
RORL: Robust Offline Reinforcement Learning via
Conservative Smoothing

Rui Yang1⇤, Chenjia Bai2⇤, Xiaoteng Ma3, Zhaoran Wang4, Chongjie Zhang3, Lei Han5†
1Hong Kong University of Science and Technology, 2Shanghai AI Laboratory

3Tsinghua University, 4Northwestern University, 5Tencent Robotics X
ryangam@connect.ust.hk, baichenjia@pjlab.org.cn

ma-xt17@mails.tsinghua.edu.cn, zhaoranwang@gmail.com
chongjie@tsinghua.edu.cn, leihan.cs@gmail.com

Abstract

Offline reinforcement learning (RL) provides a promising direction to exploit
massive amount of offline data for complex decision-making tasks. Due to the
distribution shift issue, current offline RL algorithms are generally designed to be
conservative in value estimation and action selection. However, such conservatism
can impair the robustness of learned policies when encountering observation devia-
tion under realistic conditions, such as sensor errors and adversarial attacks. To
trade off robustness and conservatism, we propose Robust Offline Reinforcement
Learning (RORL) with a novel conservative smoothing technique. In RORL, we
explicitly introduce regularization on the policy and the value function for states
near the dataset, as well as additional conservative value estimation on these states.
Theoretically, we show RORL enjoys a tighter suboptimality bound than recent
theoretical results in linear MDPs. We demonstrate that RORL can achieve state-
of-the-art performance on the general offline RL benchmark and is considerably
robust to adversarial observation perturbations.

1 Introduction

Over the past few years, deep reinforcement learning (RL) has been a vital tool for various decision-
making tasks [36, 49, 47, 11] in a trial-and-error manner. A major limitation of current deep RL
algorithms is that they require intense online interactions with the environment [30, 67]. These
data collecting processes can be costly and even prohibitive in many real-world scenarios such as
robotics and health care [30, 53]. Offline RL [14, 28] is gaining more attention recently since it offers
probabilities to learn reinforced decision-making strategies from fully offline datasets.

The main challenge of offline RL is the distribution shift between the offline dataset and the learned
policy, which would lead to severe overestimation for the out-of-distribution (OOD) actions [14, 28].
To overcome such an issue, a series of model-free offline RL works [59, 14, 69, 29, 32, 2, 66, 6]
propose to celebrate conservatism, such as constraining the learned policy close to the supported
distribution or penalizing the Q-values of OOD actions. Besides, another stream of works builds
upon model-based algorithms [72, 71, 58], which leverages the ensemble dynamics models to enforce
pessimism through uncertainty penalizing or data generation.

However, conservatism is not the only concern when applying offline RL to the real world. Due to
the sensor errors and model mismatch, the robustness of offline RL is also crucial under the realistic
engineering conditions, which has not been well studied yet. In online RL, a series of works has been

⇤Equal Contribution
†Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: A schematic diagram of smoothing in offline RL. The red spots represent the offline data
samples. Without state smoothing, the value function would change drastically over neighboring
states and induce an unstable policy. Yet, the smoothness may also lead to value overestimation of
dangerous areas. RORL trades off smoothness and possible overestimation as discussed in Sec 4.

studied to learn the optimal policy under worst-case perturbations of the observation [73, 41, 20] or
environmental dynamics [57, 43, 44, 4]. Yet, it is non-trivial to apply online robust RL techniques
into the offline problems. The main challenge is that the perturbation of states may bring OOD
observation and extra overestimation for the value function. New techniques are needed to tackle the
conservatism and robustness simultaneously in the offline RL.

This paper studies robust offline RL against adversarial observation perturbations, where the agent
needs to learn the policy conservatively while handling the potential OOD observation with per-
turbation. We first demonstrate that current value-based offline RL algorithms lack the necessary
smoothness for the policy, which is visualized in Figure 1. As an illustration, we show that a famous
baseline method CQL [29] learns a non-smooth value function, leading to significant performance
degradation for even a tiny scale perturbation on observation (see Section 3 for details). In addition,
simply adopting the smoothing technique for existing methods may result in extra overestimation at
the boundary of supported distribution and lead the agent toward unsafe areas.

To this end, we propose Robust Offline Reinforcement Learning (RORL) with a novel conservative
smoothing technique, which explicitly handles the overestimation of OOD state-action pairs. Specif-
ically, we explicitly introduce smooth regularization on both the value functions and policies for
states near the dataset support and conservatively estimate the values of these OOD states based on
pessimistic bootstrapping. Furthermore, we theoretically prove that RORL yields a valid uncertainty
quantifier in linear MDPs and enjoys a tighter suboptimality bound than previous work [6].

In our experiments 3, we demonstrate that RORL can achieve state-of-the-art (SOTA) performance in
the D4RL benchmark [12] with fewer ensemble Q networks than the current SOTA approach [2]. The
results of the benchmark experiments imply that robust training can lead to performance improvement
in non-perturbed environments. Meanwhile, compared with current ensemble-based baselines, RORL
is considerably more robust to adversarial perturbations on observations. We conduct the adversarial
experiments under different attack types, showing consistently superior performance on several
continuous control tasks.

2 Preliminaries

Offline RL Considering an episodic MDP M = (S,A, T, r, �,P), where S is the state space, A is
the action space, T is the length of an episode, r is the reward function, P is the dynamics, and � is
the discount factor. In offline RL, the objective of the agent is to find an optimal policy by sampling
experiences from a fixed dataset D = {(s

i
t, a

i
t, r

i
t, s

i
t+1)}. Nevertheless, directly applying off-policy

algorithms in offline RL suffers from the distribution shift problem. In Q-learning, the value function
evaluated on the greedy action a

0 in Bellman operator T Q = r + �Es0 [maxa0(s
0
, a

0
)] tends to have

extrapolation error since (s
0
, a

0
) has barely occurred in D.

