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Abstract

Optimal scaling has been well studied for Metropolis-Hastings (M-H) algorithms
in continuous spaces, but a similar understanding has been lacking in discrete
spaces. Recently, a family of locally balanced proposals (LBP) for discrete spaces
has been proved to be asymptotically optimal, but the question of optimal scaling
has remained open. In this paper, we establish, for the first time, that the efficiency
of M-H in discrete spaces can also be characterized by an asymptotic acceptance
rate that is independent of the target distribution. Moreover, we verify, both
theoretically and empirically, that the optimal acceptance rates for LBP and random
walk Metropolis (RWM) are 0.574 and 0.234 respectively. These results also help
establish that LBP is asymptotically O(N

2
3 ) more efficient than RWM with respect

to model dimension N . Knowledge of the optimal acceptance rate allows one to
automatically tune the neighborhood size of a proposal distribution in a discrete
space, directly analogous to step-size control in continuous spaces. We demonstrate
empirically that such adaptive M-H sampling can robustly improve sampling in
a variety of target distributions in discrete spaces, including training deep energy
based models.

1 Introduction

The Markov Chain Monte Carlo (MCMC) algorithm is one of the most widely used methods for
sampling from intractable distributions (Robert & Casella, 2013). An important class of MCMC
algorithms is Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings, 1970), where new states
are generated from a proposal distribution followed by a M-H test. The efficiency for M-H algorithms
depends critically on the proposal distribution. For example, gradient based methods, such as the
Metropolis Adjusted Langevin Algorithm (MALA) (Rossky et al., 1978), Hamiltonian Monte Carlo
(HMC) (Neal et al., 2011), and their variants Girolami & Calderhead (2011); Hoffman et al. (2014)
substantially improve the performance of M-H algorithms in theory and in practice, compared to
naive Random Walk Metropolis (RWM), by leveraging gradient information to guide the proposal
distribution (Roberts & Rosenthal, 2001).

Despite many advances, progress in gradient based methods has generally focused on continuous
spaces. However, Zanella (2020) recently proposed a general framework of locally balanced proposals
(LBP) for discrete spaces, where a proposal distribution is designed to utilize probability changes
between states. Subsequently, Grathwohl et al. (2021) accelerated the sampler by using gradient
information to approximate the probability change. In empirical evaluations, similar to gradient based
samplers in continuous spaces, LBP significantly outperforms RWM and other samplers in discrete
spaces. However, both Zanella (2020) and Grathwohl et al. (2021) constrain the proposal distribution
to lie within a 1-Hamming ball; i.e., only one site of the state variable is allowed to change per M-H
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step. Such a restricted update reduces the efficiency of the sampler. Sun et al. (2021) noticed this
problem and modified the proposal distribution to allow multiple sites to be changed per M-H step.
Although such larger updates significantly improve efficiency, Sun et al. (2021) do not show how to
determine the update size, leaving the number of sites updated in an M-H step as a hyperparameter to
tune.

In continuous spaces, the scale of the proposal distribution is known to be a critical hyperparameter
for obtaining an efficient M-H sampler. For example, consider a Gaussian proposal N (x,�2) for
modifying a current state x with scale �. If � is too small, the Markov chain will converge slowly
since its increments will be small. Conversely, if � is too large, the M-H test will reject too high
a proportion of proposed updates. A significant literature has studied optimal scaling for gradient
based methods in continuous spaces (Gelman et al., 1997; Roberts & Rosenthal, 1998, 2001; Beskos
et al., 2013), showing that the optimal scaling can be adaptively tuned w.r.t. the acceptance rate,
independent of the target distribution. Such results suggest a direction for solving the optimal scaling
problem for LBP. However, the underlying techniques for approximating a diffusion process cannot
be directly applied to LBP given its discrete nature.

In this work, we consider an asymptotic analysis as the dimension of the discrete model, N , converges
to infinity. Starting with a product distribution, we prove that the asymptotic efficiency of LBP in dis-
crete spaces is 2R�(� 1

2�1R
3
2 /N) with an asymptotic acceptance rate of 2�(� 1

2�1R
3
2 /N), where

the scale R represents the number of sites to update per M-H step. Therefore, the asymptotically
optimal scale of the proposal distribution is R = O(N

2
3 ) with an asymptotically optimal acceptance

rate of 0.574, independent of the target distribution. Moreover, for RWM in a discrete space, we show
that the asymptotic efficiency and acceptance rate are 2R�(� 1

2�2R
1
2 ) and 2�(� 1

2�2R
1
2 ), respec-

tively. Hence, the asymptotically optimal scale is O(1) and the asymptotically optimal acceptance
rate is 0.234 for RWM. By comparing LBP and RWM at their respective optimal scales, it can be
determined that LBP is O(N

2
3 ) more efficient than RWM.

