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Abstract

Existing convolutional neural networks widely adopt spatial down-/up-sampling for
multi-scale modeling. However, spatial up-sampling operators (e.g., interpolation,
transposed convolution, and un-pooling) heavily depend on local pixel attention, in-
capably exploring the global dependency. In contrast, the Fourier domain obeys the
nature of global modeling according to the spectral convolution theorem. Unlike
the spatial domain that performs up-sampling with the property of local similarity,
up-sampling in the Fourier domain is more challenging as it does not follow such a
local property. In this study, we propose a theoretically sound Deep Fourier Up-
Sampling (FourierUp) to solve these issues. We revisit the relationships between
spatial and Fourier domains and reveal the transform rules on the features of differ-
ent resolutions in the Fourier domain, which provide key insights for FourierUp’s
designs. FourierUp as a generic operator consists of three key components: 2D dis-
crete Fourier transform, Fourier dimension increase rules, and 2D inverse Fourier
transform, which can be directly integrated with existing networks. Extensive
experiments across multiple computer vision tasks, including object detection,
image segmentation, image de-raining, image dehazing, and guided image super-
resolution, demonstrate the consistent performance gains obtained by introducing
our FourierUp. Code is available at https://manman1995.github.io/.

1 Introduction

Spatial down-/up-sampling has been widely used in convolutional neural networks for multi-scale
modeling. For example, U-Net [1], a variation of encoder-decoder, employs pooling layers to
reduce the feature resolution in the encoder and then recovers the resolution using up-sampling
operations in the decoder. In addition, the feature pyramid [2–5] and image pyramid [6–9] driven
multi-scale neural networks rely on the down-/up-sampling operation to obtain multi-scale property
and improve modeling capability. However, spatial up-sampling operators (e.g., interpolation,
transposed convolution, and un-pooling) heavily depend on local pixel attention, and thus cannot
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Figure 1: Motivation. (a) and (b) depict that arbitrary up-sampling, e.g., interpolation, in the Fourier
domain produces sub-optimal result as it does not follow the same local similarity property as that in
the spatial domain. This motivates us to design a more ingenious “Fourier Up-Sampling” operator,
dubbed as FourierUp. It has three alternative variants: Periodic Padding, Area Interpolation/Cropping
and Corner Interpolation, as illustrated in (c).

explore the global dependency that is indispensable for many computer vision tasks [10, 11, 1, 12–
20]. According to the spectral convolution theorem, the Fourier domain obeys the nature of global
modeling, providing an alternative solution for multi-scale modeling. However, unlike the spatial
domain with local similarity property, up-sampling in the Fourier domain is more challenging as
it does not follow such a local property. The observation encourages us to explore deep Fourier
up-sampling.

Recent studies have explored information interaction in both spatial and Fourier domains. FFC [21],
for instance, replaces the conventional convolution with a spatial-Fourier interaction, which consists
of a spatial (or local) path that performs conventional convolution on a portion of input feature
channels and a spectral (or global) path that operates in the Fourier domain. DFT [22] devises a
Residual Fast Fourier Transform Block to integrate both low- and high-frequency residual information
by performing the interaction between a regular spatial residual stream and a channel-wise Fourier
transform stream. However, the aforementioned methodologies only interact at a single resolution
scale, and the spatial-Fourier interaction potential of multiple scales in the Fourier domain has not
been investigated. The key to solving this problem lies in how to implement deep Fourier up-sampling
for multi-scale Fourier pattern modeling.