Pessimistic Bootstrapping for Offline RL (PBRL) [6] is an uncertainty-based method that uses
bootstrapped Q-functions for uncertainty quantification [52] and OOD sampling for regularization.

3Our code is available at https://github.com/YangRui2015/RORL

2

https://github.com/YangRui2015/RORL

(a) Q-function of CQL (b) Q-function of CQL-smooth (c) Final performance

Figure 2: (a) (b) The Q-functions of ŝ with adversarial noises in CQL and CQL-smooth, respectively.
The same moving average factor is used in plotting both figures. (c) The performance of CQL and
CQL-smooth with different perturbation scales. We use 100 uniformly distributed ✏ 2 [0.0, 0.15] for
the evaluation.

Specifically, PBRL maintains K bootstrapped Q functions to quantify the epistemic uncertainty [5]
and performs pessimistic update to penalize Q functions with large uncertainties. The uncertainty is
defined as the standard deviation among bootstrapped Q-functions. For each bootstrapped Q-function,
the Bellman target is defined as bT Q(s, a) = r(s, a)+�bEs0⇠P (·|s,a),a0⇠⇡(·|s0)

⇥
Q(s

0
, a

0
)��u(s

0
, a

0
)
⇤
.

Under linear MDP assumptions, this uncertainty is equivalent to the LCB penalty and is provably
efficient [24]. Furthermore, PBRL incorporates OOD sampling by sampling OOD actions to form
(s, a

ood
) pairs, where a

ood follows the learned policy. The detached learning target for (s, aood) is
bT ood

Q(s, a
ood

) := Q(s, a
ood

)� �u(s, a
ood

), which introduces uncertainty penalization to enforce
pessimistic Q-functions for OOD actions.

Smooth Regularized RL Robust RL aims to learn a robust policy against the adversarial perturbed
environment in online RL. SR2L [48] enforces smoothness in both the policy and Q-functions.
Specifically, SR2L encourages the outputs of the policy and value function to not change much
when injecting small perturbations to the states. For state s, SR2L constructs a perturbation set
Bd(s, ✏) = {ŝ : d(s, ŝ) ✏} with a metric d(,), which is chosen to be the `p distance, and introduces
a smoothness regularizer for policy as R⇡

s = Es⇠⇢⇡ maxŝ2Bd(s,✏) D(⇡(·|s)k⇡(·|ŝ)), where D(·k·)

is a distance metric and the max operator gives an adversarial manner to choose ŝ. Similarly, the
smoothness regularizer for the value function is defined as RV

s = Es⇠⇢⇡,a⇠⇡ maxŝ2Bd(s,✏)(Q(s, a)�

Q(ŝ, a))
2. SR2L is shown to improve robustness against both random and adversarial perturbations.

3 Robustness of Offline RL: A Motivating Example

We give a motivating example to illustrate the robustness of the popular CQL [29] policies. We
introduce an adversarial attack on state s to obtain ŝ = argmaxŝ2Bd(s,✏) DJ(⇡✓(·|s)k⇡✓(·|ŝ)), where
Bd(s, ✏) = {ŝ : d(s, ŝ) ✏} is the perturbation set and the metric d(,) is chosen to be the
`1 norm. The Jeffrey’s divergence DJ for two distributions P , Q is defined by: DJ(PkQ) =
1
2 [DKL(PkQ) +DKL(QkP)]. To obtain ŝ, we take gradient assent with respect to the loss function
DJ(⇡✓(·|s)k⇡✓(·|ŝ)) and restrict the outputs to the Bd(s, ✏) set, where ⇡✓ is a learned CQL policy.
We remark that the the perturbation is applied on normalized observations following prior work [73].

In the walker-medium-v2 task from D4RL [12], we use various ✏ for adversarial attack to evaluate
the robustness of CQL policies. Specifically, we use ✏ 2 {0, 0.05, 0.1, 0.14} to control the strengths
of the attack, where we have ŝ = s if ✏ = 0. Given a specific ✏, we sample N state-action pairs
{(si, ai)} from the offline dataset, and then perform adversarial attack to obtain {(ŝi, ai)} and the
corresponding Q-values {Qi(ŝi, ai)}, where the Q-function is the trained critic of CQL.

Figure 2(a) shows the relationship between ŝi and the corresponding Qi with different ✏. To visualize
ŝi, we perform PCA dimensional reduction [55] and choose one of the reduced dimensions to
represent ŝi. More details can be found in Appendix B.3. With the increase of ✏ in the adversarial
attack, the Q-curve has greater deviation compared to the curve with ✏ = 0. The result signifies that
the Q-function of CQL is not smooth in the state space, which makes the adversarial noises easily
affect the Q values. As a comparison, we apply the proposed conservative smoothing loss in CQL

3

Offline
Dataset "̂, $Perturbation

OOD
sampling

"̂, $% Uncertainty Penalty

Conservative Smooth

Ensemble Soft
Q-Learning

Bellman operation
Algorithm 1: RORL Algorithm
Initialize policy ⇡✓ and Q-functions {Q�1 , . . . , Q�K}.
while not converged do

Sample mini-batch transitions (s, a, r, s0) from D.
Sample ŝ from Bd(s, ✏) to obtain (ŝ, a) pairs.
Calculate the Q smooth loss Lsmooth.
Sample OOD actions â ⇠ ⇡✓(ŝ).
Calculate uncertainty u(ŝ, â) and the OOD loss Lood.
Train each Q function Q�i with Eq. (5).
Train the policy ⇡✓ with Eq. (6).

Figure 3: RORL Algorithm: RORL trains multiple Q-functions for uncertainty quantification. The
conservative smoothing loss is calculated for (ŝ, a) with perturbed states. We perform uncertainty
penalization for (ŝ, â) with perturbed states and OOD actions.

training (i.e., CQL-smooth) and use the same evaluation method to obtain ŝi and Qi. According to
the result in Figure 2(b), the value function becomes smoother.