These asymptotically optimal acceptance rates are robust in the following respects. First, although
the initial derivation is established w.r.t. product distributions, the result can be expanded to more
general distributions. Second, the efficiency is not sensitive around the optimal acceptance rate. For
example, whereas 0.574 is the optimal acceptance rate for LBP, the algorithm retains high efficiency
for acceptance rates between 0.5 and 0.7. Based on these observations, we propose an adaptive LBP
(ALBP) algorithm that automatically tunes the update scale to suit the target distribution.

We validate these theoretical findings in a series of empirical simulations on the Bernoulli model, the
Ising model, factorized hidden Markov models (FHMM) and restricted Boltzmann machines (RBM).
The experimental outcomes comport with the theory. Moreover, we demonstrate that ALBP can
automatically find near optimal scales for these distributions. We also use ALBP to train deep energy
based models (EBMs), finding that it reduces the MCMC steps needed in contrastive divergence
training (Hinton, 2002; Tieleman & Hinton, 2009), significantly improving the efficiency of the
overall training procedure.

2 Background

Metropolis-Hastings Algorithm Let ⇡ denote the target distribution. Given a current state x
(n), a

M-H sampler draws a candidate state y from a proposal distribution q(x(n)
, y). Then, with probability

min
n
1, ⇡(y)q(y,x(n))

⇡(x(n))q(x(n),y)

o
the proposed state is accepted and x

(n+1) = y; otherwise, x(n+1) = x
(n).

In this way, the detailed balance condition is satisfied and the M-H sampler generates a Markov chain
x0, x1, ... that has ⇡ as its stationary distribution.

Locally Balanced Proposal. The locally balanced proposal (LBP) is a special case of the pointwise
informed proposal (PIP), which is a class of M-H algorithms for discrete spaces (Zanella, 2020)
using the proposal distribution Qg(x, y) / g (⇡(y)/⇡(x)) such that g is a scalar weight function.
Zanella (2020) shows that the family of locally balancing functions G = {g : R+ ! R+, g(t) =
tg( 1t ), 8t > 0} (e.g. g(t) =

p
t or t

t+1 ) is asymptotically optimal for PIP. Hence, PIP with a locally
balanced function for its weight function is referred to as LBP. Despite having good proposal quality,
PIP requires the weight g(⇡(z)/⇡(x)) to be calculated for all candidate states z in the neighborhood
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of x, which results in its high computational cost. Grathwohl et al. (2021) propose to estimate the
probability change by leveraging the gradient, improving the scalability of LBP.

Locally Balanced Proposal with Auxiliary Path. Sun et al. (2021) generalize LBP by introducing
an auxiliary path sampler, which allows multiple sites to be updated per M-H step. In particular, Sun
et al. (2021) sequentially selects the update indices without replacement, and uses these indices as
auxiliary variables to keep the proposal distribution tractable while preserving the detailed balance
condition. Although this can achieve significant improvements in empirical performance, Sun et al.
(2021) manually tune the update size per M-H step, and leave the optimal scale problem open.

3 Main Result

3.1 Problem Statement

We establish asymptotic limit theorems for two M-H algorithms in discrete spaces: the locally

balanced proposal (LBP) and random walk Metropolis (RWM). Following previous work (Gelman
et al., 1997; Roberts & Rosenthal, 1998; Beskos et al., 2013; Vogrinc et al., 2022), we conduct
our analysis on a product probability measure ⇡. In particular, for a state space X = {0, 1}N , we
consider a factored target distribution

⇡
(N)(x) =

NY

i=1

⇡i(xi) =
NY

i=1

p
xi
i (1� pi)

1�xi (1)

where each site is assumed to have a sufficiently large probability for being both 0 and 1; that is, for a
fixed ✏ 2 (0, 1

4 ), we assume the target distribution belongs to:

P✏ := {⇡(N) : ✏ < pj ^ (1� pj) <
1

2
� ✏, 8j = 1, ..., N,N � 1} (2)

where we denote a ^ b = min{a, b}. To measure the efficiency of the sampler, an ergodic estimate
varies with the objective function considered. Alternatively, we use a natural progress estimate: the
expected jump distance (EJD). Denote P✓ as the transition kernel, d(x, y) as the Hamming distance
between x and y. For a M-H sampler parameterized by ✓, its expected jump distance ⇢(✓) and
corresponding expected acceptance rate a(✓) are

⇢(✓) =
X

X,Y 2X
⇡(X)P✓(X,Y )d(X,Y ), a(✓) =

X

X,Y 2X
⇡(X)P✓(X,Y )1{X 6=Y } (3)

In continuous space, the limit of sampling process is a diffusion process, whose efficiency is de-
termined by the expected squared jump distance (ESJD) (Roberts & Rosenthal, 2001). In discrete
space, the limit of the sampling process is a jump process, whose velocity is characterized by the
EJD. Hence, EJD is the correct metric to measure the efficiency in discrete space; see more details in
Appendix B.1.

3.2 Locally Balanced Proposal

We consider the M-H sampler LBP-R, where R refers to flipping R indices in each M-H step.
Given a current state x, LBP-R calculates the weight wj for flipping index j as in PIP. Since we are
considering a binary target distribution of the form (1), we have

wj(x) = wj(xj) = g(
⇡j(1� xj)

⇡j(xj)
) (4)

where g is a locally balanced function. Following Sun et al. (2021), LBP-R select indices ur with
probability P(ur = j) / wj sequentially for r = 1, ..., R, without replacement. The new state y

is obtained by flipping indices u1:R of x. If we consider u as an auxiliary variable, the accept rate
A(x, y, u) in the M-H acceptance test can be written as

A(x, y, u) = 1 ^
⇡(y)

QR
r=1

wur (y)
W (y,u)+

Pr
i=1 wui (y)

⇡(x)
QR

r=1
wur (x)

W (x,u)+
PR

i=r wui (x)

, where W (x, u) =
NX

i=1

wi �
RX

r=1

wur (5)
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From theorem 1 in Sun et al. (2021), the auxiliary sampler LBP-R satisfies detailed balance. A M-H
step of LBP-R is summarized in Algorithm 1.

Algorithm 1: A M-H step of LBP-R and ALBP

1 Given current state x
(n), current Rt, initialize candidate set C = {1, .., N};

2 for r = 1, ..., R or r = 1, ..., rounding(Rt) do
3 Sample ur with P(ur = j) / wj(x(n))1{j2C};
4 Pop ur out of the candidate set: C  C\{ur};
5 end
6 Obtain y by flipping indices u1, ..., uR of x(n).;
7 if rand(0,1) < A(x(n)

, y, u) then x
(n+1) = y else x

(n+1) = x
(n);

8 if t < Twarmup then Rt+1  Rt + (A(x(n)
, y, u)� 0.574);

3.3 Optimal Scaling for Locally Balanced Proposal

We are now ready to state the first asymptotic theorem.

Theorem 3.1. For arbitrary sequence of target distributions {⇡(N)}1N=1 ⇢ P✏, the M-H sampler

LBP-R with a locally balanced weight function g obtains the following, if R = blN 2
3 c,

lim
N!1

a(R)� 2�

✓
�1

2
�1l

3
2

◆
= 0 (6)

where � is the c.d.f. of standard normal distribution and �1 only depends on ⇡
(N)

�
2
1 = �

2
1(⇡

(N)) =

PN
j=1 pjwj(1)(wj(0)� wj(1))2

4(Ex[
1
N

PN
i=1 wi(xi)])2

PN
i=1 piwi(1)

(7)

The definition of �1 in (7) explains the motivation of restricting the target distributions in (2). In
fact, introducing the ✏ gives upper and lower bounds of �1. When all pj are arbitrarily close to 1

2 ,
(wj(0)� wj(1))2 in numerator will be zero, so is �1. As a result, the acceptance rate will always be
1. Else, when all pj are arbitrarily close to 0 or 1, Ex[

1
N

PN
i=1 wi(xi)] in denominator will be zero,

and �1 will be infinity. As a result, the acceptance rate will always be 0. So, we have to make the
mild assumption in (2) to assure the following asymptotic result holds. A more detailed discussion
about ✏ is given in Appendix B.2.

