
A Methods

A.1 Hessian eigenspectrum analysis

As mentioned, we focus on the leading Hessian eigenvalue because it has been used previ-
ously [121, 172] and is very feasible for both empirical [118, 173] and theoretical analyses (The-
orem 1). The leading Hessian eigenvalue can be computed by performing power iterations on the
Hessian vector product without knowing the full Hessian matrix (Algorithm 2 in [118]). To find
multiple top eigenvalues, e.g. top 200 eigenvalues, one can use the generalized power method via QR
decomposition [174]. We focused on the loss’ Hessian for recurrent weights but observed a similar
trend for input weights as well. We set the tolerance for stopping to 1e− 6.

Due to the scale-dependence issue of Hessian spectrum [133], we also used scale-independent
measures. For instance, we examined the power-law decay coefficient for the Hessian eigenvalues
(Figure 7 in Appendix). We also looked at the recently proposed relative flatness measure [6] (Figure 8
in Appendix). We used the code in [175] to fit a power-law distribution to the top 200 eigenvalues.
We found similar results had we chosen the top 50 or 100 eigenvalues instead, and 200 was chosen
mainly due to computational load. We note that the link of power-law decay to generalization has
also been examined in some recent studies [120, 176, 177].

A.2 Network setup and learning rule implementations

Neuron Model: We consider a discrete-time implementation of a rate-based recurrent neural network
(RNN) similar to the form in [136]. The model denotes the internal hidden state as ht and the
observable states, i.e. firing rates, as f(ht) at time t, and we use ReLU activation for f . The dynamics
of those states are governed by

ht+1 = αht + (1− α) (Whf(ht) +Wxxt) , (10)

where α = e−dt/τm denotes the leak factor for simulation time step dt and membrane time constant
τm, Wh denotes the weight of the recurrent synaptic connection, Wx denotes the strength of the input
synaptic connection and xt denotes the external input at time t. we use subscripts to represent indices
of neurons and time steps. For instance, hi,t represents the hidden activity h of neuron i at time t.
Wh,ij represents the (ij)th entry of recurrent weight matrix Wh. Model in Eq. 10 was used for the
sequential MNIST and pattern generation tasks.

We mention in passing that the choice of ReLU activation, which has a discontinuous first derivative,
means that the loss Hessian matrix is not guaranteed to be symmetric. A real matrix that is not
symmetric can have complex eigenvalues come in conjugate pairs, and if they were amongst the
top eigenvalues, power iterations may not converge. However, all iterations have converged in
our experiments as mentioned above. Also, because of potential technical issues resulting from
non-symmetric Hessian matrices, we foresee challenges in applying our methodology to spiking
neural networks (SNNs), which have discontinuous activation functions. Due to the energy efficiency
and biological realism of SNNs [96, 178–187], we believe extending to SNNs is an important future
direction.

For the delayed match to sample task, which is a working memory task, it was found in [13] and [11]
that units with an adaptive threshold as an additional hidden variable can play an important role in the
computing capabilities of RNNs. Thus, we implemented adaptive threshold neuron units [164] for
that task. In our rate-based implementation, this turns out to be a simple addition of a second hidden
variable bt that represents the dynamic threshold component:

ht+1 = αht + (1− α) (Whf(ht − bt) +Wxxt) ,

bt+1 = βbt + (1− β)f(ht − bt), (11)

where bj,t denotes the dynamic threshold that adapts based on past neuron activity. The decay factor
β is given by e−dt/τb for simulation time step dt and adaptation time constant τb, which is typically
chosen on the behavioral task time scale [13].

Network output and loss function:

Readout ŷ is defined as
ŷ = 〈w, f(ht)〉 (12)
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for readout weights w.

We quantify how well the network output ŷ matches the desired target y using loss function L, which
is defined as

L(Wh) =

{
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(13)

for target output y, task duration T , Nout output neurons and batch size B. πk,t is the one-hot en-
coded target and π̂k,t = softmaxk(ŷ1,t, . . . , ŷNOUT ,t) = exp(ŷk,t)/

∑
k′ exp(ŷk′,t) is the predicted

category probability.