Challenges. Owing to the local similarity and cross-scale position invariant properties of the spatial
domain, the various spatial up-sampling operations including transposed convolution, un-pooling,
and interpolation techniques are capable of using the pixel neighboring relationship to interpolate
the unknown pixel values at local regions, increasing the spatial resolution of the features, as shown
in Figure 1(a). In contrast to the spatial domain, the Fourier domain does not share the same scale-
invariant property and local texture similarity, and hence cannot implement up-sampling using the
same techniques as the spatial domain, as illustrated in Figure 1(b).
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Solutions. In this paper, we wish to investigate the possibility of devising a reliable up-sampling in the
Fourier domain in a theoretical sound manner. To answer this question, we first revisit the relationship
between spatial and Fourier domains, revealing the transform rules on the features of different
resolutions in the Fourier domain (see Section 3.1 and Section 3.2). On the basis of the above rules,
we propose a theoretically feasible Deep Fourier Up-Sampling (FourierUp). Specifically, we develop
three variants (Periodic Padding, Area Interpolation/Cropping and Corner Interpolation) of FourierUp
(see Section 3.3), as illustrated in Figure 1(c). Each variant consists of three key components: 2D
discrete Fourier transform, Fourier dimension increase rules, and 2D inverse Fourier transform.
FourierUp is a generic operator that can be directly integrated with existing networks. Extensive
experiments on multiple computer vision tasks, including object detection, image segmentation,
image de-raining, image dehazing, and guided image super-resolution, demonstrate the consistent
performance gains obtained by introducing our FourierUp. We believe that the proposed FourierUp
could refresh the neural network designs where the spatial and Fourier information interaction at
only a single resolution scale are mainstream choices.

Contributions. 1) We propose Deep Fourier Up-Sampling, a novel method that enables the integration
of the features of different resolutions in the Fourier domain. This is the first thorough effort to
explore the Fourier up-sampling for multi-scale modeling. 2) The proposed FourierUp is a generic
operator that can be directly integrated with the existing networks in a plug-and-play manner. 3)
Equipped with the theoretically sound FourierUp, we show that existing networks could achieve
consistent performance improvement across multiple computer vision tasks.

2 Related Work

Spatial Up-Sampling. Convolutional neural networks with spatial down-/up-sampling have become
the de facto structures in many computer vision tasks [23–31]. Typically, U-Net [1] builds multi-scale
feature maps using the encoder with down-sampling and then utilizes the up-sampling operation
to fuse the multi-scale features in the decoder. Additionally, the feature pyramid [2–5] and image
pyramid[6–9] are commonly used to obtain the multi-scale property in neural networks [6–9]. Among
them, spatial up-sampling plays a significant role in multi-scale modeling. However, existing up-
sampling operations only work in the spatial domain and current studies rarely explore the potential
(e.g., the global modeling capability) of up-sampling in the frequency domain.

Spatial-Fourier Interaction. Recently, several studies attempt to employ Fourier transform in deep
models [32–35, 21]. Some of these efforts use discrete Fourier transform to transfer the spatial
features to the Fourier domain and then use frequency information to improve the performance of
particular tasks [32, 34]. Another line is to use convolution theorem to speed up the models, such as
using fast Fourier transform (FFT) [35, 21]. For example, FFC [21] replaces the convolution with
the spatial-Fourier interaction. The work proposed in [36] uses spectral pooling to reduce feature
resolution by truncating the frequency domain representation. However, all the techniques only
interact with each other at a single spatial resolution and have not explored the interaction potential at
multiple resolutions in both spatial and frequency domains as performing the frequency up-sampling
is non-trivial. As a tentative exploration, we study the relationship between the spatial domain and
Fourier domain and reveal the transform rules over the feature of different resolutions in the Fourier
domain. This delivers the underlying insights for the designs of multi-scale Fourier modeling patterns,
which has the potential of versatility for different network architectures.

3 Deep Fourier Up-Sampling

We first explore the mapping relationship between the spatial and Fourier domains, and then present
three Deep Fourier up-sampling variants, including i) periodic padding of magnitude and phase, ii)
area up-sampling of magnitude and phase, and iii) corner interpolation of magnitude and phase, based
on the explored transform rules. In terms of the first two variants, we provide two theorems and their
proofs as follows while the third is reported in supplementary materials.