Corollary 3.2. The optimal choice of scale for R = lN
2
3 is obtained when the expected acceptance

rate is 0.574, independent of the target distribution.

Proof. When R = lN
2
3 , denote z = �

2
3
1 l, we have:

⇢(R) = a(R)R = 2lN
2
3

✓
�

✓
�1

2
�1l

3
2

◆
+ o(1)

◆
=
⇣
N

�1

⌘ 2
3
2z�

⇣
� 1

2
z

3
2

⌘
+ o

⇣
N

2
3

⌘
(8)

It means the optimal value of z is independent of the target distribution ⇡
(N). As � is known, we can

numerically solve z = 1.081, and the corresponding expected acceptance rate is a = 0.574.

3.4 Proof of Theorem 3.1

Denote the current state as x and a new state proposed in LBP-R as y. Consider the acceptance rate
A(x, y, u) in (5). Using the fact that, if index j is not flipped then wj(y) = wj(x), we have:

⇡(y)

⇡(x)

QR
r=1 wur (y)QR
r=1 wur (x)

=
⇡(y)

⇡(x)

QN
i=1 wi(y)QN
i=1 wi(x)

=
NY

i=1

⇡i(yi)/⇡i(xi)g(⇡i(xi)/⇡i(yi))

g(⇡i(yi)/⇡i(xi))
= 1 (9)
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where (9) takes advantage of the property of a locally balanced function. Hence, the acceptance rate
A(x, y, u) can be simplified to:

1 ^ exp

 
RX

r=1

log
⇣1 +

PR
i=r wui(x)/W (x, u)

1 +
Pr

i=1 wui(y)/W (y, u)

⌘!
(10)

From the definition in (5), we have W (x, u) = W (y, u). Denote i ^ j = min{i, j} and i _ j =
max{i, j}, we have the following approximation:

Lemma 3.3. Define W = Ex,u[W (x, u)]. We have: limN!0
PR

r=1 log(
1+

PR
i=r wui (x)/W (x,u)

1+
Pr

i=1 wui (y)/W (y,u) )�
(A+B) = 0, where

A =
1

W

RX

r=1

(R� r + 1)wui(xui)� rwui(yui) (11)

B =� 1

2

1

W 2

RX

i,j=1

h
i ^ j wui(xui)wuj (xuj )� (R� i _ j + 1)wui(yui)wuj (yuj )

i
(12)

To analyze A and B, we reverse the order of x and u. In particular, instead of first sampling x ⇠ ⇡(x),
then sampling u ⇠ p(x|u), we use a reversed order where we first determine the indices u, then the
values of xu, and finally the values of x�u.
Lemma 3.4. The joint distribution p(x, u) = ⇡(x)p(u|x) can be decomposed in the following form:

p(x, u) =
RY

r=1

p(ur|u1:r�1)
RY

r=1

p(xur |u, xu1:r�1) p(x�u|u, xu) (13)

Denote j /2 u1:r�1 represents j 6= ui for i = 1, ..., r � 1, the conditional probabilities are

p(ur = j|u1:r�1) =
pjwj(1)1{j /2u1:r�1}PN
i=1 piwi(1)1{i/2u1:r�1}

+O(N� 5
2 ) (14)

p(xj = 1|u, x1:j�1, ur = j) =
1

2
+ r

wj(0)� wj(1)

W
+O(N� 2

3 ) (15)

With the conditional distribution in Lemma 3.4, we are able to give a concentration property of the
term B and show it is safe to ignore:

Lemma 3.5. With a probability larger than 1�O(exp(�N 1
2 )), B = O

�
N

� 1
12

�
.

For term A, we use martingale central limit theorem with convergence rate (Haeusler, 1988) to bound
the Kolmogorov-Smirnov statistic.

Lemma 3.6. When R = lN
2
3 , �1 defined as (7), we have:

|P(A� µ

�
� t)� �(t)| = O

�
N

� 1
12
�
, µ = �1

2
�
2
1l

3
, �

2 = �
2
1l

3 (16)

By (16), the expectation w.r.t. A asymptotically equals to the expectation on N (µ,�2). The final
step to prove Theorem 3.1 is to exploit a property of the normal distribution.
Lemma 3.7. If Z ⇠ N (µ,�2), then we have:

E[1 ^ exp(Z)] = �
⇣
µ

�

⌘
+ exp

⇣
µ+

�
2

2

⌘
�
⇣
� � � µ

�

⌘
(17)

where � is the c.d.f. of the standard normal distribution.