Biological gradient approximations (truncation-based)

The goal of this subsection is to explain where the approximation happens for each of the bio-plausible
learning rules. For full details regarding these rules, we encourage the reader to refer to the respective
references. We start by writing down the gradient in terms of real-time recurrent learning (RTRL)
factorization:

∂L

∂Wh,ij
=

∑
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∂L

∂hl,t

∂hl,t
∂Wh,ij

, (14)

Key problems that RTRL poses to biological plausibility and computational cost reside in the second
factor ∂hl,t

∂Wh,ij
that arises during the factorization of the gradient (Eq. 14). The factor ∂hl,t

∂Wh,ij
keeps

track of all recursive dependencies of hl,t on weight Wh,ij arising from recurrent connections. These
recurrent dependencies can be obtained recursively as follows:
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. (15)

Thus, the factor ∂hl,t

∂Wh,ij
poses a serious problem for biological plausibility: it involves nonlocal terms

that should be inaccessible to neural circuits, i.e. that knowledge of all other weights in the network
is required in order to update the weight Wh,ij .

RFLO [12] (labeled as "RF Three-factor") and symmetric e-prop [11] (labeled as "Three-factor")
seek to address this by truncating the expensive nonlocal terms in Eq. 15 so that the updates to weight
Wh,ij would only depend on pre- and post-synaptic activity:
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(16)

which results in a much simpler factor than the triple tensor in Eq. 15.

After the truncation, RFLO and e-prop implement:
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, (17)

∂̂hi,t
∂Wh,ij

=
∂hi,t
∂Wh,ij

+
∂hi,t
∂hi,t−1

∂̂hi,t−1
∂Wh,ij

. (18)

The main difference between symmetric e-prop and RFLO implementation is that symmetric feedback
is used for symmetric e-prop, i.e. output weight w is used as the feedback weight for the ∂E

∂h , whereas
RFLO uses fixed random feedback weights [75] for greater biological plausibility. We note in
passing that the authors of e-prop have tested their formulation with fixed random feedback weights
as well. MDGL [13] also truncates RTRL, but it restores some of the non-local dependencies –
those within one connection step — that could potentially be communicated via mechanisms similar
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to the abundant cell-type-specific local modulatory signaling unveiled by recent transcriptomics
data [89, 90]. With that, the expensive memory trace term in Eq. 15 becomes

∂hl,t
∂Wh,ij
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(19)

MDGL involves one additional approximation: replace Wh,li with type-specific weights Wab to
mimic the cell-type-specific nature of local modulatory signaling (for cell i in group a and cell j in
group b, where a, b ∈ C for a total of C cell groups). For simplicity, we just used Wab = Wli, i.e.
without cell-type approximation. This results in overall MDGL implementation as
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Interpretation of the above update rule in terms of biological processes can be found in the MDGL
paper [13, 188].

We note that input, recurrent and output weights were all being trained. This section illustrates the
approximate gradient for updating recurrent weights Wh, and similar expressions were obtained for
updating input weights Wx. The approximations, however, did not apply to output weights, as the
gradient for that would not violate the aforementioned issue of nonlocality (Eq. 15).

A.3 Simulation details

We used TensorFlow [189] version 1.14 and based it on top of [190]. We modified the code for
rate-based neurons (Eq. 10 and 11). 1 We used the code in [175] for the power-law analysis (Figure 7
in Appendix). SGD optimizer was used to study the effect of gradient approximation in isolation
without the complication of additional factors, as Adam optimizer with adaptive learning rate could
convolute our matching step length experiments in Figure 4. That said, we verified that the curvature
convergence behavior is also observed for Adam optimizer (Figure 11 in Appendix. Learning
rates were optimized by picking within {3e − 4, 1e − 3, 3e − 3, 1e − 2, 3e − 2, 1e − 1} for each
algorithm. For the sequential MNIST task, we explored batch sizes within {64, 256, 1024}. For the
sequential MNIST task, these hyperparameters were optimized based on validation performance (the
validation set loaded using tensorflow.examples.tutorials.mnist). For the two other tasks, these
hyperparameters were optimized based on the training performance, but we also tried optimizing
on the test set and observed similar trends. Trainings were stopped when both the loss and leading
Hessian eigenvalue stabilized. As stated, we repeated runs with different random initialization to
quantify uncertainty and weights were initialized similarly as in [12].