In addition, we show how the adversarial attack affects the final performance of offline RL policies.
We use ✏ 2 [0, 0.15] to evaluate both the original CQL policies (i.e., CQL) and CQL with conservative
smoothing loss (i.e., CQL-smooth) in adversarial attack. Figure 2(c) shows the performance with
different settings of ✏. We find that our smooth constraints significantly improve the robustness of
CQL, especially for large adversarial noises.

4 Robust Offline RL via Conservative Smoothing

In RORL, we develop smooth regularization on both the policy and the value function for states
near the dataset. The smooth constraints make the policy and the Q-functions robust to observation
perturbations. Nevertheless, the smoothness may also lead to value overestimation in areas outside
the supported dataset. To address this problem, we adopt bootstrapped Q-functions [39, 6] for uncer-
tainty quantification and sample perturbed states and OOD actions for penalization. RORL obtains
conservative and smooth value estimation on OOD states, which can improve the generalization
ability of offline RL algorithms. The overall architecture of RORL is given in Figure 3.

Robust Q-function We sample three sets of state-action pairs and apply different loss functions to
obtain a conservative and smooth policy. Specifically, for a (s, a) pair sampled from D, we construct
a perturbation set Bd(s, ✏) to obtain (ŝ, a) pairs, where ŝ 2 Bd(s, ✏) and ✏ is the perturbation scale.
The perturbation set Bd(s, ✏) = {ŝ : d(s, ŝ) ✏} for state s is an ✏-radius ball measured in metric
d(,), which is the `1 norm in our paper. Then we perform OOD sampling by using the current policy
⇡✓ to obtain (ŝ, â) pairs, where â ⇠ ⇡✓(ŝ). RORL contains K ensemble Q-functions. We denote
the parameters of the i-th Q-function and the target Q-function as �i and �

0
i, respectively. In the

following, we give different learning targets for (s, a), (ŝ, a), and (ŝ, â) pairs.

First, for a (s, a) pair sampled from D, we apply extended soft Q-learning to obtain the target as
bT Q�i(s, a) := r(s, a) + �bEa0⇠⇡✓(·|s0)

⇥
min

j=1,...,K
Q�0

j
(s

0
, a

0
)� ↵ · log ⇡✓(a

0
|s

0
)
⇤
, (1)

where the next-Q function takes minimum value among the target Q-functions and log ⇡✓(a
0
|s

0
) is

the entropy regularization. Note that Eq. (1) is the same learning target of SAC-N in [2].

Then, for a (ŝ, a) pair with a perturbed state, we enforce smoothness in each Q-function by minimizing
the Q-value difference between Q(s, a) and Q(ŝ, a). In particular, we choose an adversarial ŝ 2

Bd(s, ✏) that maximizes a inner objective L(Q(ŝ, a), Q(s, a)), and then train each Q-function to
minimize a loss function Lsmooth with the adversarial ŝ. Intuitively, we want the Q-function to be
smooth under the most difficult (i.e., adversarial) perturbation in Bd(s, ✏). The smooth loss function
for Q�i is as follows:

Lsmooth(s, a;�i) = max
ŝ2Bd(s,✏)

L
�
Q�i(ŝ, a), Q�i(s, a)

�
. (2)

We denote �(s, ŝ, a) = Q�i(ŝ, a)�Q�i(s, a) and remark that if �(s, ŝ, a) > 0, the perturbed state
may induce an overestimated Q-value that we need to smooth. In contrast, if �(s, ŝ, a) < 0, the

4

perturbed Q-function is underestimated, which does not cause a serious problem in offline RL.
As a result, we use different weights for �(s, ŝ, a)+ and �(s, ŝ, a)�, where x+ = max(x, 0) and
x� = min(x, 0). The definition of L(·, ·) is give as follows:

L
�
Q�i(ŝ, a), Q�i(s, a)

�
= (1� ⌧)�(s, ŝ, a)

2
+ + ⌧�(s, ŝ, a)

2
�, (3)

where we can choose ⌧ 0.5. In Lsmooth, we does not introduce OOD action â for smoothing since
the actions are desired to be close to the behavior actions for areas near the offline dataset.

Finally, to prevent overestimation of OOD states and actions, we use bootstrapped uncertainty u(ŝ, â)

as the penalty for Q(ŝ, â), where â ⇠ ⇡✓(ŝ) is an OOD action sampled from the current policy ⇡✓.
We remark that a similar OOD sampling is also used in PBRL [6]. The difference is that PBRL only
penalizes the OOD actions for in-distribution states, while RORL penalizes both the OOD states and
OOD actions to provide conservatism for unfamiliar areas. We follow PBRL and use a loss function
as:

Lood(s;�i) = Eŝ⇠Bd(s,✏),â⇠⇡✓(ŝ)

�bToodQ�i(ŝ, â)�Q�i(ŝ, â)
�2
, (4)

where the pseudo-target for the OOD datapoints is computed as: bToodQ�i(ŝ, â) := Q�i(ŝ, â) �

u(ŝ, â), which is detached from gradients similar to the conventional TD target. The bootstrapped
uncertainty u(ŝ, â) is defined as the standard deviation among the Q-ensemble:

u(ŝ, â) :=

r
1

K

XK

k=1

�
Q�i(ŝ, â)� Q̄�(ŝ, â)

�2
.

The ensemble technique [39] forms an estimation of the Q-posterior, which yields diverse predictions
and large penalty u(ŝ, â) on areas with scarce data.