By Lemma 3.6, 3.7, we have the expectation of (10), which is the expected accept rate, equals to:

E[a(R)] = �
⇣
� 1

2
�1l

3
2

⌘
+ exp(0)�

⇣
� 1

2
�1l

3
2

⌘
= 2�

⇣
� 1

2
�1l

3
2

⌘
(18)
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3.5 Optimal Scaling for Random Walk Metropolis

We denote the Random Walk Metropolis in discrete space as RWM-R, where R refers to flipping
R indices in each M-H step. Under the Bernoulli distribution, a site is more likely to stay at high
probability position, so if we randomly flip a site, it is more likely to decrease its probability. That is,
intuitively, the acceptance rate will decrease exponentially as the scale R increases. Consequently,
the optimal scale for RWM-R should be O(1). Though this is not a rigorous proof, the constant
scaling indicates that it will be hard to directly prove an asymptotic theorem for RWM-R. To address
this difficulty, we first restrict our target distribution to a smaller class of Bernoulli distributions
P(�)
✏ ⇢ P✏, which is formally defined as follows. For a fixed ✏ 2 (0, 1

4 ) and a fixed � > 0, define

P(�)
✏ :=

⇢
⇡
(N) :

1

2
� 1

2N�
+

✏

N�
< pj ^ (1� pj) <

1

2
� ✏

N�

�
(19)

When N is large, each pj will be very close to 1
2 . In this way, the acceptance rate will not drop too

fast when R is increased, and a non-constant R will be permitted. This enables us to prove:

Theorem 3.8. For arbitrary sequence of target distributions {⇡(N)}1N=1 ⇢ P(�)
✏ , the M-H sampler

RWM-R obtains the following, if R = lN
2�

,

lim
N!1

a(R)� 2�

✓
�1

2
�2l

1
2

◆
(20)

where � is the c.d.f. of the standard normal distribution and �2 only depends on ⇡
(N)

.

�
2
2 = �

2
2(⇡

(N)) =
2

N

NX

i=1

N
2�(2pi � 1) log

pi

1� pi
(21)

Corollary 3.9. The optimal scale R = lN
2�

is obtained when the expected acceptance rate is 0.234,

independent of the target distribution.

The rate in Corollary 3.9 is proved for arbitrary � > 0. If we let � decrease to 0, at � = 0 the optimal
scale for RWM-R is O(1) while the optimal acceptance rate is 0.234. Also, we can notice that P(�)

✏

converges to P✏ when � decrease to 0 and we are able to show the optimal scale of RWM in P✏ is
O(1), see details in Appendix B.3. However, this limit is not mathematically rigorous, because
Theorem 3.8 and Corollary 3.9 only hold asymptotically, such that a smaller � requires a larger N .
Hence, when � decreases to 0, N must approach infinity to satisfy the asymptotic theorem. Although
there is this minor gap in the analysis, the conclusion nevertheless aligns very well with different
target distributions in the experiment section.

4 Adaptive Algorithm

Given knowledge of the optimal acceptance rate, one can design an adaptive algorithm that automati-
cally tunes the scale of the M-H samplers. For this purpose, we use stochastic optimization Andrieu &
Thoms (2008); Robbins & Monro (1951) to adjust the scaling parameter Rt to ensure that the statistic
At = at � � approaches 0, where at is the acceptance probability for iteration t and � is the target
acceptance rate (0.574 for LBP and 0.234 for RWM). According to Theorem 3.1 and Theorem 3.8,
the acceptance rate is a decreasing function of the scaling Rt. Hence, we use the update rule:

Rt+1  Rt + ⌘tAt (22)

with step size ⌘t = 1. We follow common practice and adapt the tunable MCMC parameters during a
warmup phase before freezing them thereafter Gelman et al. (2013). The computational cost for (22)
is ignorable comparing the total cost of a M-H step. The algorithm boxes for ALBP and ARWM are
given in Appendix C. More advanced implementations are possible, but it is out of the focus in the
paper. We observe below that this simple approach is able to maintain the sampler robustly near the
optimal acceptance rate.
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5 Related Work

