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Abstract

Pluralistic image completion focuses on generating both visually realistic and
diverse results for image completion. Prior methods enjoy the empirical successes
of this task. However, their used constraints for pluralistic image completion are
argued to be not well interpretable and unsatisfactory from two aspects. First, the
constraints for visual reality can be weakly correlated to the objective of image
completion or even redundant. Second, the constraints for diversity are designed to
be task-agnostic, which causes the constraints to not work well. In this paper, to
address the issues, we propose an end-to-end probabilistic method. Specifically,
we introduce a unified probabilistic graph model that represents the complex
interactions in image completion. The entire procedure of image completion is
then mathematically divided into several sub-procedures, which helps efficient
enforcement of constraints. The sub-procedure directly related to pluralistic results
is identified, where the interaction is established by a Gaussian mixture model
(GMM). The inherent parameters of GMM are task-related, which are optimized
adaptively during training, while the number of its primitives can control the
diversity of results conveniently. We formally establish the effectiveness of our
method and demonstrate it with comprehensive experiments. The implementation
is available at https://github.com/tmllab/PICMM.

1 Introduction
Pluralistic image completion refers to the task of filling in the missing region of an incomplete image,
so as to produce visually realistic and diverse image completion solutions [59–61]. Different from
single image completion [39, 12, 55, 50] that learns a deterministic mapping from an incomplete
image to a complete image, and produces a unique result, pluralistic image completion can generate
various results with visually realistic contents. Pluralistic image completion follows the fact that
image completion is a highly subjective process and benefits a series of applications such as photo
restoration [27], object removal [13], and transmission error concealment [37].

Pluralistic image completion is complicated and challenging. The state-of-the-art methods encode
images to latent features. To constrain the visual reality of results, heuristic constraints are intro-
duced, e.g., the perceptual loss [27] and attention module [59, 44]. To constrain the diversity of
results, the distribution of latent features is assumed to be a unimodal Gaussian distribution with
predefined parameters [59]. Image completion is performed by sampling from the unimodal Gaussian
distribution.

Although the above paradigm enjoys empirical successes of pluralistic image completion, it is not
well interpretable and unsatisfactory in practice. We detail the issues from two aspects. First, the
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added constraints for the visual reality of results are based on general purposes. These constraints
may work well in some tasks. Unfortunately, there is no clear understanding of what role they play
in pluralistic image completion. Inappropriate constraints are likely to have side effects. It is not
easy to finish the determination of added constraints as our desideratum, especially in complex image
completion tasks. Second, the diversity of image completion results is hard to be constrained in
reason. For a specific task, the parameters of the unimodal Gaussian distribution are directly related
to the diversity. Nevertheless, these parameters are designed to be prior knowledge and task-agnostic,
which cause unreasonable pluralistic results.

(a) Input (b) PIC (c) Ours

Figure 1: Example completion results of the proposed
method on the images of faces and natural sceneries with
various masks (missing regions are shown in gray). The
baseline PIC refers to [59]. For each group, the masked input
image is shown left, followed by diverse and plausible com-
pletion results from our method without any post-processing.
(Zoom in to see the details.)

In this paper, to address the above is-
sues, we present an end-to-end prob-
abilistic method. The method is con-
structed with a unified probabilistic
graph model (PGM) [17, 22] and
translates the problem of pluralistic
image completion into a structured
mathematical representation. Specif-
ically, we suppose that pluralistic im-
age completion can be represented
with a directed acyclic graph that is
designed reasonably. The nodes of
the graph denote different kinds of
images and corresponding latent fea-
tures. The edges of the graph repre-
sent the interactions between nodes.
Based on this directed acyclic graph,
the entire procedure of pluralistic im-
age completion is divided into several
sub-procedures. Then, we perform
different constraints for different sub-
procedures as our desideratum.

In particular, the diversity of image
completion results is implemented by
modeling the interaction between the
latent features of the missing region
and incomplete image with a Gaus-
sian mixture model (GMM) [40, 64].
Compared with the unimodal Gaussian distribution, GMM has a larger capacity and is more com-
petitive to meet the output diversity [56, 38]. For our method, the inherent parameters of GMM are
task-related and optimized adaptively during training. The different primitives of GMM represent the
outputs with different patterns. Additionally, the number of primitives can be chosen artificially with
the needs for diversity in real-world applications.

