Y j = 0)T j00P (Ȳ i = 1|Y j = 0) + P (Y j = 1)T j10P (Ȳ i = 1|Y j = 1),

P
(
Ȳ j = 1, Ȳ i = 0

)
= P (Y j = 0)T j01P (Ȳ i = 0|Y j = 0) + P (Y j = 1)T j11P (Ȳ i = 0|Y j = 1),

P
(
Ȳ j = 1, Ȳ i = 1

)
= P (Y j = 0)T j01P (Ȳ i = 1|Y j = 0) + P (Y j = 1)T j11P (Ȳ i = 1|Y j = 1).

For simplicity, we denote

E =

(
P (Ȳ j = 0, Ȳ i = 0) P (Ȳ j = 0, Ȳ i = 1)
P (Ȳ j = 1, Ȳ i = 0) P (Ȳ j = 1, Ȳ i = 1)

)
=

(
e00 e01

e10 e11

)
,

P =

(
P (Y j = 0) 0

0 P (Y j = 1)

)
=

(
1− p 0

0 p

)
,

T j =

(
P (Ȳ j = 0 | Y j = 0) P (Ȳ j = 1 | Y j = 0)
P (Ȳ j = 0 | Y j = 1) P (Ȳ j = 1 | Y j = 1)

)
=

(
1− ρ− ρ−
ρ+ 1− ρ+

)
, and

M =

(
P (Ȳ i = 0 | Y j = 0) P (Ȳ i = 1 | Y j = 0)
P (Ȳ i = 0 | Y j = 1) P (Ȳ i = 1 | Y j = 1)

)
=

(
1− ρ′− ρ′−
ρ′+ 1− ρ′+

)
.

Then the system of equations can be expressed as E = (T j)>PM , i.e.,(
e00 e01

e10 e11

)
=

(
1− ρ− ρ−
ρ+ 1− ρ+

)>(
1− p 0

0 p

)(
1− ρ′− ρ′−
ρ′+ 1− ρ′+

)
.

Denote the estimation of E, P , T j , and M as

Ê =

(
ê00 ê01

ê10 ê11

)
, P̂ =

(
1− p̂ 0

0 p̂

)
, T̂

j
=

(
1− ρ̂− ρ̂−
ρ̂+ 1− ρ̂+

)
,M̂ =

(
1− ρ̂′− ρ̂′−
ρ̂′+ 1− ρ̂′+.

)
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As Ê and M̂ can be derived from Eq. (2) and Eq. (3), the problem is hence equivalent to a bilinear
decomposition problem:

Ê(M̂)−1 = (T̂
j
)>P̂ . (4)

By solving the above matrix equation, we can get

p̂ =
(1− ρ̂′−)− (ê00 + ê10)

1− ρ̂′− − ρ̂′+
, (5)

and the estimation of the transition matrix

T̂
j

= [Ê(M̂)−1(P̂ )−1]>. (6)

Implementation of our estimator. The pseudo code of our estimator is described in Algorithm 1. A
little difference from the above is that in order to make better use of correlations among labels, we
perform R times co-occurrence estimation and bilinear decomposition for different classes i in the
second stage to get R estimations, T̂

j

r, r = 1, 2, ..., R. Finally, we estimate the transition matrix T j

by Eq. (7):

T̂
j

= arg min
ˆT
j

r

R∑
i=1

‖T̂
j

r − T̂
j

i‖1, (7)

where ‖ · ‖1 denotes `1 norm.

Algorithm 1 Estimating Label-Noise Transition Matrices using Label Correlations

Require: Noisy training examples Dt, the number of classes q, the early warmup training epoch
Ewarm, the threshold of sample selection τ , and repeated estimation times R.
Stage1: Standard Training and Sample Selection

1: Standard training with the standard multi-label loss for Ewarm epochs.
2: for j = 1, 2, ..., q do
3: Model losses with a trained classifier on Dt by a GMM.
4: Get the selected set Djs for class label j with the threshold τ .
5: end for

Stage2: Co-occurrence Estimation and Bilinear Decomposition
6: for j = 1, 2, ..., q do
7: for r = 1, 2, ..., R do
8: Choose another class label i.
9: Estimate P (Ȳ i, Ȳ j) by P̂ (Ȳ i, Ȳ j) with Eq. (2) on Dt, and P (Ȳ i | Y j) by P̂ (Ȳ i | Y j)

with Eq. (3) on Djs.