Informed proposals for Metropolis-Hastings (M-H) algorithms have been extensively studied for
continuous spaces (Robert & Casella, 2013). The most famous algorithms are the Metropolis-adjusted
Langevin algorithm (MALA) (Rossky et al., 1978) and Hamiltonian Monte Carlo (HMC) (Neal
et al., 2011). MALA, HMC, and their variants (Girolami & Calderhead, 2011; Hoffman et al., 2014;
Welling & Teh, 2011; Titsias & Dellaportas, 2019; Hirt et al., 2021; Hoffman et al., 2021; Hird et al.,
2020; Livingstone & Zanella, 2019) use the gradient of the target distribution to guide the proposal
distribution toward high probability regions, which brings substantial improvements in sampling
efficiency compared to uninformed methods, such as random walk Metropolis (RWM) (Metropolis
et al., 1953).

Informed proposals have also demonstrated recent success in discrete spaces. Zanella (2020) first
gives a formal definition of the pointwise informed proposal (PIP) for discrete spaces, then proves
that locally balanced proposals (LBP), using a family of locally balanced functions as the weight
function in PIP, are asymptotically optimal for PIP. Following this work, Power & Goldman (2019)
extended the framework to Markov jump processes and introduced non-reversible heuristics to
accelerate sampling. Sansone (2021) parameterize the locally balanced function and tune it by
minimizing a mutual information. Grathwohl et al. (2021) give a more scalable version of LBP for
differentiable target distributions by estimating the probability change through the gradient. Despite
strong empirical results, the LBP method of Zanella (2020) only flips one bit per M-H step, since
PIP has to restrict the proposal distribution to a small neighborhood, e.g. a 1-Hamming ball, due
to its computational cost. Sun et al. (2021) generalize LBP to flip multiple bits in a single M-H
step, gaining significant improvement in sampling efficiency. However, the scaling of the proposal
distribution in Sun et al. (2021) was manually tuned and the optimal scaling problem was left open.

For continuous spaces, the optimal scaling problem for informed proposals has been well studied.
A significant literature has already shown that the scale can be tuned with respect to the optimal
acceptance rate (Roberts & Rosenthal, 2001), e.g. 0.234 for RWM (Gelman et al., 1997), 0.574 for
MALA Roberts & Rosenthal (1998), 0.651 for HMC Beskos et al. (2013), and 0.574 for Barker
(Vogrinc et al., 2022), by decreasing the scale so that the Markov chain converges to a diffusion
process. However, such a technique is not directly applicable to LBP given its discrete nature.
Roberts (1998) make an initial attempt on discrete space, however it assumes all dimensions satisfy
independent, identical Bernoulli distribution. In this work, we have established for the first time the
optimal scale for LBP and RWM in discrete spaces.

6 Experiments

The effectiveness of LBP has been extensively demonstrated in previous work, e.g. Zanella (2020);
Grathwohl et al. (2021); Sun et al. (2021), in comparison to other M-H samplers for discrete spaces,
such as RWM, Gibbs sampling, the Hamming Ball sampler (Titsias & Yau, 2017), and continuous
relaxation based methods Zhang et al. (2012); Pakman & Paninski (2013); Nishimura et al. (2017);
Han et al. (2020). Therefore, we focus on simulating LBP-R, with weight function g(t) = t

t+1 , and
RWM-R to validate our theoretical findings. More experiments, including different weight functions
and comparison between "with" and "without" replacement versions of LBP are given in Appendix D.

Throughout the experiment section, we will use the gradient approximation (Grathwohl et al.,
2021). That is to say, we estimate the change in probability of flipping index i is estimated by:
d̃xi = exp((1 � 2xi)(r log ⇡(x))i) For the Bernoulli distribution, this is still exact and does not
hinder the justification of the theoretical results. For more complex models, this approximation makes
the algorithms significantly more efficient. In particular, the gradient approximation only requires
two calls of the probability function and two calls of the gradient function. Consequently, LBP with
gradient approximation will take about twice time per update compared to RWM. In our experiments,
we observe that LBP and GWG takes 1.2 ± 0.2 and 1.1 ± 0.1 more time per update, respectively,
than RWM, across all target distributions. We therefore omit reporting the detailed run time for each
method.
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6.1 Sampling from different target distributions