Simulations were completed on a computer server with x2 20-core Intel(R) Xeon(R) CPU E5-2698
v4 at 2.20GHz. The average time to complete one run of sequential MNIST, pattern generation
and delayed match to sample tasks in Figure 3 were approximately 2 hours, 1 hour and 1 hour,
respectively. Since the computation of second order gradient becomes prohibitively expensive as
sequence length T becomes large, all tasks involved no more than 50 time steps. For instance, this
was achieved for the sequential MNIST task using the row-by-row implementation. Using fewer
time steps, however, should not affect the general trend as the gradient truncation effects were still
significant. Because of the use of fewer steps, we dropped the leak factor α in Eq. 10 (i.e. set α = 0).

For the matching step length experiments (Figure 4), we simply obtained ρ =
~̂gT~g
~gT~g

for the three-factor
learning rule and scaled BPTT updates by that amount. For scheduled learning rate experiments
(Figure 5), the additional hyperparameters included initial learning rate, decay percentage and decay
frequency. We used an initial learning rate that was three times the uniform rate (used in other figures)
and decay the learning rate by 80% every X iterations, where X was roughly the total number of
training iterations (used in other figures) divided by 30. Since the point of that figure was to show
that learning rate scheduling could lead to flatter minima than using a fixed learning rate, we did not
search extensively across these additional hyperparameters as the first set of hyperparameters we
tried was enough to demonstrate that point.

1Our code is available: https://github.com/Helena-Yuhan-Liu/BiolHessRNN.
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For the pattern generation task, our network consisted of N = 30 neurons described in Eq. 10. Input
to this network was provided by a random Gaussian input (Nin = 1). The fixed target signal had a
duration of 50 steps and was given by the sum of four sinusoids, with a fixed period of 10, 40, 70 and
100 steps. For learning, we used the mean squared loss function. Training for this task used full batch.
For testing, we perturbed the input with additive zero-mean Gaussian noise (with σ picked uniformly
between 0 and 0.2 across runs), to mimic the situation where the agent had to faithfully produce the
desired pattern even under perturbations. Unlike the other tasks, this task measures accuracy by mean
squared error, for which the lower the better. To maintain the convention of a higher generalization
gap being worse, the generalization gap for this task was computed by test error minus train error.

For the delayed match to sample task, our network consisted of N = 100 neurons, which include
50 neurons with (Eq. 11) and 50 neurons without (Eq. 10) threshold adaptation. The task involved
the presentation of two sequential cues, each taking on a binary value, lasting 2 steps and separated
by a delay of 16 steps. Input to this network was provided by Nin = 2 neurons. The first (resp.
second) input neuron sent a value of 1 when the presented cue took on a value of 1 (resp. cue 0),
and 0 otherwise. The network was trained to output 1 (resp. 0) when the two cues have matching
(resp. non-matching) values. For learning, we used the cross-entropy loss function and the target
corresponding to the correct output was given at the end of the trial. Training for this task used
full batch. For testing, we tested on increased delay, with the period picked uniformly between the
training delay period and twice the training delay period, to mimic situations where the animal has to
hold the memory longer than it did during the learning phase.

For the sequential MNIST task [137], our network consisted of N = 128 neurons described in Eq. 10.
Input to this network was provided by Nin = 28 units that represented the grey-scaled value of a
single row, totaling 28 steps and the network prediction was made at the last step. For learning, we
used the cross-entropy loss function and the target corresponding to the correct output was given at
the end of the trial. For testing, we used the existing MNIST test set [137] with additive zero-mean
Gaussian input noise. As mentioned, this task did not train with a full batch but we found the trend to
hold across different batch sizes.

