
Supplementary Material of “Pluralistic Image Completion with
Gaussian Mixture Models”

The appendix is organized as follows. We detail theoretical analyses in Section A. The related work is
reviewed in Section B. Supplementary experimental results are provided in Section C and Section D.

A The Details of Theoretical Analyses

A.1 The Proof of Proposition 1

As we do not have the access to the underlying Ic, we can preform the following variational
approximation with the Kullback-Leibler (KL) divergence:
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The second term in Eq. (9) is
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Combining Eq. (9) and Eq. (10), we complete the proof. ⌅
Note that the latent variables zm and zc are not codependent. If zm and zc are codependent, the
inference of zm (resp. zc) must need zc (resp. zm). Then, in Eq. (10), there should be q (zm|Im, zc)
and p�(zc|Ic, zm), rather than q (zm|Im) and p�(zc|Ic). As shown in the our Figure 3, zm and zc
can be inferred without each other, but using Im and Ic. Therefore, q (zm|Im) and p�(zc|Ic) hold
in Eq. (10).

A.2 The Derivation of the Frequency Loss

As discussed, we exploit the frequency loss [38] for the Gaussian mixture model. Here, we detail
The derivation of the frequency loss for our task, i.e., pluralistic image completion. Specifically, we
use the KL divergence between each primitive N (zc|µẑc

i ,⌃ẑc
i ) and N (zc|µzc ,⌃zc) as the metric of

the performance:
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i
, i = 1, ..., k. (11)
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Then, by comparing the KL divergence of each primitive, we can get the best primitive’s index j.
That is

j = argmin
i
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i
. (12)

We now can give a detailed derivation for Eq. (4) below. Specifically, for stochastic Gaussian mixture
models, the gradient value of a single-instance sampling process from each primitive’s performance
under the metric Eq. (11), to parameters ✓↵ that output the mixing coefficients ↵ = [↵1, . . . ,↵k],
can be estimated with a frequency approximate gradient. Mathematically, we have

gradi = �ir✓i↵i and �i = � best
i + ↵i, (13)

where �i is the gradient of the performance metric Eq. (11) for ↵i, r✓i↵i is the gradient of ↵i for
parameters ✓i, and best

i is the indicator function, where best
i = 1 if i = j and best

i = 0 otherwise.

The accumulated frequency approximate gradient is an asymptotically unbiased estimation of the
true gradient for the sampling process from a categorical distribution ↵, with a batch of n ! 1
examples. For �i, we can detail it below:
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Suppose a batch of examples with a number of n is applied, and the true probability of the primitive i
to be the best primitive is pi. The batch accumulated gradient will be
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(15)

where the last formula indicates that nt = npi when n ! 1, since the true probability can be
approximated by nt

n in the limit case. Also, as r✓i↵i is not always equal to 0, the gradient equals to
0 if and only if ↵i = pi . Optimising with the above Eq. (15) is the same as minimising the distance
between ↵i and pi, with the optimal situation as ↵i = pi when letting the last formula of Eq. (15) be
zero. Based the above analyses, we therefore can build a frequency loss in this paper.

The derivation is completed. ⌅

A.3 The Proof of Proposition 2

We employ the mixture of Gaussian for the dynamic model q✓(zc|zm), which is more flexible than a
unimodal and can diversify the output. More formally, we have

q✓(zc|zm) =
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i ), (16)

where k denotes the number of primitives, and ↵i denotes the weight of the i-th primitive. Then the
KL divergence between q✓(zc|zm) and p�(zc|Ic) becomes
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We further approximate Eq. (17) by the back-propogate-max-operation with the frequency loss. We
will have
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where j = argmini KL
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(⌃ẑc

j )
�1

(zc � µẑc
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j ){�1

2
log

|⌃ẑc
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(⌃ẑc

j )
�1

(zc � µẑc
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Suppose the covariance is a diagonal matrix [21], we have
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where tr(·) denotes the trace of a matrix. Then, Eq. (19) would be:
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(⌃ẑc

j )
�1

µẑc
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The proof is completed. ⌅

A.4 The Fully Optimization Expression of Proposition 1

As discussed in the main paper, we have

LP = KL [q (Io, zm, zc|Im)kp�(Io, zm, zc|Im, Ic)]

= (zm,zc)⇠q (zm,zc|Im)KL [q (Io|zm, zc)kp�(Io|Im, Ic)]| {z }
a�

+ zm⇠q (zm|Im)KL [q✓(zc|zm)kp�(zc|Ic)]| {z }
b�

+ KL [q (zm|Im)kp�(zm|Im)]
| {z }

c�
.

