
Appendix

A Additional results

A.1 Benchmarks

A detailed qualitative and quantitative comparison of state-of-the-art MVS methods on all scans in
Tanks and Temples (T&T) dataset, as shown in Table 7, Table 8 and Fig.7. ElasticMVS achieves
state-of-the-art performance among all supervised and self-supervised MVS methods and the tremen-
dous performance improvement in T&T advanced benchmark, demonstrating the effectiveness and
robustness of the proposed ElasticMVS to complex categories and geometries. The qualitative
comparisons of all scenes in the T&T dataset also demonstrate that ElasticMVS precisely reconstructs
the scenes with higher completeness and less noise.

Table 7: Quantitative evaluation of state-of-the-art learning-based methods on the Tanks and Temples
(T&T) intermediate dataset [25].

Method Mean Family Francis Horse Lighthouse M60 Panther Playground Train

Learning based
Supervised

MVSNet [47] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
CasMVSNet [15] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51
UCSNet [10] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89
PVAMVSNet [49] 54.46 69.36 46.80 46.01 55.74 57.23 54.75 56.70 49.06
SurfaceNet+ [19] 49.38 62.38 32.35 29.35 62.86 54.77 54.14 56.13 43.10
R-MVSNet [48] 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25
Point-MVSNet [7] 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06
PatchmatchNet [39] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81
Patchmatch-RL [26] 51.81 60.37 43.26 36.43 56.27 57.30 53.43 59.85 47.61

Learning based
Self-supervised

MVS2 [11] 37.21 47.74 21.55 19.50 44.54 44.86 46.32 43.48 29.72
M3VSNet [16] 37.67 47.74 24.38 18.74 44.42 43.45 44.95 47.39 30.31
SurRF [51] 54.36 69.69 52.45 27.83 63.08 59.41 52.33 59.34 50.74
JDACS [43] 45.48 66.62 38.25 36.11 46.12 46.66 45.25 47.69 37.16
ElasticMVS (ours) 57.88 69.09 63.77 43.44 62.60 59.40 51.87 59.36 53.47

Table 8: Quantitative evaluation of state-of-the-art learning-based methods on the Tanks and Temples
(T&T) advanced dataset [25], which demonstrates dramatic performance improvements w.r.t. state-
of-the-art methods in both supervised and self-supervised approaches.

Method Mean Auditorium Ballroom Courtroom Museum Palace Temple
CasMVSNet [15] 31.12 19.81 38.46 29.10 43.87 27.36 28.11
R-MVSNet [48] 29.55 19.49 31.45 29.99 42.31 22.94 31.10

PatchmatchNet [39] 32.31 23.69 37.73 30.04 41.80 28.31 32.29
Patchmatch-RL [26] 31.78 24.28 40.25 35.87 44.13 22.43 23.73
ElasticMVS (ours) 37.81 21.33 42.97 38.32 54.01 31.71 38.55

B Elastic part representation

B.1 Training loss

Visualizations of the elastic part representation representation compared with variants trained without
confidence map (w/o Con.) and spatial concentration loss (w/o Spa.), which are shown in Fig 8 and
Fig 9. Our elastic part representation successfully recognizes the part on the same physical surface
with elastically-varying scales, shapes and boundaries.

B.2 Representation Comparison

We compare our elastic part representation with part representations in SLIC [2] and JDACS [43].
Since SLIC and JDACS both represent parts using labels that are different from our embedding-based
representation, we highlight those pixels sharing the same label with the reference pixel denoted by
the black "+". As shown in Fig 10, Our elastic part representations are more scalable in size while
also better preserving object boundaries.
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Figure 7: Point cloud visualization in the T&T intermediate and advanced benchmarks, compared
with three types of reconstruction methods: supervised methods (a)(b) [39, 15], self-supervised
methods (d)(e) [16, 43], and one traditional geometry-based method (c) [34].
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Figure 8: Visualization of the elastic part representation for DTU dataset. Part representations for
specified pixels (black) are highlighted(red). Con. denotes confidence map, and Spa. denotes spatial
concentration loss.

Figure 9: Visualization of the elastic part representation for T&T dataset. Part representations for
specified pixels (black) are highlighted(red). Con. denotes confidence map, and Spa. denotes spatial
concentration loss.

C ElasticMVS

C.1 Propagation

To better understand the effect of part-aware propagation, we visualize the sampled candidates for
propagation (blue points) during 3 iterations of patchmatch given six pixels (red points), which are

Figure 10: Visualization of part representations of different methods, pixels with the same label or
the similar embedding as the reference pixel (denoted by black "+") are highlighted.
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Figure 11: Visualization of the candidates (blue) during 3 patchmatch iterations and their corre-
sponding target points (red).

shown in Fig 11. As expected, the receptive field for hypotheses propagation is elastically changed
according to the the geometric shape and the texture pattern of the object.

C.2 Number of iterations

The quantitative results with different number of hypothesis (Kp,Kr) under each iteration described
in Sec. 3.2 are summarized in Fig. 12. Obviously, the error converges after only 4 iterations of
patchmatch using different number of hypotheses. Besides, using more hypotheses leads to faster
convergence. Apart from that, our part-aware patchmatch is robust to the diverse initialization and
local perturbation.

Figure 12: Performance under each iteration. (a) Different number of hypotheses (Kp,Kr) for
propagation and perturbation. (b) Error bars with the default setting of Kp and Kr, which report the
best and worst performances under different random seeds.

18



C.3 Confidence map

The depth map predicted in each iteration is not always reliable, especially in textureless and high-
reflectant areas. Therefore, we integrate multi-view geometric consistency constraints into the
photometric consistency to increase the reliability and the accuracy of training and propagation. The
visualization of each part is demonstrated in Fig. 13. We diminish reconstruction artifacts by firstly
using a bilaterally weighted adaption of normalized cross correlation to measure the photometric
consistency cphop between a reference view with the corresponding source views. After that, the
geometric consistency cgeop is computed as the forward-backward reprojection error between multiple
views [34]. Besides, we compute surface smoothness csmo

p [35] to find smooth surface parts, which
is the angle between surface normals of adjacent image points. This term identifies sudden changes
of the surface normal direction at object edges [37], which is robust w.r.t. noisy normal vectors.

As shown in Fig. 13, for each reference image, the photometric consistency cphop (b), geometric
consistency cgeop (c) and surface smoothness csmo

p (d) for each pixel p is separated computed. The
final confidence cp (e) for training and propagation is the combination of these three factors: cp =
cphop · cgeop · csmo

p .

Figure 13: Decomposition of the confidence map for training and candidate selection.
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