Combining the loss functions above, RORL has the following loss function for each Q�i :

min
�i

Es,a,r,s0⇠D

h�bT Q�i(s, a)�Q�i(s, a)
�2

+ �QLsmooth(s, a;�i) + �oodLood(s;�i)

i
, (5)

Robust Policy We learn a robust policy by using a smooth constraint to make the policy change
less under perturbations. Similarly, we choose an adversarial state ŝ 2 Bd(s, ✏) that maximizes
DJ

�
⇡✓(·|s)k⇡✓(·|ŝ)

�
, and then minimize the policy difference between ⇡✓(·|s) and ⇡✓(·|ŝ). To

conclude, we minimize the following loss function for ⇡✓:

min
✓

h
Es⇠D,a⇠⇡✓(·|s)

⇥
� min

j=1,...,K
Q�j (s, a) + ↵ log ⇡✓(a|s) + �P max

ŝ2Bd(s,✏)
DJ

�
⇡✓(·|s)k⇡✓(·|ŝ)

�⇤ i
,

(6)
where the first term aims to maximize the minimum of the ensemble Q-functions to obtain a
conservative policy, and the second term is the entropy regularization.

5 Theoretical Analysis

We analyze a simplified learning objective of RORL in linear MDPs [23, 24], where the feature map
of the state-action pair takes the form of � : S ⇥A ! Rd, and both the transition function and the
reward function are assumed to be linear in �. The parameter ewt of RORL can be solved in closed
form following the least squares value iteration (LSVI), which minimizes the following loss function.

ewi
t = min

w2Rd

h mX

i=1

�
y
i
t �Qw(s

i
t, a

i
t)
�2

+

mX

i=1

1

|Bd(s
i
t, ✏)|

X

ŝit2Dood(sit)

�
Qw(s

i
t, a

i
t)�Qw(ŝ

i
t, a

i
t)
�2
+

X

(ŝ,â,ŷ)⇠Dood

�
ŷ �Qw(ŝ, â)

�2i
,

(7)
where we have Qw(s

i
t, a

i
t) = �(s

i
t, a

i
t)

>
w since the Q-function is also linear in �. The first term

in Eq. (7) is the ordinary TD-error, where we consider the setting of � = 1 and the Q-target
is y

i
t = r(s

i
t, a

i
t) + Vt+1(s

i
t+1). The second term is the proposed conservative smoothing loss.

Specifically, ŝit ⇠ Dood(s
i
t) are sampled from a l1 ball of center sit and norm ✏ > 0, which can also

be formulated as ŝit ⇠ Bd(s
i
t, ✏). The third term is the additional OOD-sampling loss, which enforces

5

conservatism for OOD states and OOD actions. In contrast to PBRL [6], we use perturbed states

sampled from Dood =

mS
i=1

Dood(s
i
t) rather than states from dataset. The OOD action â is sampled

from policy ⇡. The explicit solution of Eq. (7) takes the following form:

ewi
t =

e⇤�1
t

⇣ mX

i=1

�(s
i
t, a

i
t)y

i
t +

X

(ŝ,â,ŷ)⇠Dood

�(ŝ, â)ŷ

⌘
, (8)

where the covariance matrix e⇤t is defined as

e⇤t =

mX

i=1

�(s
i
t, a

i
t)�(s

i
t, a

i
t)

>
+

X

(ŝ,â)⇠Dood

�(ŝt, ât)�(ŝt, ât)
>

+

mX

i=1

1

|Bd(s
i
t, ✏)|

X

ŝit⇠Dood(sit)

[�(ŝ
i
t, a

i
t)� �(s

i
t, a

i
t)]

⇥
�(ŝ

i
t, a

i
t)� �(s

i
t, a

i
t)
⇤>

.

(9)

We denote the first term and the second term as e⇤in and e⇤ood
t , which represent the covariance matrices

induced by the offline samples and OOD samples, respectively. Nevertheless, in linear MDPs, it is
difficult to ensure the covariance e⇤in

+e⇤ood
t ⌫ �·I, since it requires that the embeddings of the samples

are isotropic to make the eigenvalues of the corresponding covariance matrix lower bounded. This
condition holds if we can sample embeddings uniformly from the whole embedding space. However,
since the offline dataset has limited coverage in the state-action space and the OOD samples come
from limited l1-balls around the offline data, e⇤in

+ e⇤ood
t cannot be guaranteed to be positive definite.

PBRL [6] uses the assumption of e⇤ood
t ⌫ �·I, while it is unachievable empirically. In RORL, we solve

this problem by introducing an additional conservative smoothing loss, which induces a covariance
matrix as e⇤ood_diff

t =
Pm

i=1
1

|Bd(sit,✏)|
P

ŝit⇠Dood(sit)
[�(ŝ

i
t, a

i
t)��(s

i
t, a

i
t)][�(ŝ

i
t, a

i
t)��(s

i
t, a

i
t)]

> (i.e.,

the third term in Eq. (9)). The following theorem gives the guarantees of e⇤ood_diff
t ⌫ � · I.

Theorem 1. Assume 9i 2 [1,m] the vector group of all ŝit ⇠ Dood(s
i
t): {�(ŝit, ait)� �(s

i
t, a

i
t)} be

full rank, then the covariance matrix e⇤ood_di↵
t is positive-definite: e⇤ood_di↵

t ⌫ � · I where � > 0.

Recall the covariance matrix of PBRL is e⇤PBRL
t = e⇤in

t + e⇤ood
t , and RORL has a covariance matrix as

e⇤t =
e⇤PBRL
t + e⇤ood_diff

t , we have the following corollary based on Theorem 1.

Corollary 1. Under the linear MDP assumptions and conditions in Theorem 1, we have e⇤t ⌫
e⇤PBRL
t .

Further, the covariance matrix e⇤t of RORL is positive-definite: e⇤t ⌫ � · I, where � > 0.