Finally, we note that comparisons between BPTT and approximate rules were done at comparable
training accuracies for the pattern generation and delayed match to sample tasks. For the sequential
MNIST task, the three-factor rule achieved only around 70% training accuracy, but the training
accuracy did not explain the curvature convergence behavior. To see this, while three-factor theory
(blue in Fig 4), which corresponds to BPTT with reduced step length, achieves an accuracy of > 95%
but still attains similar curvature convergence to that of the three-factor rule.
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B Theorem 1

B.1 Proof of Theorem 1

Proof. First, we note that the Jacobian of the dynamical system for BPTT update (Eq. 7) is simply
the loss Hessian scaled by −η. This implies that

|λJ1 | = ηB |λH1 |, (21)

where we remind the reader that λJ1 ∈ R (resp. λ̂J1 ∈ R) is the leading eigenvalue for BPTT (resp. an
approximate rule) Jacobian; λH1 ∈ R is the leading eigenvalue of the loss’ Hessian matrix.

Second, with the assumption of a single output ŷ, loss presented only at the last time step T and
stochastic gradient descent (updates on a single data example as opposed to batch updates), least
squares loss in Eq. 3 can be simplified to:

L(Wh) =
1

2
(ŷ − y)2, (22)

resulting in the following difference equations for discrete dynamical systems defined by BPTT
(Eq. 7) and an approximate rule (Eq. 8):

∆Wh|BPTT = F (Wh) = −ηB(ŷ − y)∇ŷ, (23)

∆Wh|approximate = F̂ (Wh) = −ηe(ŷ − y)∇̃ŷ, (24)

where we remind the reader that ∇̃ is the notation for an approximate gradient.

We then compute the Jacobian of the difference equations above:
J = −ηB

(
∇ŷ∇ŷT + (ŷ − y)∇2ŷ

)
(for BPTT) (25)

Ĵ = −ηe
(
∇ŷ∇̃ŷT + (ŷ − y)∇∇̃ŷ

)
(for an approximate rule). (26)

In the limit of zero error (y − ŷ) = 0, i.e. close to an optimum, the term involving (y − ŷ) becomes
negligible. That simplifies the Jacobian to

J ≈ −ηB∇ŷ∇ŷT

Ĵ ≈ −ηe∇ŷ∇̃ŷT . (27)

In this case, J and Ĵ are rank-1 matrices. A rank-1 square matrix has only one nonzero eigenvalue,
and by inspection, that one eigenvalue is

For J : |λJ1 (W ∗B)| = ηB∇ŷT∇ŷ
∣∣
W∗B

(28)

→ |λH | (21)
= |λJ1 |/ηB = ∇ŷT∇ŷ (29)

For Ĵ : |λ̂J1 (W ∗e )| = ηe|∇̃ŷT∇ŷ|
∣∣∣
W∗e

(a)
= |ηeρ∇ŷT∇ŷ|

∣∣
W∗e

(29)
= |ρηeλH1 (W ∗e )|, (30)

where equality (a) is explained as follows. We first remind the reader that ρ is defined such that
~̂g = ρ~g + ~e (Eq. 6). For the case of a scalar output ŷ, ~̂g = ∂L

∂ŷ ∇̃ŷ and ~g = ∂L
∂ŷ∇ŷ. So if we

divide both sides of ~̂g = ρ~g + ~e by ∂L
∂ŷ we get ∇̃ŷ = ρ∇ŷ + ~e/∂L∂ŷ . Since we have ~e ⊥ ~g by

definition, then ~e>∇ŷ = 0 because ~g is just a scaled ∇ŷ when the output is a scalar. This leads to
∇̃ŷT∇ŷ = (ρ∇ŷ + ~e/∂L∂ŷ )>∇ŷ = ρ∇ŷT∇ŷ.