Definitions. f(x, y) ∈ R2M×2N is the 2-times zero-inserted up-sampled version of g(x, y) ∈ RM×N

in spatial domain, and F (u, v) ∈ R2M×2N , G(u, v) ∈ RM×N denote their Fourier transforms.
H(u, v) ∈ R2M×2N is the 2-times area-interpolation up-sampled Fourier transform of G(u, v), and
h(x, y) ∈ RM×N denotes their inverse Fourier transform.
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Theorem-1. F (u, v) = F (u+M,v) = F (u, v +N) = F (u+M,v +N) and G(u, v) = F (u,v)
4

where u = 0, 1, 2, . . . , N − 1 and v = 0, 1, 2, . . . ,M − 1. F (u, v) is exactly the periodic padding of
G(u, v) where G(u, v) is exactly the quarter of F (u, v) with the value being 1

4 times decay.

Theorem-2. H(2u, 2v) = H(2u+ 1, 2v) = H(2u, 2v + 1) = H(2u+ 1, 2v + 1) = G(u, v) with
u = 0, 1, . . . ,M − 1 and v = 0, 1, . . . , N − 1 and

h(x, y) =
A(x, y)

4
g(x, y)

h(x+M,y) =
A(2M − x, y)

4
g(x, y)

h(x, y +N) =
A(x, 2N − y)

4
g(x, y)

h(x+M,y +N) =
A(2M − x, 2N − y)

4
g(x, y)

(1)

where A(x, y) = 1 + e
jπx
M + e

jπy
N + ejπ(

x
M + y

N ) and x = 0, 1, . . .M − 1, y = 0, 1, . . . N − 1.

Theorem-3. Suppose the corner interpolated F cor
G (u, v) of the Fourier map G(u, v) ∈ RM×N , it

holds that the inverse Fourier transform f cor
g (x, y) of F cor

G (u, v)

fcor
g (x, y) = g(

x′

2
,
y′

2
)ejπ( x′

2
+ y′

2
) (−1)(x+y)

4
, (2)

where x′ = 2x and y′ = 2y, x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1.

3.1 Proof-1 of Theorem-1: Periodic Padding of Magnitude and Phase

Note that f(x, y) ∈ R2M×2N is up-sampled over g(x, y) ∈ RM×N by a factor of 2. The relationship
between g(x, y) and f(x, y) can be written as

f(x, y) =

{
g(x2 ,

y
2 ), x = 2m, y = 2n

0, others (3)

where m = 1, 2, . . . ,M − 1 and n = 1, 2, . . . , N − 1, the Fourier transform F (u, v) of f(x, y) is
expressed as

F (u, v) =
1

4MN

2M−1∑
x=0

2N−1∑
y=0

f(x, y)e−j2π( ux
2M + vy

2N )

=
1

4MN

M−1∑
x=0

N−1∑
y=0

f(2x, 2y)e−j2π(
u(2x)
2M +

v(2y)
2N )

=
1

4MN

M−1∑
x=0

N−1∑
y=0

f(2x, 2y)e−j2π(ux
M + vy

N )

=
1

4MN

M−1∑
x=0

N−1∑
y=0

g(x, y)e−j2π(ux
M + vy

N ).

(4)

Then, we show the periodicity of F (u, v) ∈ R2M×2N with M and N . It means F (u, v) = F (u +
M,v) = F (u, v+N) = F (u+M, v+N) with u = 0, 1, 2, . . . , N − 1 and v = 0, 1, 2, . . . ,M − 1.
We take the F (u, v) = F (u+M,v) for example and recall Eq. (4) as

F (u+M, v) =
1

4MN

M−1∑
x=0

N−1∑
y=0

f(2x, 2y)e−j2π(
(u+M)x

M
+ vy

N
)

=
1

4MN

M−1∑
x=0

N−1∑
y=0

f(2x, 2y)e−j2π(
(ux
M

+ vy
N

)e−2jπx

=
1

4MN

M−1∑
x=0

N−1∑
y=0

f(2x, 2y)e−j2π(
(ux
M

+ vy
N

)

= F (u, v),

(5)
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where e−2πjx = 1 for any integer x. Similarly, we can proof the periodicity of F (u, v) as well.

Based on the above proof, the DFT of g(x, y) can be formulated as:

G(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

g(x, y)e−j2π(ux
M

+ vy
N

). (6)

Revising Eq. (4), we can figure out that G(u, v) = F (u,v)
4 .