Recent theoretical analysis shows that an appropriate uncertainty quantification is essential to provable
efficiency in offline RL [24, 65, 6]. Pessimistic Value Iteration [24] defines a general ⇠-uncertainty
quantifier as the penalty and achieves provable efficient pessimism in offline RL. In linear MDPs,
Lower Confidence Bound (LCB)-penalty [1, 23] is known to be a ⇠-uncertainty quantifier for
appropriately selected �t as �lcb

(st, at) = �t ·
⇥
�(st, at)

>
⇤
�1
t �(st, at)

⇤1/2. Following the analysis
of PBRL [6], since the bootstrapped uncertainty is an estimation of the LCB-penalty and the OOD
sampling provides a covariance matrix e⇤t ⌫ � · I given in Corollary 1, the proposed RORL also
forms a valid ⇠-uncertainty quantifier. This allows us to further characterize the optimality gap based
on the pessimistic value iteration [24, 6]. We have the following suboptimality gap under linear MDP
assumptions.

Corollary 2. SubOpt(⇡
⇤
, ⇡̂)

PT
t=1 E⇡⇤

⇥
�
lcb
t (st, at)

⇤
<

PT
t=1 E⇡⇤

⇥
�
lcb_PBRL
t (st, at)

⇤
.

Detailed proof can be found in Appendix A. Corollary 2 indicates that RORL enjoys a tighter
suboptimality bound than PBRL [6].

6 Experiments

We evaluate our method on the D4RL benchmark [12] with various continuous-control tasks and
datasets. We compare RORL with several offline RL algorithms, including (i) BC that performs

6

Table 1: Normalized average returns on Gym tasks, averaged over 4 random seeds. Part of the results
are reported in the EDAC paper. Top two scores for each task are highlighted.

Task Name BC CQL PBRL SAC-10 EDAC EDAC-10 RORL
(Reproduced) (Paper) (Reproduced) (Ours)

halfcheetah-random 2.2±0.0 31.3±3.5 11.0±5.8 29.0±1.5 28.4±1.0 13.4 ± 1.1 28.5±0.8
halfcheetah-medium 43.2±0.6 46.9±0.4 57.9 ±1.5 64.9±1.3 65.9±0.6 64.1±1.1 66.8±0.7
halfcheetah-medium-expert 44.0±1.6 95.0±1.4 92.3±1.1 107.1±2.0 106.3±1.9 107.2±1.0 107.8±1.1
halfcheetah-medium-replay 37.6±2.1 45.3±0.3 45.1±8.0 63.2±0.6 61.3±1.9 60.1±0.3 61.9±1.5
halfcheetah-expert 91.8±1.5 97.3±1.1 92.4±1.7 104.9±0.9 106.8±3.4 104.0±0.8 105.2±0.7
hopper-random 3.7±0.6 5.3±0.6 26.8±9.3 25.9±9.6 25.3±10.4 16.9±10.1 31.4±0.1
hopper-medium 54.1±3.8 61.9±6.4 75.3±31.2 0.8±0.2 101.6±0.6 103.6±0.2 104.8±0.1
hopper-medium-expert 53.9±4.7 96.9±15.1 110.8±0.8 6.1±7.7 110.7±0.1 58.1±22.3 112.7±0.2
hopper-medium-replay 16.6±4.8 86.3±7.3 100.6±1.0 102.9±0.9 101.0±0.5 102.8±0.3 102.8±0.5
hopper-expert 107.7±9.7 106.5±9.1 110.5±0.4 1.1±0.5 110.1±0.1 77.0±43.9 112.8±0.2
walker2d-random 1.3±0.1 5.4±1.7 8.1±4.4 1.5±1.1 16.6±7.0 6.7±8.8 21.4±0.2
walker2d-medium 70.9±11.0 79.5±3.2 89.6±0.7 46.7±45.3 92.5±0.8 87.6±11.0 102.4±1.4
walker2d-medium-expert 90.1±13.2 109.1±0.2 110.1±0.3 116.7±1.9 114.7±0.9 115.4±0.5 121.2±1.5
walker2d-medium-replay 20.3±9.8 76.8±10.0 77.7±14.5 89.6±3.1 87.1±2.3 94.0±1.2 90.4 ± 0.5
walker2d-expert 108.7±0.2 109.3±0.1 108.3±0.3 1.2±0.7 115.1±1.9 57.8±55.7 115.4 ± 0.5
Average 49.7 70.2 74.4 50.8 82.9 71.2 85.7
Total 746.1 1052.8 1116.5 761.6 1243.4 1068.7 1285.7

behavior cloning, (ii) CQL [29] that learns conservative value function for OOD actions, (iii) EDAC
[2] that learns a diversified Q-ensemble to enforce conservatism, and (iv) PBRL [6] that performs
uncertainty penalization and OOD sampling. We also include a basic SAC-10 algorithm as a baseline
[2], which is an extension of SAC with 10 Q-functions. Among these methods, EDAC [2] and
PBRL [6] are related to RORL since all these methods apply Q-ensemble for conservatism. EDAC
needs much more Q-networks (i.e., 10⇠50) for hopper tasks than PBRL and RORL that only use
10 Q-networks. For fair comparison, we also report the reproduced results of EDAC-10. To assign
uniform adversarial attack budget on each dimension of observations, we normalize the observations
for SAC-10, EDAC and RORL. Besides, we use different perturbation scales for the policy smoothing
loss, the Q smoothing loss and the OOD loss, namely ✏P, ✏Q and ✏ood. More hyper-parameters and
implementation details are provided in Appendix B.

6.1 Benchmark Results

We evaluate each method on Gym domain that includes three environments (HalfCheetah, Hopper, and
Walker2d) with five types of datasets (random, medium, medium-replay, medium-expert, and expert)
for each environment. The medium-replay dataset contains experiences collected in training a medium-
level policy. The random/medium/expert dataset is generated by a single random/medium/expert
policy. The medium-expert dataset is a mixture of medium and expert datasets. For benchmark
experiments, we set small perturbation scales ✏P, ✏Q, and ✏ood within {0.001, 0.005, 0.01} when
training RORL and do not include observation perturbation in the testing time.