Since we assume the gradient descent dynamical system converges to an optimum, this corresponds
to an asymptotic stable fixed point. Hence, |λJ1 | < 1 and |λ̂J1 | < 1, which implies:

|λJ1 (W ∗B)| < 1
(21)→ ηB |λH1 (W ∗B)| < 1→ |λH1 (W ∗B)| < 1

ηB
(31)

|λ̂J1 (W ∗e )| < 1
(30)→ |ρηeλH1 (W ∗e )| < 1→ |λH1 (W ∗e )| < 1

|ρ|ηe
. (32)
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B.2 Discussion on tightness of the bound

Following the derivation, it is clear that the tightness of the bound will depend on how close the
magnitude of leading Jacobian eigenvalue is to 1 upon convergence. That is related to the distribution
of minima flatness along the loss landscape, which impacts the probability of a rule converging to a
minima with flatness in a certain range. Such distribution is likely problem dependent. If the loss
were convex, there would just be one minimum and the question of minima preference would become
irrelevant.

B.3 Discussion on generality of Theorem 1

The proof above examines a special case where the Jacobian of weight update equations becomes
rank-1. We remind the reader that for the case of multivariate loss, higher rank cases or batch
updates, we would not have arrived at the rank-1 Jacobian step (Eq. 27). For many tasks considered
in neuroscience, the rank 1 case can apply, which explains the validity of Theorem 1. We also note in
passing that for the case of stochastic gradient descent, the Hessian Jacobian correspondence (Eq. 21)
would point to loss’ Hessian matrix evaluated on a single example, which could reflect the robustness
against perturbing that particular example. Moreover, simulation results show our conclusion holds
in higher rank cases (Figure 4). The challenge of generalizing the proof to higher Jacobian rank case
is that we are no longer guaranteed that the leading eigenvectors of BPTT Jacobian coincide with
the leading eigenvectors of an approximate rule Jacobian. Thus, it becomes much harder to relate
|λ̂J1 | and |λJ1 |. Rather than providing further proof, we provide an intuition for why our conclusion —
where the convergence behavior between rules differs by their step length along the gradient direction
— can hold in higher rank cases under Assumption 1.

Assumption 1. Approximation error vector ~e (but not ~g) lies orthogonal to the subspace spanned
by the leading Hessian eigenvectors. Here, leading Hessian eigenvectors refer to the eigenvectors
corresponding to the outlier Hessian eigenvalues in light of the well-known observation that there
exists only a few large (outlier) eigenvalues and the rest are near zero [116, 117, 173]).

The ramification of Assumption 1 is that ~e will lie in the subspace spanned by eigenvectors corre-
sponding to tiny eigenvalues, making H~e tiny. In the extreme scenario where ~e lies in the null space
of H , H~e would be 0. We verify this assumption numerically in Figure 10. We saw from the proof
above that this assumption is automatically satisfied in the rank-1 Jacobian case. We remark that this
assumption should not hold for stochastic gradient noise (SGN), as the SGN covariance matrix is
well aligned with the Hessian matrix near a minima [122]. This could be why ~e, unlike stochastic
gradient noise, does not seem to be contributing much to escaping narrow minima.

We consider the case of small enough weight updates such that the loss surface can be approximated
using second-order Taylor expansion. Thus, the loss change after one update becomes:

∆L ≈ ∆WT~g +
1

2
∆WTH∆W

= −ηB~gT~g +
1

2
η2B~g

TH~g, (for exact rule) (33)

∆̂L ≈ ∆̂W
T
~g +

1

2
∆̂W

T
H∆̂W

= −ηe~̂gT~g +
1

2
η2e
~̂gTH~̂g. (for an approximate rule) (34)

We next focus on the first- and second-order Taylor terms (T1 and T2) for the exact rule as well as the
terms (T̂1 and T̂2) for an approximate rule:

T1 := ηB~g
T~g, T̂1 := ηe~̂g

T~g, T2 :=
1

2
η2B~g

TH~g, T̂2 :=
1

2
η2B
~̂gTH~̂g,
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and we note that first and second Taylor terms can determine how likely the update will be trapped in
a local minimum:

∆L < 0 (enables descend) → T1 > T2
∆L > 0 (restricts convergence) → T1 < T2

∆̂L < 0 (enables descend) → T̂1 > T̂2

∆̂L > 0 (restricts convergence) → T̂1 < T̂2. (35)

Given their central role in determining convergence, we compare these terms between exact gradient
descent learning and an approximate rule. For the first Taylor term (T1), it is easy to see that:

~̂gT~g = ρ~gT~g.