(22)

As Eq. (22) shows, the item c� may be hard to implement, because we cannot know the real
p�(zm|Im), which is used to restrain q (zm|Im) outputted by a neural network.
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However, inspired by [21], we can employ a variational evidence lower bound (ELBO) to implement
the item c�. Firstly, we assume that there exists a ground truth model p(Im), which is a constant
given Im and does not depend on zm. Then, we can derive the relationship between p(Im) and c�:
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+ c�

(23)

Thus, c� is equal to log p(Im) � ELBO. Since log p(Im) is a constant, minimizing c� is equal to
maximize the ELBO.

Accordingly, the fully optimization expression of Theorem 1 is below:
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(24)

⌅

B Advance of PICMM Over PIC

The illustration of our method is shown in Figure 11.
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Figure 11: The algorithm framework of the proposed method.

We also summarize the differences between PIC and our method as follows:

(1) Our method has better interpretability in pluralistic image completion than PIC, which is high-
lighted in this paper.

(2) GMM is used in our method, which better promotes diversity than PIC. More importantly, the
inherent parameters for diversity are task-related, rather than task-agnostic in PIC.
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(3) Our method uses KL divergence for the whole objective. We decompose the divergence and
then minimize different decomposition terms, which supports our theory. While, PIC only uses KL
divergence as a single loss in its objective.

(4) Our method exploits the same CNN backbone as PIC. In all quantitative comparisons, our method
outperforms PIC.

C Supplementary Experimental Results on Diversity Analyses

In the main paper, we state that our method is not limited to only generate k image completion results.
Instead, we can sample from the k primitives of GMM to generate a different number of images. The
results are provided in Figure 12 and 13. The images in the i-th row of Figure 12 and 13 are obtained
by sampling from the i-th primitive of GMM. As can be seen, the images in the same rows are less
diverse than the images in the different rows, since one primitive has a limited capacity. Multiple
primitives can better meet the diversity needs. We are able to sample from different primitives to
achieve the better diversity in pluralistic image completion.

Figure 12: Pluralistic image completion results of our method by sampling from k primitives (k = 6).
With each primitive, six diverse images are generated.

Figure 13: Pluralistic image completion results of our method by sampling from k primitives (k = 6).
With each primitive, six diverse images are generated.
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D Supplementary Pluralistic Completion Result Comparisons

In the main paper, we provide some comparisons of pluralistic completion results with state-of-the-art
methods. We provide more comparisons here. The comparison methods include DFv23, EC4, MED5,
PIC6, and ICT7. The experimental results on CelebA-HQ are provided in Figures 14 and 15. The
experimental results on FFHQ, Paris StreetView, and Places2 are shown in Figures 16, 17, and 18
respectively. In addition, the experimental results on ImageNet are presented in Figure 19.

(a) Input (b) DFv2 (c) EC (d) MED (e) PIC (f) Ours

Figure 14: Pluralistic image completion results comparison with baselines. The original images come
from CelebA-HQ. Best viewed by zooming in.

3https://github.com/JiahuiYu/generative_inpainting
4https://github.com/knazeri/edge-connect
5https://github.com/KumapowerLIU/Rethinking-Inpainting-MEDFE
6https://github.com/lyndonzheng/Pluralistic-Inpainting
7https://github.com/raywzy/ICT
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(a) Input (b) DFv2 (c) EC (d) MED (e) PIC (f) Ours

Figure 15: Pluralistic image completion results comparison with baselines. The original images come
from CelebA-HQ. Best viewed by zooming in.
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(a) Input (b) ICT (c) Ours

Figure 16: Pluralistic image completion results comparison with baselines. The original images come
from FFHQ. Best viewed by zooming in.
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(a) Input (b) EC (c) MED (d) PIC (e) Ours

Figure 17: Pluralistic image completion results comparison with baselines. The original images come
from Paris StreetView. Best viewed by zooming in.
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(a) Input (b) DFv2 (c) EC (d) MED (e) PIC (f) ICT (g) Ours

Figure 18: Pluralistic image completion results comparison with baselines. The original images come
from Places2. Best viewed by zooming in.