10: Solve a bilinear decomposition problem (Eq. (4)) to get a estimation T̂
j

r by Eq. (6).
11: end for
12: Estimate T j by T̂

j
which has the minimum error with Eq. (7) from R estimations.

13: end for
Ensure: The estimated transition matrices {T̂

j
}qj=1.

4 Experiments

Dataset We verify the effectiveness of the proposed method on three synthetic noisy multi-
label datasets, i.e., Pascal-VOC2007 [11], Pascal-VOC2012 [12], and MS-COCO [27]. Pascal-
VOC2007 [11] and Pascal-VOC2012 [12] datasets are two popular datasets for object recognition.
They both contain images from the same 20 object classes, with an average of na = 1.5 labels
per image. Pascal-VOC2007 contains a training set of 5,011 images and a test set of 4,952 images.
Pascal-VOC2012 consists of 11,540 images as the training set and 10,991 images as the test set [5].
As the labels of the test set in Pascal-VOC2012 are not publicly available, we use the test set in
Pascal-VOC2007 for Pascal-VOC2012 evaluation. MS-COCO [27] is a widely used multi-label
dataset. It contains 82,081 images as the training set and 40,137 images as the test set and covers 80
object classes with an average of na = 2.9 labels per image. For these datasets, we corrupted the
training sets manually according to true transition matrices {T j}qj=1. For convenience, we use the
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same true transition matrices for all classes, i.e., T j = T =

(
1− ρ− ρ−
ρ+ 1− ρ+

)
, but do not divulge

this information for algorithms. We generate four different types of synthetic datasets by using
different transition matrices: 1) ρ− = 0, ρ+ = ρ, which annotates some positive examples as negative
examples, also known as multi-label learning with missing labels [45, 44]; 2) ρ− = ρ, ρ+ = 0, which
annotates some negative examples as positive examples, also known as partial multi-label learn-
ing [53, 55]; 3) ρ− = ρ, ρ+ = ρ, where positive examples and negative examples are mislabeled with
the same probability ρ; 4) ρ− = na

q−na ρ, ρ+ = ρ, where positive examples and negative examples are
mislabeled with the same number. In the experiments, we test the algorithms on various ρ. For all
datasets, we leave out 10% of the noisy training examples as a noisy validation set. We use mAP on
noisy validation set as the criterion for model selection.

Implementation details For a fair comparison, we implement all methods with default parameters
by PyTorch on NVIDIA RTX 3090. We use a ResNet-50 network [14] pre-trained on ImageNet [37]
for all datasets, and the optimizer is Adam optimizer [18] with β = (0.9, 0.999). The batch size is
128, the learning rate is 5e-5. The number of training epochs is 20 for Pascal-VOC2007/VOC2012,
and 30 for MS-COCO. For the transition matrix estimation method, Ewarm is the same as the normal
training epoch. For our estimator, we perform sample selection based on the average losses of 5
epochs before a certain warmup epoch (10th epoch for Pascal-VOC2007/VOC2012, 15th epoch for
MS-COCO), R = q − 1 and τ = 0.5 in all experiments. All experiments are run at least three times
with different random seeds, and we report the average and standard deviation values of results. The
best results are in bold, and the second-best results are in blue.

4.1 Comparison for estimating transition matrices

Baselines For evaluating the effectiveness of estimating the transition matrix under multi-label cases,
we compare the proposed method with the following methods: (1) T-estimator max [28, 33], which
estimates the transition matrix via the noisy class posterior probabilities for anchor points that have
the largest estimated noisy class posteriors. (2) T-estimator 97% [28, 33], which selects the points
with 97% largest estimated noisy class posteriors to be anchor points. (3) Dual T-estimator max [57],
which introduces an intermediate class to avoid directly estimating the noisy class posterior, and
selects the points with the largest estimated intermediate class posteriors to be the anchor points. (4)
Dual T-estimator 97% [57], which selects the points with the 97% largest estimated intermediate
class posteriors to be the anchor points.

Metrics We use the sum of estimation error for the transition matrices as the estimation evaluation
metric, i.e.,

∑q
j=1 ‖T

j − T̂
j
‖1/‖T j‖1.