For the second Taylor term (T2) and if H is symmetric:

~̂gTH~̂g = ρ2~gTH~g + 2ρ~gT H~e︸︷︷︸
≈ 0

+ ρ2~eT H~e︸︷︷︸
≈ 0, Assumption 1

≈ ρ2~gTH~g. (36)

To match the convergence behavior between exact gradient descent and an approximate rule (Eq. 35)
on a (locally) second-order loss surface, we can make (T1, T2) approximately equal to (T̂1, T̂2) by
setting ηB = ρηe, which predicts our numerical results (Figure 4). We note that if Assumption 1 were
not satisfied, then the above might not hold. We note in passing that if we can satisfy Assumption 1
without being near an optimum, then we may not need the negligible training error assumption.

28



C Additional Simulations

In the last paragraph in Discussion, we discussed how learning rate modulation could be one of the
potential remedies used by the brain. We also explained how learning rate modulation could serve
as a balance between the potential benefits of a large learning rate and the numerical stability issue
mentioned shortly after the presentation of Figure 4 and Theorem 1 in Results. In Appendix Figure 5,
we used a large learning rate early in training to prevent premature stabilization in sharp minima
followed by gradual decay to mitigate the stability issue. With this remedy, we observed a reduction
in the curvature of the converged solution and an improvement in generalization performance. This
result also connects with the finding that sensory depletion during critical periods in training deep
networks, which can be related to a small learning rate early in training, can impair learning and
yield convergence to sharp minima [191]. However, it is important to note that this strategy does not
correct the problem; the gap still exists compared to BPTT, suggesting room for further research.

CBA Delayed match-to-samplePattern generation Sequential MNIST

Figure 5: Learning rate modulation as a possible remedy of the problem. We increased the
learning rate at the beginning of training to prevent the three-factor rule from stabilizing in sharp
minima prematurely, followed by a gradual decay to prevent instability. The top panels show this
strategy helps to reduce the curvature of the converged solution. The bottom panels show this leads
to a slight improvement in the generalization gap (vertical lines denote distribution mean). However,
it is important to note that this strategy does not correct the problem; the gap still exists compared to
BPTT, suggesting room for further research. Plotting conventions follow that of the previous figures.
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We present additional simulations referred to in the main text. In Figure 4, we attributed the conver-
gence to high curvature regions to reduced along-gradient step length. In Appendix Figure 6, we
confirm that such high curvature convergence indeed corresponds to worsened generalization perfor-
mance, thereby linking reduced along-gradient step length to worsened generalization performance.
As mentioned in the main text, due to the scale-dependence issue of Hessian spectrum [133], we also
used scale-independent measures. For instance, we examined the power-law decay coefficient for the
Hessian eigenvalues (Appendix Figure 7). We also looked at the recently proposed relative flatness
measure [6] (Appendix Figure 8). These additional measures support the trends observed before:
BPTT converges to lower curvature regions compared to the three-factor rule. We also observe
that the tendency to approach high curvature regions seems to be a shared problem for temporal
truncations of the gradient (Appendix Figure 9).

A CB Delayed match-to-samplePattern generation Sequential MNIST

Generalization gap historgrams

Figure 6: Modified BPTT (three-factor, theory) resulted in worse and more variable general-
ization performance. Here, we follow the convention of previous generalization gap histogram plots
and investigated the generalization performance of modified BPTT (three-factor, theory) in Figure 4.

CBA Delayed match-to-samplePattern generationSequential MNIST

Figure 7: Loss’ Hessian eigenspectrum for the three-factor rule exhibits significantly steeper
power-law decay compared to that of BPTT. We fit a power-law function to the top 200 eigenvalues
at the end of training and measure the decay parameter. Fitting to the top 50 or 100 eigenvalues
resulted in similar trends. Solid lines/shaded regions: mean/standard deviation of eigenspectrum
obtained at the end of training across five independent runs.