3.2 Proof-2 of Theorem-2: Area Interpolation of Magnitude and Phase

The 2D Inverse Discrete Fourier transform (IDFT) of G(u, v) can be written as:

g(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

G(u, v)ej2π(ux
M

+ vy
N

). (7)

We up-sample G(u, v) with a size of M ×N to get H(u, v) with a size of 2M × 2N . Specifically,
the area interpolation shown in Figure 3(b) is used for interpolation and then the interpolated pixels
are the same as the original pixel in the 2× 2 local regions. Namely, H(2u, 2v) = H(2u+ 1, 2v) =
H(2u, 2v+1) = H(2u+1, 2v+1) = G(u, v) with u = 0, 1, . . . ,M − 1 and v = 0, 1, . . . , N − 1.
Similar to Eq. (4), we can infer

h(x, y) =
1

4MN

2M−1∑
u=0

2N−1∑
v=0

H(u, v)ej2π(
ux
2M + vy

2N )

=
1

4MN

M−1∑
u=0

N−1∑
v=0

H(2u, 2v)ej2π(
2ux
2M + 2vy

2N ) +
1

4MN

M−1∑
u=0

N−1∑
v=0

H(2u+ 1, 2v)ej2π(
(2u+1)x

2M + 2vy
2N )

+
1

4MN

M−1∑
u=0

N−1∑
v=0

H(2u, 2v + 1)ej2π(
2ux
2M +

(2v+1)y
2N ) +

1

4MN

M−1∑
u=0

N−1∑
v=0

H(2u+ 1, 2v + 1)ej2π(
(2u+1)x

2M +
(2v+1)y

2N )

=
1

4MN

M−1∑
u=0

N−1∑
v=0

G(u, v)ej2π(
ux
M + vy

N )[1 + e
jπx
M + e

jπy
N + ejπ(

x
M + y

N )].

(8)
Similarly, we can write g(x, y) as

g(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

G(u, v)ej2π(
ux
M + vy

N ). (9)

Recalling Eq. (8) and Eq. (10), we can infer

h(x, y) =
1 + e

jπx
M + e

jπy
N + ejπ(

x
M + y

N )

4
g(x, y). (10)

where x = 0, 1, . . .M −1, y = 0, 1, . . . N −1. We remark 1+e
jπx
M +e

jπy
N +ejπ(

x
M + y

N ) = A(x, y),

|A(x, y)|2 = (1 + cosπ
x

M
+ cosπ

y

N
+ cosπ(

x

M
+

y

N
))2 + (sinπ

x

M
+ sinπ

y

N
+ sinπ(

x

M
+

y

N
))2.

We can find that the variable x shares the same operations as the variable y. For brevity, we only take
the operation of variable x as example

∂ |A(x, y)|2

∂x
=

2π

M
(1 + cosπ

x

M
+ cosπ

y

N
+ cosπ(

x

M
+

y

N
))(− sinπ

x

M
− sinπ(

x

M
+

y

N
))

+
2π

M
(sinπ

x

M
+ sinπ

y

N
+ sinπ(

x

M
+

y

N
))(cosπ(

x

M
) + cosπ(

x

M
+

y

N
))

= −4π

M
(sinπ

x

M
)(1 + cosπ(

y

N
)).

(11)

Equally, we have
∂ |A(x, y)|2

∂y
= −4π

N
sinπ

y

N
(1 + cosπ(

x

M
)). (12)

We prove that the partial derivative of |A(x, y)| on both x and y is negative for x ∈ [0,M − 1] and
y ∈ [0, N − 1]. Besides, we have

|A(x, y)| = |A(2M − x, y)| = |A(2M, 2N − y)| = |A(2M − x, 2N − y)| . (13)

That is to say, the intensity drops from the side to the center, shown in Figure 4. Specifically, the
intensity drops to zero at the position of x = M or y = N .
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def DFU_Padding(X):
# X: input with shape [N, C, H, W]
# A and P are the amplitude and phase

A, P = FFT(X)