Results In Tab. 1, 2 and 3, we can see that for all cases on three datasets, the proposed estimation
method leads to the smallest or second-smallest estimator errors across various noise rates. Note
that since the fitting of noisy or intermediate class posterior is hard to be accurate in noisy multi-
label learning, T-estimator and Dual T-estimator need to carefully tune a hyperparameter for better
estimation under different noise rates, and it’s very sensitive in some cases, e.g., MS-COCO datasets
with noise rates (0.1, 0.1). In contrast, our method uses the same hyperparameters on one dataset to
get good results for all cases, which reflects its robustness to various noise rates. Besides, to study the
ablation of sampling bias, we also run our method with an unbiased sample selection, named “our
estimator gold”. We can see that sample bias is the main factor that contributes to the error for our
estimator, but the little error gap between our estimator and our estimator gold shows it will not lead
to large estimation errors.

Table 1: Comparison for estimating transition matrices on Pascal-VOC2007 dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.017,0.2) (0.034,0.4)
T-estimator max 3.89±0.03 10.52±0.58 3.01±0.12 4.47±0.22 3.18±0.22 5.28±0.20 3.99±0.10 6.28±0.44
T-estimator 97% 4.95±0.17 4.42±0.18 1.77±0.03 2.13±0.12 6.99±0.10 6.94±0.17 5.38±0.14 5.17±0.09
Dual T-estimator max 1.94±0.13 7.29±0.16 1.03±0.04 2.68±0.13 2.13±0.23 4.02±0.18 1.71±0.08 2.67±0.27
Dual T-estimator 97% 12.59±0.06 7.43±0.06 1.09±0.03 2.41±0.33 14.39±0.10 11.78±0.06 13.71±0.16 11.15±0.09
Our estimator 1.51±0.12 2.30±0.13 0.37±0.08 1.34±0.33 3.06±0.38 3.21±0.32 2.03±0.19 1.84±0.32
Our estimator gold 0.44±0.05 0.51±0.09 0.38±0.08 0.37±0.11 0.83±0.05 2.15±0.30 0.65±0.10 1.40±0.20
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Table 2: Comparison for estimating transition matrices on Pascal-VOC2012 dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.017,0.2) (0.034,0.4)
T-estimator max 3.90±0.01 10.28±0.33 2.87±0.09 4.55±0.08 3.29±0.07 5.25±0.15 4.05±0.04 6.82±0.20
T-estimator 97% 5.42±0.09 3.98±0.09 1.53±0.06 1.91±0.07 6.43±0.16 6.20±0.17 5.76±0.27 5.16±0.14
Dual T-estimator max 1.02±0.20 5.13±0.26 1.07±0.07 2.06±0.12 1.94±0.05 2.59±0.16 1.17±0.13 1.93±0.08
Dual T-estimator 97% 12.94±0.06 7.49±0.03 1.14±0.04 2.94±0.18 14.23±0.08 11.56±0.05 13.97±0.09 11.10±0.08
Our estimator 0.83±0.10 1.94±0.15 0.26±0.03 0.91±0.12 1.74±0.22 1.79±0.17 0.94±0.07 1.07±0.14
Our estimator gold 0.33±0.05 0.34±0.05 0.25±0.05 0.45±0.05 0.51±0.05 1.67±0.29 0.42±0.06 0.91±0.16

Table 3: Comparison for estimating transition matrices on MS-COCO dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.008,0.2) (0.015,0.4)
T-estimator max 16.14±0.33 39.09±0.47 10.39±0.21 11.49±0.60 13.95±0.41 20.50±0.04 16.70±0.06 28.16±0.45
T-estimator 97% 50.49±0.01 25.70±0.08 4.04±0.08 3.70±0.02 51.17±0.16 39.45±0.11 49.96±0.18 37.54±0.10
Dual T-estimator max 5.04±0.04 11.22±0.70 4.65±0.07 9.55±0.84 13.02±0.45 15.79±0.38 7.04±0.31 6.34±0.11
Dual T-estimator 97% 61.49±0.02 30.97±0.03 1.53±0.00 7.86±0.12 64.20±0.02 48.67±0.01 63.12±0.02 46.91±0.01
Our estimator 7.42±0.38 11.23±0.11 0.50±0.03 0.83±0.06 8.88±0.10 10.27±0.19 7.51±0.43 8.77±0.20
Our estimator gold 0.82±0.03 0.80±0.04 0.40±0.04 0.66±0.04 1.94±0.04 8.14±0.06 0.95±0.05 2.02±0.08