CBA Delayed match-to-samplePattern generationSequential MNIST

Figure 8: Curvature preference behavior corroborated using relative flatness measure [6]. Here,
the trend is consistent with that of Figure 3. Note that the relative flatness measure can be computa-
tionally intensive for recurrent weights, so we computed it for readout weights. Plotting conventions
follow that of previous figures.
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Sequential MNIST

Figure 9: Approaching high curvature regions seems to be a shared problem for temporal
truncations of the gradient. We repeat the analysis in Figure 3 for truncated BPTT (TBPTT). Here,
"Trunc X" means X time steps are truncated during the gradient calculation. We observe that TBPTT
tends to converge to high curvature regions. Plotting conventions follow that of previous figures.

In response to our discussion on the potential impact of noise direction (see explanation shortly after
the presentation of Theorem 1, Discussion section and Appendix B.3), we confirm that the error
vector ~e is significantly less aligned with the leading Hessian eigenvectors relative to the gradient
vector ~g (Appendix Figure 10). As explained in Methods, we used SGD optimizer due to confounding
factors in Adam optimizer that could convolute our matching step length analysis in Figure 4. We
observe similar curvature convergence trends as in Figure 3 when we repeated the experiments with
Adam optimizer in Appendix Figure 11.

Sequential MNIST

Figure 10: Truncation error vector (compared to the gradient) is significantly less aligned with
the top Hessian eigenvector subspace. Following [172], we compute the cosine similarity between
the error vector (of the three-factor rule) and a top Hessian eigenvector (averaged over the top 5
eigenvectors). The absolute value of the cosine similarity was taken. We observe weak alignment of
the approximation error vector ~e with the leading Hessian eigenvectors. Similar trends were attained
had we averaged over the leading 10 or 20 eigenvectors. Plotting conventions follow that of previous
figures.
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Sequential MNIST

Figure 11: Curvature convergence behavior also holds for Adam optimizer. As explained in
Methods, we used SGD optimizer due to confounding factors in Adam optimizer that could convolute
our matching step length analysis in Figure 4. We observe similar trends as in Figure 3. Plotting
conventions follow that of previous figures.

Finally, to further examine the correlation between leading Hessian eigenvalue and generalization
performance (observed in Figure 2), we also observed such correlation correlation for runs with the
learning rule fixed (Appendix Figure 12). For the matching step experiment in Figure 4, similar
observations were also made when we repeated the experiment at three times the learning rate
(Appendix Figure 12C). Moreover, we stopped BPTT early to match the test accuracy of the three-
factor rule, and observed similar curvature convergence and generalization performance trends as
previously (Appendix Table 1).

A CB
Matching step experiment, higher rateGeneralization gap vs leading Hessian eigenvalue

Figure 12: We repeat the generalization gap vs leading Hessian eigenvalue scatter plot in Figure 2
with the learning rule fixed for A) BPTT and B) the three-factor rule. As expected, a significant
correlation between the generalization gap and leading Hessian eigenvalue is observed. Unlike Figure
2, where the hyperparameters were fixed for each rule (tuned using the procedure in Appendix A.3),
the learning rate is varied here in order to get a wide enough curvature range to observe the correlation.
C) The matching step experiments in Figure 4 were repeated here with the learning rate increased by
three times for all rules, and the observation agrees with that in Figure 4. Plotting convention follows
that of previous figures.

Learning Leading Hessian eigenvalue Generalization gap

Three-factor 2550± 490 0.5± 0.3
BPTT, early stopping 316± 84 0.2± 0.1

Table 1: BPTT stopped early to match the test accuracy of the three-factor rule for the sequential
MNIST task. Higher generalization gap and leading Hessian eigenvalue is again observed for the
three-factor rule, as expected. Each rule is repeated for five runs with different random weight
initialization.
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