Before delving into details, we clearly emphasize our contributions as follows:

• To our best knowledge, this paper is the first one that uses a PGM for pluralistic image completion.
Besides, the PGM is specially designed with justifications, rather than borrowing existing models.
With the designed PGM, the added constraints for visual reality and diversity are explainable.

• We propose to use GMM to increase result diversity. One remarkable advantage is that the inherent
parameters for diversity are task-related, leading to more reasonable results.

• We conduct a series of experiments on benchmark datasets to support our claims. In both qualitative
and quantitative comparisons with the state-of-the-art methods, our method achieves superior
performance. The generated contents for image completion are both visually realistic and diverse,
such as those shown in Figure 1.

The rest of the paper is organized as follows. In Section 2, we briefly review pluralistic image
completion. In Section 3, we discuss the proposed method step by step. Experimental results are
provided in Section 4. Finally, we conclude the paper in Section 5.
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2 Preliminaries

Figure 2: The illustrations for different kinds of images
in image completion.

Problem Setting. We first discuss image
completion. For the task of image comple-
tion, suppose we have an image, originally
Io, but degraded by some missing pixels to
become a masked partial image Im. The
image that comprises the original missing
pixels is called a complement partial image,
which can be denoted by Ic. The goal of
the image completion task is to reconstruct
Io by using Im. The illustrations for different kinds of images are provided in Figure 2. Traditional
single image completion reconstructs the original image in a deterministic fashion, which results in
only a single solution [12, 9].

Pluralistic image completion [59] is motivated by the fact that image completion is a highly subjective
process. Also, completed images by different experts may agree on high-level semantics, but have
substantially different details [59]. Therefore, in pluralistic image completion, we need to generate
multiple and diverse plausible results when presented with a masked partial image. The problem of
pluralistic image completion is challenging since we need to take care of the diversity and visual
authenticity of results at the same time.

Prior Work. Traditional methods on single image completion, e.g., diffusion-based methods [3, 1, 23]
and patch-based methods [2, 4, 5], assume that image holes share similar content to visible regions.
Therefore, they choose to directly propagate the contextual appearances or realign the background
patches to complete the image holes. Benefiting from the strong power of deep neural networks,
deep learning based single image completion methods achieve promising completion performance,
e.g., employing shepard convolutional neural networks [39], restraining global and local consistency
between image holes and visible regions [16], performing deep feature rearrangement [47], and
learning a pyramid-context encoder network [53], etc. In addition to these methods, multiple single
image completion methods involve the generative adversarial networks [10] to learn the semantic
of images [48, 49], e.g., [25, 51, 8, 6, 57, 12, 9]. Although these single-solution methods achieve
outstanding performance in predicting deterministic result for image holes, they cannot generate
various semantically meaningful results.

Existing works for pluralistic image completion usually rely on generative models [24], e.g., CVAE
[43, 13, 59], hierarchical VQ-VAE [37], PD-GAN [27], and BicycleGAN [63]. Generative pluralistic
image completion methods can diversify meaningful completion results with different kinds of
constraints. However, such methods are not well interpretable as discussed. The issues largely limit
their applications in the real world.

3 Methodology

This section presents a probabilistic method for pluralistic image completion. We first design a
probabilistic graph model for our task (Section 3.1). Then, based on the probabilistic graph model, we
show how to divide the entire procedure of pluralistic image completion into several sub-procedures
(Section 3.2). Afterward, we discuss how to use GMM to diversify image completion results (Section
3.3). Finally, we add reconstruction and adversarial losses to strengthen image completion, and
summarize all algorithm flows (Section 3.4).

3.1 Probabilistic Graph Model Construction

Recall the notations in image completion, i.e., Io, Im, and Ic, they correspond to the latent features
zo, zm, and zc respectively. We suppose a probabilistic graph model for the image completion task,
which is shown in Figure 3. The probabilistic graph model is designed reasonably. The graphical
illustration of overall computational paths of the probabilistic graph model is presented in Figure 3(d).
Specifically, the images Im and Ic form Io. Their latent features zm and zc can be exploited to form
Io. Given zm, we can surmise zc. We use the latent features here, since they are low-dimensional
and informative [11, 21, 45, 46]. We further details Figure 3 as follows.
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(a) Inference (b) Dynamic Inference (c) Generation (d) Overall

Figure 3: The illustrations of the probabilistic graph model for the pluralistic image completion task.