4.2 Comparison for classification performance

Baselines We exploit 10 baselines: (1) Standard, which trains with a standard multi-label classi-
fication loss. (2) GCE [60], which proposes a Generalized Cross-Entropy loss for robustness. (3)
CDR [49], which performs different update rules for two types of parameters to achieve robust
learning. (4) AGCN [58], which adopts a dynamic GCN to model the relation of content-aware
class representations. (5) CSRA [61], which generates class-specific features for every category
by proposing a spatial attention score. (6) WSIC [15] that proposes to use a small set with clean
labels to learn a residual net for regularization in noisy multi-label learning, and we only provide
noisy datasets to it for a fair comparison. (7) Reweight-T max, which learns with a reweighting
algorithm using transition matrices estimated by T-estimator max [33]. (8) Reweight-T 97%, which
learns with a reweighting algorithm using transition matrices estimated by T-estimator 97% [33]. (9)
Reweight-DualT max, which learns with a reweighting algorithm using transition matrices estimated
by Dual T-estimator max [57]. (10) Reweight-DualT 97%, which learns with a reweighting algorithm
using transition matrices estimated by Dual T-estimator 97% [57]. Note that Standard, AGCN, and
CSRA are designed for clean multi-label data, and GCE and CDR are designed for noisy multi-class
learning.

Metrics Following conventional setting [11, 7, 36, 35], we compute the mean average precision
(mAP), overall F1-measure (OF1) and per-class F1-measure (CF1) as classification evaluation metrics.
For each image, we assign a positive label if its prediction probability is greater than 0.5.

Results As shown in Tab. 4, 5 and 6, first, we can find those statistically consistent methods achieve
the best or second-best results on all three metrics in the vast majority of cases, while other methods
can only achieve good results in some cases. For example, on the Pascal-VOC2012 dataset with noise
rates (0.0, 0.6), CSRA achieves the best result in the mAP metric with the help of its well-designed
network, but its performance is far lower than those consistent methods on the OF1 and CF1 metrics,
which shows the learned model can not approximate well the true class posterior P (Y |X). Note
that since network structure and loss correction are compatible, the risk-consistent methods can also
help AGCN and CSRA perform better (shown in Appendix M). Second, theoretically, the more
accurate the transition matrix is estimated, the more likely the consistent method is to achieve better
results by increasing the size of noisy examples, and our experimental results verify this. Among
those consistent methods, the reweighting algorithm with our estimator (named "Reweight-Ours")
obtains the best or second-best results on the three metrics, which is due to the smaller error of
our estimation. Especially on the challenging and large-scale MS-COCO dataset, Reweight-Ours
outperforms almost all state-of-the-art methods on the CF1 metric and significantly surpasses other
baselines by a large margin in some cases. For example, on the MS-COCO dataset with noise rates
(0.6, 0), Reweight-Ours achieves the best CF1 result (58.63±1.30), while the suboptimal result is
56.70±2.11, and the result of Standard is only 7.07±0.02. In addition, the ablation studies about loss
correction ways and base learning algorithms are provided in Appendix L and M, which shows that
our estimator can achieve much better performance with the advanced frameworks.

Besides, although our method is based on the assumption of class-dependent label noise, the experi-
ments with two types of instance-dependent label noise are provided in Appendix O.
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Table 4: Comparison for classification performance on Pascal-VOC2007 dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.017,0.2) (0.034,0.4)

m
A

P
Standard 84.25±1.07 77.16±0.94 82.70±0.54 68.65±1.57 83.07±0.45 78.87±0.52 83.92±0.59 80.97±0.42
GCE 83.85±1.09 73.32±2.22 83.03±0.51 67.47±1.74 83.68±0.66 79.39±0.95 84.40±0.34 80.68±0.52
CDR 84.60±0.43 77.45±1.23 82.76±0.53 68.86±2.05 83.22±0.57 79.02±0.62 84.37±0.25 81.14±0.28
AGCN 83.24±0.67 75.50±0.56 81.09±0.51 66.47±1.29 81.09±0.48 73.79±0.76 82.21±0.42 76.55±1.11
CSRA 85.11±0.51 79.47±1.22 82.93±0.65 67.36±2.25 83.69±0.69 78.10±0.53 84.94±0.36 81.51±0.14
WSIC 84.14±0.26 76.17±1.31 82.30±0.64 66.82±3.87 83.41±0.31 77.93±1.00 84.17±0.48 80.74±0.44
Reweight-T max 84.20±0.46 76.97±1.20 83.04±0.39 71.36±2.47 83.48±0.15 79.10±0.52 84.06±0.24 81.01±0.99
Reweight-T 97% 84.00±0.68 78.97±0.69 83.07±0.29 73.96±1.69 82.71±0.30 78.80±0.28 84.37±0.22 81.42±0.25
Reweight-DualT max 84.46±0.20 77.65±1.06 83.75±0.44 73.75±1.61 83.94±0.31 79.48±1.24 84.60±0.30 81.77±0.26
Reweight-DualT 97% 82.36±0.45 77.72±0.73 84.56±0.40 75.76±2.11 79.69±1.40 75.26±1.70 81.84±0.81 77.40±1.86
Reweight-Ours 84.43±0.46 78.72±0.41 84.08±0.24 74.46±0.56 84.03±0.29 80.44±0.52 84.09±0.62 80.97±1.03