Table 1 reports the performance of the average normalized score with standard deviation. (i) SAC-10
is unstable on several walker2d and hopper tasks since the ensemble number is relatively small to
provide reliable uncertainties for SAC-N [2]. (ii) EDAC solves this problem by gradient diversity
constraints while still requiring 10⇠50 Q-networks to obtain reasonable performance. In contrast,
RORL only uses 10 ensemble Q-networks to achieve better or comparable performance with EDAC.
Additionally, we also show that RORL outperforms EDAC-10 by a large margin. (iii) PBRL chooses
an alternative OOD-sampling technique to reduce the ensemble numbers. According to the result,
RORL significantly outperforms PBRL with the same ensemble number. The reason is RORL
additionally uses conservative smoothing loss for perturbed states and penalizes values of these
states based on uncertainty estimation, which may improve the generalization ability of the learned
policy on continuous state space. We remark that RORL significantly improves over the current
SOTA results on walker2d and hopper tasks, probably because these two tasks require a more precise
balance of conservatism and robustness for better performance.

6.2 Adversarial Attack

We adopt three attack methods, namely random, action diff, and min Q following prior works [73, 43].
Given perturbation scale ✏, the later two methods perform adversarial perturbation on observations

7

(a) Performance under attack on the halfcheetah-medium-v2 dataset

(b) Performance under attack on the walker2d-medium-v2 dataset

(c) Performance under attack on the hopper-medium-v2 dataset

Figure 4: (a) (b) (c) illustrate the performance of RORL, EDAC and SAC-10 under attack scales
range [0, 0.3] of different attack types. The curves are averaged over 4 seeds and smoothed with a
window size of 3. The shaded region represents half a standard deviation.

and are given access to the agent’s policy and value functions. Details about the three attack methods
are as follows.

• random uniformly samples perturbed states in an l1 ball of norm ✏.

• action diff is an effective attack based on the agent’s policy and is proved to be an
upper bound on the performance difference between perturbed and unperturbed envi-
ronments [73]. It directly finds perturbed states in an l1 ball of norm ✏ to satisfy:
maxŝ2Bd(s,✏) DJ

�
⇡✓(·|s)k⇡✓(·|ŝ)

�
, i.e., minŝ2Bd(s,✏) �DJ

�
⇡✓(·|s)k⇡✓(·|ŝ)

�
.

• min Q requires both the agent’s policy and value function to perform a relatively stronger
attack. The attacker finds a perturbed state to minimize the expected return of taking an
action from that state: minŝ2Bd(s,✏) Q(s,⇡✓(ŝ)). For ensemble-based algorithms, Q is set
as the mean of ensemble Q functions.

In our experiments, the two objectives of action diff and min Q are optimized via two ways. Specifi-
cally, we optimize the objectives through:

(1) selecting the best perturbed state from uniformly sampled 50 states, which has the advantage
of simplicity and little computation cost. For attacks with this type of optimization, we use
their original names without specifying.

(2) uniformly sampling 20 initial states and performing gradient decent for 10 steps with a step
size of 1

10✏ from each initial state to find the best perturbed state. Note that we need to clip

8

the perturbed states within the l1 ball at the end of each optimization step. Among the
attacks using this optimization, we specifically remark "mixed-order" in their names.

We compare RORL with ensemble-based baselines EDAC and SAC-10 on halfcheetah-medium-v2,
walker2d-medium-v2, and hopper-medium-v2 datasets. To handle large adversarial noise, we set
the perturbation scales ✏P, ✏Q and ✏ood within {0.005, 0.02, 0.03, 0.05, 0.07} in RORL’s training
phase. More detailed description can be found in Appendix B. The results are shown in Figure 4. In
the results, RORL exhibits improved robustness than other baselines under five types of adversarial
attacks. On the other hand, we find that random attack is not effective for ensemble-based offline
RL algorithms, and the “mixed order” attack brings more significant performance drop than vanilla
zero-order optimization.

Figure 5: Ablation studies on the walker2d-medium-v2 dataset with varying perturbation scale. The
curve is averaged across 4 random seeds and smoothed with a window size of 3. The shaded region
represents half a standard deviation.

6.3 Ablations

We conduct ablation studies on the walker2d-medium-v2 dataset to evaluate the importance of three
terms, i.e., the policy smoothing loss, the Q smoothing term and the OOD loss. From the results in
Figure 5, we can conclude that each loss contributes to the performance of RORL under adversarial
observation attacks. The OOD loss is the most essential term, without which the performance is
worse than RORL at almost all perturbation scales and all types of attacks. The policy smoothing loss
is also important, especially for perturbation scales larger than 0.2. In addition, Q smooth loss has the
minimal impact, which is reasonable since the basic algorithm SAC-10 is based on 10 ensemble Q

networks. More ablations on the number of Q networks, the effect of ✏ood and ⌧ , and a comparison
with more baselines can be found in Appendix C.

6.4 Computational Cost Comparison

Table 2: Computational costs.

Runtime GPU Memory
(s/epoch) (GB)

CQL 32.40 1.4
SAC-10 12.73 1.3
PBRL 102.96 1.8
EDAC 17.94 1.8
RORL 29.56 2.1

We compare the computational cost of RORL with prior
works on a single machine with one GPU (Tesla V100
32G). For each method, we measure the average epoch
time (i.e., 1⇥10

3 training steps) and the GPU memory
usage on the hopper-medium-v2 task. More discussions
are provided in Appendix C.1.

As shown in Table 2, RORL runs slightly faster than CQL
and much faster than PBRL. PBRL is so slow because it
uses 10 Q networks and needs OOD action sampling. In
RORL, we also include the OOD state-action sampling
and the robust training procedure, but we implemented these procedures efficiently based on the
parallelization of Q networks. Even so, RORL is still slower than SAC-10 and EDAC. As demon-
strated in our experiments, RORL enjoys significantly better robustness than EDAC and SAC-10
under adversarial perturbations. Regarding the GPU memory consumption, RORL uses comparable
memory to PBRL and EDAC, with only 16.7% more memory usage.