Inference. We do not directly map Im and Ic to Io, since they are too high-dimensional and have
information redundancy. We exploit generative models. The processes Im ! zm and Ic ! zc denote
that we encode images into corresponding latent features. During training, we learn the encoder f to
finish the inference.

Dynamic Inference. Given Im (resp. Ic), we can infer the latent feature zm (resp. zc). Afterward,
zm 99K zc means that we use a variational distribution p(zc|zm) to approximate the distribution
p(zc|Ic). Here we denote this relationship using a dashed line, which is designed to be dynamic to
diversify outputs.

Generation. In image completion, the images Im and Ic can compose the image Io. Accordingly,
for their latent features, we splice zm and zc to output Io. During training, we learn the decoder g to
finish the generation.

3.2 Image Completion Objective Decomposition

We cannot observe the underlying Ic in the test procedure. Based on the probabilistic graph model,
we perform the following variational inference with the Kullback-Leibler (KL) divergence:

LP = KL [q (Io, zm, zc|Im)kp�(Io, zm, zc|Im, Ic)] , (1)

where q (·|·) and p�(·|·) are two conditioned distributions, with  and � being the parameters
of their corresponding functions. The divergence (1) is minimized with respect to all parameters.
It should be noted that, in fact, the overall objective should be KL[q (Io|Im)kp�(Io|Im, Ic)] =
KL[ zm,zc [q (Io, zm, zc|Im)]k zm,zc [p�(Io, zm, zc|Im, Ic)]]. As the expectation in this formula
is intractable, we need to deal with the 1-step Monte Carlo sampling objective, which is why the
divergence (1) is formed. Another advantage of using the divergence (1) is that constraining each
sampling point can make the overall constraint tighter. We further decompose the divergence (1)
based on the probabilistic graph model as follows.

Proposition 1 Regarding the KL divergence (1), we show that the divergence can be decomposed as:

LP = KL [q (Io, zm, zc|Im)kp�(Io, zm, zc|Im, Ic)]

= (zm,zc)⇠q (zm,zc|Im)KL [q (Io|zm, zc)kp�(Io|Im, Ic)]| {z }
a�

+ zm⇠q (zm|Im)KL [q✓(zc|zm)kp�(zc|Ic)]| {z }
b�

+KL [q (zm|Im)kp�(zm|Im)]
| {z }

c�
,

(2)

where q✓ is the variational distribution, and the parameters ✓ are involved in divergence minimization.

The proof can be found in Appendix A.1. We analyze three terms in Eq. (2) combining the proba-
bilistic graph model and our purpose:

• For a�, as discussed, we can generate Io with Im and Ic, or with their latent features zm and zc.
We minimize the distance about the generation of Io in the two ways. The minimization can ensure
that the generation from the images and latent features is consistent.

• For b�, we do not limit the inference from Ic to zc as a deterministic function. Instead, to diversify
outputs, we use the variational distribution to restrain q✓(zc|zm). The choice and discussion about
the variational distribution will be provided in Section 3.3.
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• For c�, it aims to keep that the inference using the variational distribution and the inference using
the posterior is close, which also guarantees the reliability of sampling. Besides, the variational
distribution does not include Ic to enable latent features to be used in test. We employ the variational
evidence lower bound (ELBO) LELBO [21, 15] to constrain c�. It is because, suppose that p(Im) is
a constant given Im, it is equivalent for maximizing the LELBO and minimizing c�. The details are
provided in Appendix A.4.

3.3 Gaussian Mixture Model

As discussed, we need a suitable choice for the variational distribution q✓(zc|zm) to output pluralistic
results. In this work, we employ the Gaussian Mixture Model (GMM) [30, 31] for the dynamic mode
q✓(zc|zm), which is more flexible than a unimodal and can diversify outputs.

We denote the latent features of Ic that are inferred from zm by ẑc, which is distinguished from zc
achieved by the encoder. For the latent features z, we denote the mean and covariance by µz and ⌃z.
Mathematically, we have

q✓(zc|zm) =

kX

i=1

↵iN
⇣
zc|µẑc

i ,⌃ẑc
i

⌘
, (3)

where k denotes the number of primitives, ↵i denotes the mixing coefficient of the i-th primitive, and
µi,⌃i denotes the distribution parameters of the i-th primitive. Note that the mixing coefficient ↵i is
the parameter of the Categorical distribution [31]. Intuitively, in Eq. (3), we model zm with GMM,
where the i-th primitive can be used to represent ẑ(i)c . In this way, we can obtain different ẑc to meet
diversity requirements.