O
F1

Standard 75.24±1.40 32.02±5.49 78.85±0.43 15.08±0.25 79.24±0.43 75.85±0.84 75.98±1.04 59.67±1.65
GCE 76.17±1.57 36.13±4.07 79.28±0.44 14.85±0.22 79.73±0.70 76.27±0.55 76.80±0.68 60.26±2.43
CDR 76.05±0.68 34.11±3.43 79.04±0.46 14.99±0.19 79.34±0.60 76.00±0.47 76.56±0.52 59.31±1.04
AGCN 74.92±1.02 30.97±3.78 75.45±2.06 16.85±0.56 78.69±0.31 72.64±0.51 75.16±0.58 56.56±1.64
CSRA 76.94±1.03 33.65±2.73 77.71±1.23 15.94±0.32 80.36±0.53 76.92±0.34 77.91±0.63 62.19±1.97
WSIC 75.01±1.18 16.48±6.78 79.02±0.59 14.88±0.21 78.55±1.05 72.88±3.44 72.30±2.82 53.26±9.44
Reweight-T max 76.97±0.45 41.54±2.64 79.65±0.44 47.68±5.65 80.00±0.27 73.58±1.67 76.94±0.37 66.77±0.93
Reweight-T 97% 77.71±0.65 68.28±2.03 80.16±0.24 70.67±0.70 75.28±0.97 65.03±2.20 78.45±0.63 74.11±0.67
Reweight-DualT max 78.38±0.41 68.81±1.41 80.02±1.12 65.41±1.84 79.87±0.27 65.36±7.31 78.55±0.36 47.04±4.15
Reweight-DualT 97% 68.17±3.53 61.81±3.29 80.74±0.50 72.53±2.65 52.99±5.06 36.75±6.71 67.55±0.64 57.41±0.70
Reweight-Ours 78.62±0.58 65.68±1.67 80.85±0.25 67.43±4.65 79.64±0.29 75.52±0.86 79.25±0.52 74.35±1.65

C
F1

Standard 72.53±1.11 30.64±3.90 76.83±0.65 14.97±0.24 75.86±1.23 70.68±1.76 73.11±0.54 52.07±2.34
GCE 73.10±1.27 33.07±4.65 77.25±0.66 14.77±0.20 76.73±1.57 71.24±1.42 73.37±0.98 56.89±2.84
CDR 73.08±0.47 33.06±1.84 76.95±0.79 14.88±0.17 76.09±1.42 70.78±1.09 73.33±0.85 54.16±3.19
AGCN 73.45±1.04 33.41±1.65 72.65±1.97 16.67±0.55 76.20±0.51 69.09±0.49 72.81±1.02 55.09±3.28
CSRA 74.10±0.56 33.44±3.65 75.28±1.32 15.71±0.23 77.52±0.94 73.44±0.62 74.98±0.48 58.60±2.24
WSIC 70.13±2.04 13.64±6.97 75.32±2.00 14.77±0.16 74.17±1.87 64.95±6.47 65.41±4.40 43.43±11.31
Reweight-T max 74.05±0.51 39.37±1.36 77.28±0.47 50.35±5.52 77.20±0.39 73.32±0.47 74.08±0.29 62.99±1.80
Reweight-T 97% 76.81±0.74 71.24±1.33 77.22±0.56 67.65±1.37 74.99±0.37 68.07±0.74 77.62±0.42 74.56±0.26
Reweight-DualT max 75.27±0.56 45.31±1.86 76.56±1.80 63.99±0.42 77.27±0.40 69.48±4.48 75.66±0.35 68.32±1.22
Reweight-DualT 97% 71.93±1.64 63.85±3.69 77.95±0.79 68.44±2.93 62.84±2.51 50.49±2.43 70.99±0.98 60.58±1.67
Reweight-Ours 76.86±0.48 61.29±1.94 77.89±0.42 66.79±2.50 78.04±0.40 74.08±0.79 77.28±0.48 72.18±0.74