(a) Input (b) PIC (c) ICT (d) Ours

Figure 19: Pluralistic image completion results comparison with baselines. The original images come
from ImageNet. Best viewed by zooming in.

24



E Ablation Study

To help understand the contribution of the different components in the proposed method, we provide
ablation studies here. Specifically, experiments are conducted on the dataset CelebA-HQ with the
setting of center masking. The number of primitives is set to k = 6. It should be noted that, without
the loss LR, the image completion is unsupervised, resulting in rather unrealistic completed images.
The loss LR is hence added by default. The results of ablation studies are provided in Table 5, which
demonstrate the effectiveness of different components.

LF LBM LELBO LA PSNR " SSIM " MAE # FID # LPIPS " DIV-FID "
X X X X 27.098 0.964 0.0196 11.021 0.098 27.923
X X X - 27.034 0.961 0.0194 11.193 0.095 27.534
X X - - 27.035 0.961 0.0198 11.202 0.094 27.068
X - - - 26.251 0.922 0.0232 11.589 0.086 26.238

Table 5: Ablation study of PICMM.

F Results of Comparison with More Image Completion Methods

To make the experimental comparison more comprehensive and more convincing, we add the baseline
VQ-VAE [37] and AOT-GAN [54]. The results of comparing our PICMM with the two baselines are
shown in Table 6, which verify the effectiveness of our method clearly.

Method PSNR " SSIM " MAE # FID # LPIPS " DIV-FID "
VQ-VAE [37] 24.031 0.819 0.0309 30.747 0.083 23.676

AOT-GAN [54] 25.455 0.831 0.0233 26.427 0.089 25.843
PICMM† 25.467 0.838 0.0223 24.334 0.091 28.033

Table 6: The results of comparing our PICMM with VQ-VAE and AOT-GAN. The experiments are
conducted on Places2 with random masking.

G Evaluations on the Number of Primitives

We supplement the experiments with different number of primitives, i.e., k = 1, 2, 3, 4, 5. The
experiments are conducted on CelebA-HQ using center masks. The implementation details keep the
same as the details in the main paper. We provide experimental results in Table 7. The results show
that the increase of k can diversify the completed images, without degenerating the performance with
respect to common evaluation metrics.

k PSNR " SSIM " MAE # FID # LPIPS " DIV-FID "
1 26.792 0.961 0.0201 12.011 0.084 24.223
2 26.979 0.965 0.0198 11.579 0.089 26.001
3 27.152 0.960 0.0197 11.362 0.092 27.314
4 26.943 0.964 0.0197 11.638 0.096 27.540
5 27.121 0.966 0.0195 11.157 0.098 27.756

Table 7: Evaluations on the number of primitives k.
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H Higher-Resolution Image Completion Results

Before this section, we resize the image to 256⇥ 256 for image completion. Here, to show that our
method can generate higher-resolution images, we set the image size to 512⇥ 512. Experiments are
performed on the datasets FFHQ. The results are provided in Figure 20.

I Possible Negative Impacts and Limitation

For possible negative impacts, since our PICMM is a method based on generative models, like a large
number of methods of this kind, generated images with our method may danger to the security of
AI systems, with the form of deep fakes. There are some advanced works targeting the issue, e.g.,
[32, 34], which are helpful to handle the possible negative impacts.

For the limitation, our PICMM does not outperform ICT sometimes with respect to common metrics,
since ICT uses a much larger transformer-based structure and iterative Gibbs sampling, which make
ICT’s inference slow. For the people preferring the performance on common metrics, this would be a
limitation of our PICMM.
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Figure 20: Pluralistic image completion results by our method. The original images come from
FFHQ. The image size is 512⇥ 512. Best viewed by zooming in.
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