Besides, among all the parameters of GMM, except for k, the other parameters are called the inherent
parameters of GMM. In GMM (3), the number of primitives k can be determined artificially according
to the need for output diversity. The inherent parameters are optimized adaptively during training.
Specifically, for the optimization of the mixing coefficients ↵ = [↵1, . . . ,↵k], we exploit the the
frequency loss [38]. The objective is

LF = (v �↵)(v �↵)
>,v = [v1, . . . , vk], and

vj =

(
1, j = argmin

i
KL

h
N (zc|µẑc

i ,⌃ẑc
i )kN (zc|µzc ,⌃zc)

i
;

0, otherwise.

(4)

For our task, with the frequency loss (4), the accumulated frequency approximate gradient is an
asymptotically unbiased estimation of the true gradient. We provide the detailed derivation and
analysis in Appendix A.2. The reason we mention the frequency loss is that, the metric for evaluating
the performance of each primitive is adapted to KL divergence in our task, which is different from
the original metric in [38]. For the optimization of µ and ⌃ of zm, we utilize the back-propogate-
max-operation to reserve the distinguishable property of GMM (3). For our problem, the objective of
the back-propogate-max-operation is shown in the following proposition.

Proposition 2 By modeling the variational distribution with GMM (3), we have

LBM = �1

2
log

|⌃ẑc
j |

|⌃zc | +
1

2
tr
⇣
(⌃zc)

�1⌃ẑc
j

⌘
� 1

2
(µẑc

j � µzc)
>
(⌃zc)

�1
(µẑc

j � µzc), (5)

where j = argmini KL
h
N (zc|µẑc

i ,⌃ẑc
i )kN (zc|µzc ,⌃zc)

i
, and tr(·) denotes the trace of a matrix.

The derivation of Proposition 2 can be found in Appendix A.3. For Proposition 2, if we minimize
LBM, we optimize µ and ⌃ of zm, which reduces the distance between ẑ(j)c and zc. For the term b�
in Eq. (2), we then have LGMM = zm⇠q (zm|Im)KL [q✓(zc|zm)kp�(zc|Ic)] ⇡ LF + LBM.

Discussion. Note that the diversity of results is directly related to zm. When GMM for zm is
dominated by the i-th primitive (↵i ⇡ 1), the diversity of image completion results is reduced.
Although this phenomenon did not appear in our experiments, it may exist in practice. Actually, this
phenomenon is reasonable. From human cognition, if Im shows only one pattern, the inference for
Ic will be deterministic [3]. For example, if the size of the missing region of an incomplete image is
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very small, we can infer the missing region both deterministically and reasonably, where the diversity
of results is reduced. Prior methods with task-agnostic constraints do not consider this fact, which
may create unreasonable results. For our method, the constraints for diversity are task-related, which
can take this phenomenon into account.

Algorithm 1 Training procedure
Input: images Io, Im, and Ic, the number of primitives of
GMM k, the initialized encoder f , and decoder g.

1: Encode Im (resp. Ic) to zm (resp. zc) with f ;
2: Model zm with GMM and zc with a unimodal Gaus-

sian distribution;
3: Calculate the loss LGMM as discussed in Section 3.3;
4: Update the parameters of GMM with LGMM;
5: Infer ẑ(j)c from zm with Eq. (3) and Eq. (4), j =

1, . . . , k;
6: Generate images by g with Îo = g(zm, zc) and

Î(j)o = g(zm, ẑ(j)c ), j = 1, . . . , k;
7: Calculate the loss LELBO and LC as discussed in Sec-

tion 3.2 and 3.4;
8: Update all the parameters w.r.t. LELBO and LC.

Output: the trained encoder f⇤ and decoder g⇤.

Algorithm 2 Test procedure
Input: the image Im, the num-
ber of primitives of GMM k, the
trained encoder f⇤, and decoder
g⇤.

1: Encode Im to zm with f⇤;
2: Model zm with GMM;
3: for j = 1 to k do
4: Sample i with i ⇠

Categorical(↵1, . . . ,↵k);
5: Infer ẑ(j)c with ẑ(j)c =

N (µzm
i ,⌃zm

i );
6: Generate images Î(j)o by g⇤ with

Î(j)o = g⇤(zm, ẑ(j)c ).
7: end for

Output: pluralistic image completion re-
sults {Î(j)o }kj=1

.