Table 5: Comparison for classification performance on Pascal-VOC2012 dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.017,0.2) (0.034,0.4)

m
A

P

Standard 85.97±0.09 80.02±0.62 85.70±0.19 76.13±0.86 85.91±0.10 82.54±0.51 86.03±0.24 82.91±0.74
GCE 86.02±0.21 78.71±0.72 85.96±0.19 75.02±0.50 86.29±0.15 83.18±0.33 85.84±0.37 82.96±0.83
CDR 86.09±0.14 80.52±1.61 85.61±0.18 76.53±1.26 86.01±0.19 82.79±0.42 85.92±0.38 83.48±0.62
AGCN 85.16±0.12 79.67±0.43 84.91±0.38 77.54±0.29 84.69±0.30 80.15±0.49 84.75±0.12 81.85±0.35
CSRA 86.88±0.23 81.75±0.97 85.39±0.27 75.08±0.84 86.14±0.14 80.98±1.22 86.51±0.15 83.86±0.49
WSIC 86.39±0.38 80.75±0.49 85.53±0.28 77.00±1.03 85.67±0.17 82.01±0.87 86.07±0.22 83.19±0.19
Reweight-T max 85.40±0.43 79.06±1.69 85.80±0.32 78.59±0.69 85.98±0.32 82.88±0.41 85.51±0.51 82.38±1.67
Reweight-T 97% 85.97±0.27 81.04±0.79 85.81±0.21 80.12±0.75 85.66±0.55 82.81±0.52 85.99±0.51 83.28±1.07
Reweight-DualT max 85.93±0.41 78.69±2.62 86.47±0.26 80.00±0.66 86.23±0.34 84.21±0.18 86.15±0.44 83.42±1.26
Reweight-DualT 97% 83.93±0.52 79.97±1.42 86.37±0.25 81.84±0.87 82.39±0.85 78.61±1.01 83.33±1.40 80.95±1.15
Reweight-Ours 86.01±0.54 80.33±1.85 86.12±0.10 80.54±1.30 86.23±0.28 83.42±0.51 85.92±0.42 83.56±1.31

O
F1

Standard 77.91±0.20 27.84±4.17 80.47±0.34 14.93±0.28 81.27±0.22 78.51±0.13 77.83±0.36 61.67±2.10
GCE 78.25±0.28 24.67±3.13 80.89±0.19 14.73±0.28 81.47±0.34 78.78±0.11 78.32±0.37 63.26±1.40
CDR 78.02±0.23 29.45±6.39 80.65±0.36 14.91±0.26 81.34±0.35 78.58±0.14 77.82±0.34 61.94±1.91
AGCN 76.11±0.76 31.06±4.73 80.49±0.51 15.42±0.35 80.28±0.44 76.02±1.33 75.83±1.18 61.59±4.20
CSRA 78.61±0.56 32.36±6.27 79.88±0.57 15.71±0.50 81.82±0.35 78.12±1.11 79.05±0.59 61.77±3.46
WSIC 78.56±0.78 27.90±6.72 80.56±0.32 15.09±0.24 80.98±0.49 77.36±1.51 78.52±0.65 57.56±4.11
Reweight-T max 77.76±0.72 43.96±6.52 81.24±0.31 48.88±2.45 81.53±0.49 78.63±0.17 78.66±0.22 68.04±2.70
Reweight-T 97% 79.31±0.20 71.79±2.35 81.56±0.29 75.10±1.81 77.81±1.09 71.28±1.99 79.20±0.35 73.90±1.81
Reweight-DualT max 80.44±0.69 63.68±5.75 82.01±0.28 74.17±2.34 81.04±0.36 78.71±0.83 80.47±0.35 75.56±1.72
Reweight-DualT 97% 60.81±1.36 58.42±2.41 82.20±0.20 75.96±1.47 56.42±1.24 30.28±1.82 64.36±1.42 58.49±1.73
Reweight-Ours 80.54±0.61 69.08±4.58 81.77±0.43 75.38±3.05 81.11±0.56 77.78±0.37 80.75±0.43 77.31±1.49