7 Related Works

Offline RL Research related to offline RL has experienced explosive growth in recent years. In
model-free domain, offline RL methods focus on correcting the extrapolation error [14] in the off-

9

policy algorithms. The natural idea is to regularize the learned policy near the dataset distribution [59,
63, 37, 61, 69, 13, 66]. For example, MARVIL reweights the policy with exponential advantage,
which implicitly guarantees the policy within the KL-divergence neighborhood of the behavior policy.
Another stream of model-free methods prevents the selection of OOD actions by penalizing their
Q-value [28, 29, 2, 10] or V -learning [33, 27]. With the ensemble Q networks and the additional loss
term to diversify their gradients, EDAC [2] achieves SOTA performance in the D4RL benchmark.
Instead of diversifying gradients, PBRL [6] proposes an explicit value underestimation of OOD
actions according to the uncertainty, which requires fewer ensemble networks. Inspired by EDAC
and PBRL, we build our work upon ensemble networks, focusing more on the smoothness over the
state space.

Besides the surprising empirical results, theoretical analysis of offline reinforcement learning algo-
rithms is of increasing interest [9, 24, 45, 65, 70]. Though the assumptions for the dataset vary in the
different papers, they all suggest that pessimism and conservatism are necessary for offline RL. Our
theoretical results can be viewed as robust extensions to previous theoretical results [24, 6].

Robust RL The research line of robust RL can be traced back to H1-control theory [64, 7],
where policies are optimized to be well-performed in the worst possible deterministic environment.
Depending on the definition, there are different streams of research on robust RL. As the extension
of robust control to MDPs, Robust MDPs (RMDPs) [38, 21, 46, 19] are proposed to formulate the
perturbation of transition probabilities for MDPs. Though some recent analyses with theoretical
guarantees come out under specific assumptions for RMDPs [75, 68, 31], there is currently no
practical algorithm to solve RMDPs in a large-scale problem, expect some linear approximation
attempt [54]. In online RL, domain randomization [56, 35] assumes the model uncertainty can be
predefined in data collection by changing the setup of a simulator. However, it is not practical for
offline RL. Robust Adversarial Reinforcement Learning (RARL) [43] and Noisy Robust Markov
Decision Process (NR-MDP) [25] study the robust RL with the perturbed actions, showing that the
policy robustness to adversarial or noisy actions can also induce robustness for model parameter
changes. The most related work to ours is SR2L [48], which shows policy smoothing can lead to
significant performance improvement in the online setting. In contrast, we focus on the offline setting
and tackle the potential overestimation of perturbed states. Another related work is S4RL [50], where
the authors study different data augmentation methods to smooth observations in offline RL. Their
result supports the necessity of state smoothing. More related works are discussed in Appendix E.

8 Conclusion

We propose Robust Offline Reinforcement Learning (RORL) to trade-off conservatism and robustness
for offline RL. To achieve that, we introduce the conservative smoothing technique for the perturbed
states while actively underestimating their values based on pessimistic bootstrapping to keep conser-
vative. We show that RORL can achieve comparable or even better performance with fewer ensemble
Q networks than previous methods in the offline RL benchmark. In addition, we demonstrate that
RORL is considerably robust to adversarial perturbations across different types of attacks. We hope
our work can promote the application of offline RL under real-world engineering conditions.

The main limitation of our method is that the adversarial state sampling slows down the computing
process, which may be improved in future work. Also, an interesting direction is to smooth or
penalize the policy and Q functions in latent spaces rather than the normalized observation space.

Acknowledgements

This work was in part supported by Tencent Robotics X and Shanghai AI Laboratory, and in part by
Science and Technology Innovation 2030 – “New Generation Artificial Intelligence” Major Project
(No. 2018AAA0100904) and National Natural Science Foundation of China (62176135). The authors
would like to thank the anonymous reviewers. Rui Yang thanks Yi Wang and Haoyi Song for valuable
discussion.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in neural information processing systems, volume 24, pages
2312–2320, 2011.

[2] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34, 2021.

[3] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, 2017.

[4] Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, and Zhaoran Wang.
Dynamic bottleneck for robust self-supervised exploration. Advances in Neural Information
Processing Systems, 34:17007–17020, 2021.

[5] Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In International
Conference on Machine Learning, pages 577–587. PMLR, 2021.

[6] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
In International Conference on Learning Representations, 2022.

[7] Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design
problems: a dynamic game approach. Springer Science & Business Media, 2008.

[8] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy
induction attacks. In International Conference on Machine Learning and Data Mining in
Pattern Recognition, pages 262–275. Springer, 2017.

[9] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

[10] Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor
critic for offline reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.

[11] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return,
then explore. Nature, 590(7847):580–586, 2021.

[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[13] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

[14] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In ICML, 2019.

[15] Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic?
estimating uncertainties for offline rl through ensembles, and why their independence matters.
arXiv preprint arXiv:2205.13703, 2022.

[16] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial policies: Attacking deep reinforcement learning. In International Conference on
Learning Representations, 2019.

[17] Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective.
In International Conference on Machine Learning, pages 3734–3744. PMLR, 2021.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

11

[19] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast Bellman Updates for Robust
MDPs. In Proceedings of the 35th International Conference on Machine Learning, pages
1979–1988. PMLR, 2018.

[20] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[21] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, 2005.

[22] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34, 2021.

[23] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[24] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[25] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and
Volkan Cevher. Robust reinforcement learning via adversarial training with langevin dynamics.
Advances in Neural Information Processing Systems, 33:8127–8138, 2020.

[26] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. In NeurIPS, 2020.

[27] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2021.

[28] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. In NeurIPS, 2019.

[29] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In NeurIPS, 2020.

[30] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[31] Jialian Li, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Policy learning for robust markov
decision process with a mismatched generative model. arXiv preprint arXiv:2203.06587, 2022.