3.4 Reconstruction and Adversarial Losses

To ensure the minimization of the term a� in Eq. (2), we incorporate the use of reconstruction and
adversarial losses [10]. The reconstruction loss is formulated as:

LR =

h
kÎo � Iok1

i
+

h
kÎ(j)m � Imk1

i
, (6)

where Îo is generated from zm and zc, and Î(j)m is generated from ẑ(j)c . Here, ẑ(j)c can be inferred
from zm by using Eq. (3) and Eq. (4). The image Î(j)m is obtained from Î(j)o with the image mask
that can degenerate Io to Im. The image Î(j)o is generated from zm and ẑ(j)c . The reconstruction
loss (6) controls the visual rationality of image completion results. Also, we efficiently avoid the
deterministic fashion with GMM. Furthermore, we leverage adversarial training [10] to make the
generated images more realistic. The adversarial loss LA is formulated as

LA =

h
kD(Îo)� 1k2

2

i
+

h
kD(Î(j)o )�D(Io)k22

i
, (7)

where D is the discriminator optimized by the discriminator loss based on LSGAN [29]. We jointly
train our encoder f and decoder g through the following combined loss:

LC = LR + �ALA, (8)

where the weight �A is set to 0.05 in all experiments. Then, the final objective of the loss function
is the sum of three losses, i.e., LFINAL = LGMM + LELBO + LC. The final loss is to maximize
the log-likelihood of the conditional data distribution. Specifically, the adversarial loss uses the
Wasserstein distance to make generated images realistic given latent features. The ELBO loss uses KL
divergence and distribution log-likelihood to make variational posterior approximate real posterior.

Algorithm Flows. For the convenience of following technical details, we provide the algorithm flows.
The algorithm flows of training and test stages can be found in Algorithm 1 and Algorithm 2. The
illustration is shown in Appendix B.

It should be noted that the number of primitives k does not mean that we are limited to generate
only k diverse results given Im (in Steps 3 and 4 of Algorithm 2). In fact, we can sample from the k
primitives to obtain lots of image completion results. Moreover, as GMM has a much larger capacity
than the unimodal Gaussian distribution [31], we can achieve greater diversity. We provide empirical
observations in Section 4.3 and Appendix C.
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4 Experiments

In this section, we conduct a series of experiments to justify our claims. We first introduce the
implementation of our method (Section 4.1). The comprehensive experimental results and comparison
with advanced methods are then provided and discussed (Section 4.2). Finally, we conduct an analysis
study to present and discuss our method in more detail (Section 4.3).

4.1 Implementation Details

Datasets. We evaluated our proposed model on five popularly used datasets, i.e., CelebA-HQ [18, 28],
FFHQ [19], Paris StreetView [7], Places2 [62], and ImageNet [41]. We verify the effectivness of our
method with different types of mask regions, including both center and random masks [59, 44].

Network and Optimization. The proposed method can be implemented efficiently. The encoder
and decoder of our pipeline are inspired by PIC [59] for comparison. We apply average pooling and
interpolation with convolutional layers to implement downsampling and upsampling respectively.
During optimization, we use the Adam optimizer [20]. The learning rate is fixed to 10

�4 during the
training procedure.

Baselines. We compare the proposed method with the following state-of-the-art methods, which
include (1) single image completion methods: DFv2 [52], EC [33], and MED [26]; (2) pluralistic
image completion methods: PIC [59] and ICT [44]. We abbreviate our method (Pluralistic Image
Completion with Gaussian Mixture Models) as PICMM. The methods are implemented by PyTorch
and evaluated on NVIDIA Tesla A100 GPUs.

(a) Input (b) PIC (c) Ours

Figure 4: Qualitative comparison of our method
with PIC on CelebA-HQ (first 4 rows) and FFHQ
(last 2 rows). Best viewed by zooming in.

(a) Input (b) MED (c) PIC (d) Ours

Figure 5: Qualitative comparison of our method
with MED and PIC on Paris StreetView. Best
viewed by zooming in.

(a) Input (c) ICT (d) Ours(b) EC

Figure 6: Qualitative comparison of our method
with EC and ICT on Places2. Best viewed by
zooming in.

(a) Input (b) ICT (c) Ours

Figure 7: Qualitative comparison of our method
with ICT on ImageNet. Best viewed by zooming
in.