C
F1

Standard 75.15±0.62 29.76±3.77 79.06±0.35 14.87±0.29 79.05±0.26 75.61±0.52 76.07±0.46 60.32±1.90
GCE 75.25±0.84 26.25±4.40 79.68±0.32 14.69±0.27 79.13±0.32 75.84±0.51 76.05±0.84 61.99±0.71
CDR 75.32±0.66 31.49±4.03 79.20±0.20 14.85±0.25 79.14±0.45 75.56±0.49 76.11±0.44 60.02±1.91
AGCN 74.16±1.06 33.33±4.55 78.81±0.12 15.42±0.76 78.09±0.99 73.28±1.80 73.91±1.39 58.57±4.67
CSRA 75.91±0.98 32.83±4.88 78.86±0.25 15.48±0.49 79.87±0.26 75.53±1.12 76.40±0.73 59.53±3.12
WSIC 76.46±1.39 30.19±5.09 79.49±0.57 14.98±0.23 78.50±0.91 74.10±2.39 76.05±0.90 55.11±4.30
Reweight-T max 75.54±0.59 39.66±5.13 79.79±0.27 49.60±3.31 79.60±0.48 76.45±0.29 76.82±0.42 65.53±2.66
Reweight-T 97% 78.94±0.10 73.66±1.10 79.73±0.29 73.38±1.41 77.54±0.88 72.39±1.57 78.78±0.35 75.54±1.13
Reweight-DualT max 78.37±0.54 58.96±3.99 80.06±0.22 72.61±1.76 79.29±0.35 76.37±1.44 78.69±0.25 65.68±1.37
Reweight-DualT 97% 67.96±1.13 61.89±2.49 80.11±0.33 71.87±3.50 65.09±1.07 52.28±1.03 69.26±0.82 63.10±1.57
Reweight-Ours 78.81±0.53 66.76±3.38 79.82±0.43 72.84±2.16 79.90±0.39 75.90±0.81 79.37±0.35 75.16±1.42
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Table 6: Comparison for classification performance on MS-COCO dataset.

Noise rates (ρ−, ρ+) (0,0.2) (0,0.6) (0.2,0) (0.6,0) (0.1,0.1) (0.2,0.2) (0.008,0.2) (0.015,0.4)

m
A

P
Standard 69.92±0.06 63.81±0.16 66.77±0.52 55.45±0.48 67.77±0.28 62.50±0.23 69.76±0.09 66.82±0.05
GCE 69.90±0.05 62.58±0.17 67.32±0.11 54.01±0.70 68.62±0.16 63.21±0.35 69.99±0.11 66.72±0.19
CDR 70.06±0.05 63.85±0.28 67.32±0.08 55.20±1.62 68.01±0.08 62.65±0.21 69.87±0.09 66.85±0.19
AGCN 71.48±0.14 65.75±0.32 69.44±0.10 55.71±0.61 69.42±0.23 63.96±0.11 70.90±0.13 67.86±0.26
CSRA 71.18±0.10 65.28±0.11 67.93±0.18 51.49±0.73 68.83±0.12 61.80±0.98 70.76±0.16 68.02±0.15
WSIC 68.92±0.09 63.09±0.28 66.22±0.06 53.61±0.36 67.41±0.15 62.33±0.18 68.95±0.15 66.29±0.21
Reweight-T max 69.99±0.18 63.94±0.11 67.40±0.13 58.27±0.25 67.85±0.05 63.28±0.12 69.76±0.07 66.24±0.51
Reweight-T 97% 67.98±0.57 62.52±0.46 68.00±0.17 59.44±0.81 65.69±0.48 60.03±0.11 68.13±0.04 64.40±0.18
Reweight-DualT max 67.57±0.21 60.39±0.53 68.57±0.25 58.42±0.82 68.01±0.51 62.17±0.32 68.76±0.08 65.75±0.15
Reweight-DualT 97% 64.97±0.20 58.85±0.43 69.68±0.25 49.17±3.02 56.36±0.62 49.41±0.38 63.27±0.36 58.21±0.86
Reweight-Ours 70.57±0.11 63.28±0.92 69.38±0.36 61.88±0.66 68.70±0.15 64.46±0.10 70.06±0.06 67.03±0.08