We consider four target distributions: the Bernoulli distribution, the Ising model, the factorial hidden
Markov model (FHMM), and the restricted Boltzmann machine (RBM). For each model, we consider
three configurations: C1, C2, and C3 for smooth, moderate, and sharp target distributions. To obtain
performance curves, we first simulate LBP-1 and RWM-1 for an initial acceptance rate amax. Then,
we adopt amax � 0.02, ..., amax � 0.02k, ... as a target acceptance rate. For each rate, we use the
adaptive sampler to obtain an estimated scale R, with which we simulate 100 chains and calculate the
final real acceptance rate and efficiency. In this way, we collect abundant data points to characterize
the relationship between acceptance rate and efficiency to facilitate the following analyses.

Figure 1: Efficiency Curves on Bernoulli Figure 2: Efficiency Curves on Ising

Bernoulli Distribution. We validate our theoretical results on Bernoulli distribution. The probability
mass function is given in (1). For each configuration, we simulate on domains with three dimen-
sionalities: N = 100, 800, 6400. The scatter plot for N = 800 is reported in Figure 1. We also
estimate � in (7) and (21) and plot the theoretical efficiency curve in (5) and (20). From Figure 1, we
can see that the simulation results align well with the theoretically predicted curves, and the optimal
efficiencies were achieved at 0.574 for LBP and 0.234 for RWM for all configurations.

Ising Model. The Ising model (Ising, 1924) is a classical model in physics defined on a p⇥ p square
lattice graph (Vp, Ep) (details in Appendix D.2). For each configuration, we simulate on three sizes
p = 20, 50, 100. We report the results for p = 50 in Figure 2. For LBP, the optimal efficiencies are
achieved at around 0.5, which is slightly less than 0.574, although these values are close. Thus we
can say that the asymptotically optimal acceptance rate for LBP still applies to the Ising model. For
RWM, 0.234 perfectly matches the acceptance rate where the optimal efficiencies are obtained.

Factorial Hidden Markov Model. The FHMM (Ghahramani & Jordan, 1995) uses latent variables
x 2 X = {0, 1}L⇥K to characterize time series data y 2 RL (details in Appendix D.3). Given y, we
sample the hidden variables x from the posterior ⇡(x) = p(x|y). For each configuration, we simulate
in three sizes L = 200, 1000, 4000. We report the results for L = 1000 in Figure 3. One can observe
that these results match the theoretical predictions very well.

Figure 3: Efficiency Curves on FHMM Figure 4: Efficiency Curves on RBM

Restricted Boltzmann Machine. A RBM (Smolensky, 1986) is a bipartite latent-variable model
that defines a distribution over binary data x 2 {0, 1}N and latent data z 2 {0, 1}h (details in
Appendix D.4). We train an RBM on the MNIST dataset using contrastive divergence (Hinton, 2002)
and sample observable variables x. We report the results in Figure 4. For LBP, although RBM is
much more complex than a product distribution, its efficiency versus acceptance rate curves still
match the theoretical predictions very well. For RWM, even using R = 1 will result in acceptance
rates less than 0.234 for all configurations. Although we cannot check what the optimal value is, we
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Figure 5: Optimal Scaling R and Efficiency Ratio with respect to model dimension N

still observe that efficiency is an increasing function of the acceptance rate when the acceptance rate
is less than 0.234, as predicted by the theory.

Optimal Scaling and Efficiency. We examine how optimal scaling R for LBP, RWM and their
relative efficiency ratio grow w.r.t. the model dimension N . In figure 5, we can see that both the
optimal scaling and efficiency ratio are linear in log-log plot and the slopes are close to 2

3 across
Bernoulli, Ising, and FHMM. The results matches the theories that the optimal scaling R = O(N

2
3 )

for LBP, R = O(1) for RWM, and the relative efficiency ratio LBP over RWM is O(N
2
3 ).