[32] Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning
via distance metric learning and behavior regularization. In International Conference on
Learning Representations, 2021.

[33] Xiaoteng Ma, Yiqin Yang, Hao Hu, Jun Yang, Chongjie Zhang, Qianchuan Zhao, Bin Liang, and
Qihan Liu. Offline reinforcement learning with value-based episodic memory. In International
Conference on Learning Representations, 2022.

[34] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch reinforcement
learning and control. Advances in Neural Information Processing Systems, 32, 2019.

[35] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[37] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[38] Arnab Nilim and Laurent Ghaoui. Robustness in markov decision problems with uncertain
transition matrices. Advances in neural information processing systems, 16, 2003.

12

[39] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In NeurIPS, 2016.

[40] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against deep learning systems using adversarial
examples. arXiv preprint arXiv:1602.02697, 1(2):3, 2016.

[41] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary.
Robust deep reinforcement learning with adversarial attacks. arXiv preprint arXiv:1712.03632,
2017.

[42] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary.
Robust deep reinforcement learning with adversarial attacks. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 2040–2042,
2018.

[43] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In International Conference on Machine Learning, pages 2817–2826.
PMLR, 2017.

[44] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learn-
ing robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283,
2016.

[45] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34, 2021.

[46] Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under model mismatch.
Advances in neural information processing systems, 30, 2017.

[47] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[48] Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement
learning with robust and smooth policy. In International Conference on Machine Learning,
pages 8707–8718. PMLR, 2020.

[49] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[50] Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision
for offline reinforcement learning in robotics. In Conference on Robot Learning, pages 907–917.
PMLR, 2022.

[51] Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploiting reward
shifting in value-based deep rl. In Advances in Neural Information Processing Systems, 2022.

[52] Hao Sun, Boris van Breugel, Jonathan Crabbe, Nabeel Seedat, and Mihaela van der Schaar.
Daux: a density-based approach for uncertainty explanations. arXiv preprint arXiv:2207.05161,
2022.

[53] Hao Sun, Ziping Xu, Meng Fang, Zhenghao Peng, Jiadong Guo, Bo Dai, and Bolei Zhou. Safe
exploration by solving early terminated mdp. arXiv preprint arXiv:2107.04200, 2021.

[54] Aviv Tamar, Huan Xu, and Shie Mannor. Scaling up robust mdps by reinforcement learning.
arXiv preprint arXiv:1306.6189, 2013.

[55] Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622,
1999.

13

[56] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

[57] Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825,
2020.

[58] Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang.
Offline reinforcement learning with reverse model-based imagination. Advances in Neural
Information Processing Systems, 34, 2021.

[59] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted
imitation learning for batched historical data. Advances in Neural Information Processing
Systems, 31, 2018.

[60] Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free rein-
forcement learning with linear function approximation. In Advances in neural information
processing systems, 2020.

[61] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

[62] Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding
Zhao, and Bo Li. Copa: Certifying robust policies for offline reinforcement learning against
poisoning attacks. arXiv preprint arXiv:2203.08398, 2022.

[63] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[64] Lihua Xie and Carlos E de Souza. Robust h/sub infinity/control for linear systems with norm-
bounded time-varying uncertainty. In 29th IEEE Conference on Decision and Control, pages
1034–1035. IEEE, 1990.

[65] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. Advances in neural information
processing systems, 34, 2021.

[66] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. In
International Conference on Learning Representations, 2022.

[67] Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng, and Peng
Liu. Exploration in deep reinforcement learning: a comprehensive survey. arXiv preprint
arXiv:2109.06668, 2021.

[68] Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Towards theoretical understandings of
robust markov decision processes: Sample complexity and asymptotics. arXiv preprint
arXiv:2105.03863, 2021.

[69] Yiqin Yang, Xiaoteng Ma, Li Chenghao, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang,
and Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34, 2021.

[70] Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022.

[71] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in Neural
Information Processing Systems, 34, 2021.

14

[72] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In NeurIPS, 2020.

[73] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. Advances in Neural Information Processing Systems, 33:21024–21037, 2020.

[74] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Robust policy gradient against
strong data corruption. In International Conference on Machine Learning, pages 12391–12401.
PMLR, 2021.

[75] Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pages 3331–3339. PMLR,
2021.

15

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Sec 1 and
Appendix B.

(b) Did you specify all the training details (e.g., data splits, hyper-parameters, how they
were chosen)? [Yes] See Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sec 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited D4RL [12]

and EDAC[2] for their datasets and code.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included our code in the anonymized link.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Opensource code and dataset.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

	Introduction
	Preliminaries
	Robustness of Offline RL: A Motivating Example
	Robust Offline RL via Conservative Smoothing
	Theoretical Analysis
	Experiments
	Benchmark Results
	Adversarial Attack
	Ablations
	Computational Cost Comparison

	Related Works
	Conclusion
	Theoretical Analysis
	LSVI Solution
	RORL Solution
	xi-Uncertainty Quantifier
	Suboptimality Gap

	Implementation Details and Experimental Settings
	Implementation Details
	Experimental Settings
	Visualization Settings of CQL

	Additional Experimental Results
	Computational Cost Comparison
	Ablations on Benchmark Results
	Robustness Measures
	Ablations of Components in the Adversarial Experiments
	Ablations on the Number of Ensemble Q Networks
	Ablations of tau for the Adversarial Experiments
	Ablations on the Number of Sampled Perturbed Observations
	Adversarial Attack with Different Q Functions
	Comparison with EDAC+Smoothing
	Comparison with PBRL + S4RL
	Combining Smoothing with IQL
	Comparing the 'max' and the 'mean' Operators in Smoothing
	Comparing Different Optimization for Perturbation Generation during Training
	Comparison of the ``minus target'' and the ``min target''
	Experiments in Adroit Domains
	AntMaze Tasks
	Robustness of the Benchmark Results

	Tips for Customizing RORL
	More Related Works