O
F1

Standard 66.48±0.50 19.18±0.97 69.58±0.38 7.05±0.01 68.64±0.18 64.84±0.54 66.07±0.15 51.70±0.42
GCE 66.67±0.38 19.61±1.61 69.82±0.25 7.03±0.02 69.44±0.18 64.98±0.79 66.58±0.32 52.04±0.51
CDR 66.46±0.54 19.60±2.86 69.72±0.31 7.06±0.04 68.75±0.09 64.68±0.54 66.03±0.39 52.49±1.18
AGCN 67.14±0.52 16.02±0.76 70.63±0.12 7.04±0.02 69.66±0.25 66.07±0.55 66.61±0.48 52.38±1.05
CSRA 67.98±0.40 24.08±2.60 70.14±0.17 7.06±0.02 69.70±0.31 64.89±1.22 67.37±0.28 51.81±0.53
WSIC 66.67±0.15 23.02±4.70 69.02±0.06 7.02±0.00 67.78±0.58 62.31±0.69 66.38±0.25 52.07±1.94
Reweight-T max 67.13±0.41 39.47±1.47 69.84±0.11 59.26±1.76 64.03±2.00 57.68±4.00 66.45±0.30 53.63±1.28
Reweight-T 97% 57.66±0.56 54.06±1.19 69.72±0.39 64.79±0.85 43.81±0.54 33.65±2.93 55.44±0.56 51.78±1.37
Reweight-DualT max 65.22±0.28 55.01±0.86 70.16±0.26 56.90±4.55 59.62±1.59 49.79±0.18 65.64±0.71 61.73±2.11
Reweight-DualT 97% 29.39±0.36 29.30±0.74 70.24±0.26 48.87±6.87 25.83±0.16 8.51±0.26 39.29±0.45 35.78±1.10
Reweight-Ours 70.10±0.10 61.74±0.64 70.52±0.26 65.78±0.56 64.45±0.47 58.60±3.30 69.40±0.31 65.93±0.42

C
F1

Standard 60.27±0.52 22.73±0.15 64.66±0.82 7.07±0.02 62.38±0.27 56.78±1.31 60.04±0.17 45.35±0.60
GCE 60.76±0.08 21.06±1.12 65.27±0.22 7.04±0.03 63.60±0.25 56.72±1.56 60.66±0.19 44.28±1.12
CDR 60.26±0.55 22.42±1.78 65.27±0.10 7.07±0.04 62.63±0.08 56.41±1.36 59.85±0.38 45.41±0.85
AGCN 61.79±0.98 19.30±1.20 66.29±0.11 7.05±0.04 64.09±0.39 58.97±1.15 60.35±0.54 43.89±1.46
CSRA 62.46±0.53 24.17±2.76 65.80±0.02 7.06±0.02 63.90±0.48 55.97±2.29 61.30±0.42 44.25±2.33
WSIC 61.12±0.08 27.16±1.54 63.71±0.34 7.03±0.01 61.12±1.30 52.47±0.99 60.51±0.25 45.52±1.32
Reweight-T max 61.59±0.51 32.78±0.70 64.82±0.24 56.68±0.80 63.35±0.16 59.93±0.50 60.92±0.08 48.40±0.33
Reweight-T 97% 55.67±0.45 52.79±1.04 63.97±0.74 56.70±2.11 48.47±0.70 40.20±0.82 55.33±0.12 52.19±0.29
Reweight-DualT max 64.79±0.23 52.16±2.08 63.51±0.35 54.62±1.12 66.29±0.34 61.33±0.09 65.18±0.22 60.88±0.59
Reweight-DualT 97% 32.15±0.43 30.32±0.91 65.23±0.28 33.76±8.88 29.99±0.10 12.77±0.21 41.29±0.83 37.08±1.29
Reweight-Ours 67.18±0.17 57.46±0.52 65.42±0.49 58.63±1.30 66.65±0.15 61.13±1.01 66.42±0.10 62.94±0.28

5 Limitations
This work still has certain limitations, including: 1) This work exploits the memorization effect [4] in
deep learning to perform sample selection, while the memorization effect has not been found in other
traditional machine learning methods, and therefore, the proposed estimator can not be applied to
such learning methods. 2) This work estimates occurrence probabilities using frequency counting.
Although this estimation error will converge to zero exponentially fast [6], when the number of one
label appearing is too small, e.g., less than 50, the estimation of the transition matrix for this class
label is still difficult to be accurate. 3) Since our work assumes label noise is class-dependent but
instance-independent, when this assumption does not hold, the estimation is not guaranteed. The
discussions about the relaxation of instance-independent assumption can be found in Appendix N,
which reveals its applicability in certain typical instance-dependent cases.

6 Conclusion
In this paper, we study the estimation problem of the transition matrices in the noisy multi-label setting.
We prove some identifiability results of class-dependent transition matrices in such a setting, inspired
by which we propose a new estimator to approximate the transition matrix. The proposed estimator
utilizes the information of label correlations, and demands neither anchor points nor accurate fitting
of noisy class posterior. Experiments on three popular multi-label datasets illustrate the effectiveness
of the proposed estimator to accurately estimate transition matrices, and the consistent algorithms
with this estimator achieve better classification performance.
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