Table 1: Performance of the Samplers on Various Distributions

Size Bernoulli Ising FHMM RBM

Sampler EJD ESS Time EJD ESS Time EJD ESS Time EJD ESS Time

RWM-1 0.65 10.02 15.44 0.64 12.14 74.28 0.79 7.26 58.03 0.17 10.76 59.54
ARWM 1.70 18.44 14.90 1.58 19.60 77.45 4.32 13.32 60.02 0.17 11.13 61.24
GRWM 1.70 18.67 18.01 1.59 20.16 76.89 4.35 15.22 61.19 0.17 10.76 59.54
LBP-1 1.00 13.39 24.36 1.00 14.11 111.19 1.00 6.91 134.42 0.98 13.38 116.04
ALBP 78.63 622.35 28.07 96.23 821.06 124.37 242.01 129.28 487.63 26.07 25.59 144.03
GLBP 78.83 644.43 25.42 96.68 809.12 129.28 242.52 140.43 508.27 25.86 25.83 119.38

6.2 Adaptive Sampling

We have validated the theoretical findings regarding the optimal acceptance rates on various distri-
butions. In this section, we examine the performance of the adaptive sampler. In addition to the
expected jump distance (EJD), we also report the effective sample size (ESS) 2. We compare the
adaptive sampler ALBP, ARWM with their single step version LBP-1, RWM-1, and grid search
version GLBP, GRWM, where we tune the scaling R by grid search. We give the sampling results
on Bernoulli model, Ising model, FHMM, and RBM with medium size and configuration C2 in
table 1. More results are given in Appendix D. We can see that the adaptive samplers are significantly
more efficient than single step samplers, especially for LBP. Also, the adaptive samplers can robustly
achieve almost the same performance comparing to using grid search to find the optimal scaling.

6.3 Training Deep Energy Based Models

Learning an EBM is a challenge task. Given data sampled from a true distribution ⇡, we maximize
the likelihood of the target distribution ⇡✓(x) / e

�f✓(x) parameterized by ✓. The gradient estimation
requires samples from the current model, which is typically obtained via MCMC. The speed of
training an EBM is determined by how fast a MCMC algorithm can obtain a good estimate of the
second expectation.

2Computed using Tensorflow Probability
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MNIST Omniglot Caltech

Figure 6: Samples from deep EBMs trained by ALBPs sampler.

We evaluate adaptive samplers by learning deep EBMs. Following the setting in Grathwohl et al.
(2021), we train deep EBMs parameterized by Residual Networks (He et al., 2016) on small binary
image datasets using PCD (Tieleman & Hinton, 2009) with a replay buffer (Du & Mordatch, 2019).
We compare two single step samplers and two adaptive samplers, where LBPb uses g(t) = t

t+1 as
weight function and LBPs uses g(t) =

p
t as weight function. When we allow them to run enough

iterations in PCD, they are able to train EBMs in same good quality. To measure the efficiency of
these samplers, we compare the minimum number of M-H steps needed in PCD in table 2. We can
see that adaptive samplers only need one half or even one fifth iterations compare to single step
samplers. We also present long-run samples from our trained models via ALBPs in Figure 6.

Table 2: Minimum M-H Steps Needed for PCD

Dataset LBPb-1 ALBPb LBPs-1 ALBPs

Static MNIST 90 20 40 15
Dynamic MNIST 100 20 40 15

Omniglot 100 60 30 5
Caltech 100 60 80 30

7 Discussion

In this paper, we have addressed the optimal scaling problem for the locally balanced proposal (LBP)
in (Sun et al., 2021). We verified, both theoretically and empirically, that the asymptotically optimal
acceptance rate for LBP is 0.574, independent of the target distribution. Moreover, knowledge of
the optimal acceptance rate allows one to adaptively tune the neighborhood size for a proposal
distribution in a discrete space. We verified the theoretical findings on a diverse set of distributions,
and demonstrated that adaptive LBP can improve sampling efficiency for learning deep EBMs.

We believe there is considerable room for future work that builds on these results. For theoretical
investigation, the theory established under a strong assumption that the target distribution is a product
distribution, despite the results applies very well to more complicated distributions. We believe the
results still hold under a weaker assumption that the target distribution has no phase transition. We
also believe it is possible to design a HMC style sampler for discrete spaces in the framework of
Sun et al. (2021) by using LBP as a block for the auxiliary path. For empirical investigation, many
real-world problems involve probability models of discrete structured data, such as syntax trees for
natural language processing (Tai et al., 2015), program synthesis (Dai et al., 2020), and graphical
models for molecules (Gilmer et al., 2017). Efficient discrete samplers should be able to accelerate
both learning and inference with such models.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See https://github.com/
ha0ransun/LBP_Scale.git.

• Did you include the license to the code and datasets? [Yes]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] The work does not

use existing assets.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Codebase is included in supplemental materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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