Measurement. For measurement, we provide both qualitative and quantitative results. For the
metrics of quantitative results, we use common evaluation metrics such as the peak signal-to-noise
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ratio (PSNR), structural similarity (SSIM), mean absolute error (MAE), and fréchet inception dis-
tance (FID) [14] to measure the similarity between the image completion result and ground truth.
Furthermore, pluralistic image completion is supposed to focus on generating diverse realistic results
rather than merely approximating ground-truth ones [58]. To measure the result diversity, we add
two perceptual quality metrics to quantitative results, which include LPIPS [59] and DIV-FID [44].

4.2 Comparison with Prior Methods

4.2.1 Qualitative Comparisons

Figure 8: Refined result analysis of our method.
The face images come from CelebA-HQ.

We provide extensive qualitative comparison re-
sults to justify our claims. First, we show the
results on CelebA-HQ and FFHQ in Figure 4,
which are images related to human faces. As can
be seen, the image completion results achieved
by our method are realistic, following high im-
age quality. Also, compared with the baseline
PIC, our completion results are more diverse,
e.g., see the images in the second and last rows.

Second, we provide the results on Paris
StreetView and Places in Figures 5 and 6 re-
spectively. For the results on Paris StreetView,
we can see that image completion by the base-
lines MED and PIC are somewhat distorted. By
contrast, our method can finish the image com-
pletion task better. The details can be checked in the complements to walls. Then, we turn the
attention to the image completion results on Places2. Our method still achieves superior performance
compared with baselines.

Lastly, we provide the results on ImageNet in Figure 7. Note that the sources of the data in ImageNet
are very complicated. The image completion task is rather challenging on this dataset, even for single
image completion [59]. Different from some prior work [36, 16] that were trained on a 100k subset
of training images of ImageNet, we directly the network on the original ImageNet training dataset
with all images. The results mean that our method can infer the content effectively.

Refined Result Analysis. We provide some refined results in Figure 8 to analyze the image comple-
tion details of our method. For the face images, we can find that the image completion results have
very different facial expressions.

Dataset FFHQ Places2
Method Mask PSNR " SSIM " MAE # FID # PSNR " SSIM " MAE # FID #
DFv2 [52]

Center

25.868 0.922 0.0231 16.278 26.533 0.881 0.0215 24.763
EC [33] 26.901 0.938 0.0209 14.276 26.520 0.880 0.0220 25.642
MED [26] 26.325 0.922 0.0230 14.791 26.469 0.877 0.0224 26.977
PIC [59] 26.781 0.933 0.0215 14.513 26.099 0.865 0.0236 26.393
ICT [44] 27.922 0.948 0.0208 10.995 26.503 0.880 0.0244 21.598
PICMM† 27.551 0.937 0.0203 10.604 26.554 0.886 0.0208 24.373
DFv2 [52]

Random

24.962 0.882 0.0310 19.506 25.692 0.834 0.0280 29.981
EC [33] 25.908 0.882 0.0301 17.039 25.510 0.831 0.0293 30.130
MED [26] 25.118 0.867 0.0349 19.644 25.632 0.827 0.0291 31.395
PIC [59] 25.580 0.889 0.0303 17.364 25.035 0.806 0.0315 33.472
ICT [44] 26.681 0.910 0.0292 14.529 25.788 0.832 0.0267 25.420
PICMM† 25.950 0.912 0.0289 17.014 25.310 0.829 0.0236 25.025

Table 1: Quantitative results on FFHQ and Places2 datasets with different mask settings. The best
results are in bold.

4.2.2 Quantitative Comparisons
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Dataset ImageNet
Method Mask PSNR " SSIM " MAE # FID #
PIC [59]

Center
24.010 0.867 0.0319 47.750

ICT [44] 24.757 0.888 0.0263 28.818
PICMM† 24.932 0.897 0.0260 23.718
PIC [59]

Random
22.711 0.791 0.0462 59.428

ICT [44] 23.775 0.835 0.0358 35.842
PICMM† 23.322 0.846 0.0415 39.742

Table 2: Quantitative results on ImageNet with different
mask settings. The best results are in bold.

Common Metrics. Quantitative eval-
uation with common metrics is diffi-
cult for pluralistic image completion,
as our goal is to obtain diverse but
reasonable solutions for a masked im-
age [59]. To make a feasible compar-
ison, as did in [59], we sample one
completed image many times from k
images to compare with the original
image. The results are provided in
Tables 1 and 2. As can be seen, for
FFHQ and Places2, on both the set-
tings of center and random masking, our method achieves superior performance. On ImageNet,
our method performs the best with the center masking consistently, while it is competitive with the
random masking.

It should be noted that ICT is a very strong baseline and works better than our method in some
cases. It is because ICT is built with the image transformer [35], which is powerful in vision tasks.
Compared with ICT, the advantages of our method lies in not only better interpretability as discussed,
but also faster inference speeds. We will demonstrate this in inference time.

Dataset FFHQ Places2
Method LPIPS " DIV-FID " LPIPS " DIV-FID "
PIC [59] 0.029 9.130 0.047 17.742
ICT [44] 0.065 13.909 0.089 25.253
PICMM† 0.071 17.361 0.092 27.194

Table 3: The diversity result comparison on FFHQ and
Places2 datasets with the center mask setting. The best re-
sults are in bold.

Diversity Metrics. For pluralistic im-
age completion, the diversity evalua-
tions are significant. We generate five
completion images in each task and
report the mean of the diversity met-
ric. The results are shown in Table 3,
which represents that our method can
generate more diverse completion im-
ages than baselines. The results with
common and diversity metrics support
our claim very well. That is to say, the image completion results of our method are both high-quality
and pluralistic.

Method Inference time (minutes) #
PIC [59] 0.387
ICT [44] 179.126
PICMM† 0.235

Table 4: The inference time comparison with
PIC and ICT in the center mask setting. The best
result is in bold.

Inference Time. We report the inference time
of our method, compared with PIC and ICT. All
inference runs on one NVIDIA Tesla A100 GPU
for fairness. The size of images is 256 ⇥ 256.
We perform pluralistic image completion for 100
different images. For each image, we generate 6
completion results for it. We report the total infer-
ence time for these images. The results are shown
in Table 4. Note that as ICT is a transformer-based
method, the calculated consumption of its infer-
ence is much heavier. What’s worse, ICT needs iterative Gibbs sampling during inference. The two
issues make ICT have to face heavy computational consumption, which is also mentioned in [44]. In
contrast, our method is more inference-efficiency, which is more than 750 times faster than ICT.
The merit could make our method easier to use in the real world.

4.3 More Analyses and Justifications

GMM Primitive Visualization. We further stress the diversity of the completion results achieved
by our method. Specifically, we visualize the ẑc which is inferred from zm as discussed. The
visualization results are obtained with t-SNE [42]. Different ẑc are presented by the 2D-vectors in
different colors, which are shown in Figure 9. As can be seen, the vectors are scattered, which clearly
demonstrates that the completion results of our method are diverse.

Refined Diversity Comparison. We argue that, benefiting from that GMM has larger capacities than
a unimodal Gaussian distribution, the completion results of our method would be more diverse. To
justify our claims, we provide the refined diversity comparison of our method with PIC and ICT, as
shown in Figure 10. Note that the six image completion results of PIC are obtained by sampling from
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Figure 9: GMM primitive visualization of plu-
ralistic completion results by our method. The
face image comes from CelebA-HQ. The scene
image comes from Places2.

Figure 10: Refined diversity comparison with
PIC (the first row) and ICT (the second row).
The original image in this figure comes from
CelebA-HQ.

one unimodal Gaussian distribution. The results of our method are obtained by sampling from six
primitives. Clearly, our results are more diverse than PIC’s. Besides, for ICT, it does not explicitly
control the output diversity. The diversity of pluralistic image completion is thus less interpretable
than our method.

In addition, we state that our method is not limited to only generating k completion results before. In
fact, we can sample from k primitives of GMM to obtain lots of completion results. Due to the limited
page, we present the results and more analyses in Appendix C. Moreover, the richer completion result
comparison is presented in Appendix D.

5 Conclusion

In this paper, we focus on the complicated and challenging problem of pluralistic image completion.
We propose a novel end-to-end probabilistic method for this challenging problem. Based on the
probabilistic graph model, our method divides the entire procedure of pluralistic image completion
into several sub-procedures, where GMM is used to diversify outputs. Experiments on a variety of
datasets show that the image completion results by our method are both high-quality and pluralistic.
In future work, investigating the feasibility of the proposed method for other diverse decision-making
scenarios might prove important.
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