# Fourier up-sampling transform
rules

A_pep = Periodic-Padding(A)
P_pep = Periodic-Padding(P)
A_pep = Convs_1x1(A_pep)
P_pep = Convs_1x1(P_pep)

# Inverse Fourier transform
Y = iFFT(A_pep, P_pep)

Return Y #[N, C, 2H, 2W]

def DFU_AreaInterpolation(X):
# X: input with shape [N, C, H, W]
# A and P are the amplitude and phase

A, P = FFT(X)

# Fourier up-sampling transform rules
A_aip = Area-Interpolation(A)
P_aip = Area-Interpolation(P)
A_aip = Convs_1x1(A_aip)
P_aip = Convs_1x1(P_aip)

# Inverse Fourier transform
Y = iFFT(A_aip, P_aip)

#Area Cropping
Y = Area-Cropping(Y)
Y = Resize(Y)

Return Y #[N, C, 2H, 2W]

Figure 2: Pseudo-code of the two variants of the proposed deep Fourier up-sampling. The left is
the periodic padding variant while the right is the area interpolation-cropping variant.

Figure 3: The illustrations of (a) periodic padding and (b) area interpolation in Figure 2. Each
small color square represents a pixel of the amplitude/phase component in the Fourier domain.

3.3 Architectural Design

Figure 4: The surface of A(x, y).

Recall the Theorem-1 and Theorem-2, we propose two deep
Fourier up-sampling variants: Periodic Padding and Area
Interpolation-Cropping.

Periodic Padding Up-Sampling. The pseudo-code of Periodic
Padding Up-Sampling is shown in the left of Figure 2. Given
an image X ∈ RH×W×C, we first adopt the Fourier transform
FFT(X) to obtain its amplitude component A and phase com-
ponent P. We then perform the periodic padding over A and
P two times in both the H and W dimensions, as illustrated in
Figure 3(a). The padded A_pep and P_pep are then fed into two
independent convolution module with 1× 1 kernel and followed
by the inverse Fourier transform iFFT(.) to project the padded
ones back to spatial domain.

Area Interpolation-Cropping Up-Sampling. The pseudo-code
of Area interpolation-Cropping Up-Sampling is shown in the

right of Figure 2. We first conduct the Area interpolation over the phase and amplitude by 2× 2 area
interpolation with the same pixel, as illustrated in Figure 3(b). We then employ the inverse Fourier
transform to project the interpolated ones back to spatial domain. As described in Section 3.2, the
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inverse spatial representation will be periodic while the pixel value will be decay. The degree of
decay of the pixel increases when the pixel is closer to the center. To better maintain the information,
we perform the area cropping operation (detailed in Figure 1) in the four corners with the W

2 × H
2

size and then merge them together as a whole at spatial dimension, finally resize them to the size of
2H × 2W .

Note that albeit being designed on the basis of strict theories, both constructed spectral up-sampling
modules contain certain approximations, like a learnable 1× 1 convolution operator instead of strictly
1/4 as described in Theorem-1 of main manuscript, and an approximation cropping to preserve
the map corners instead of accurate A mapping as proved in Theorem-2 of main manuscript and
Theorem-3 of supplementary materials. Such strategy makes the proposed modules able to be more
easily implemented and more flexibly represent real data spectral structures. It is worth noting that
this should be the first attempt for constructing easy equitable spectral upsampling modules, and hope
it would inspire more effective and rational ones from more spectral perspectives.

4 Experiments
To demonstrate the efficacy of our proposed deep Fourier up-sampling, we conduct extensive exper-
iments on multiple computer vision tasks, including object detection, image segmentation, image
de-raining, image dehazing, and guided image super-resolution. We provide more experimental
results in the supplementary material.

4.1 Experimental Settings

Object Detection. Following [12], the PASCAL VOC 2007 and 2012 training sets [37] are used
as training data. The PASCAL VOC 2007 testing set is used for evaluations as the ground truth
annotations of VOC 2012 testing set are not publicly available. We employ the FPN-based Faster
RCNN [12] with ResNet50 backbone and YOLO-v3 with Darknet53 [38] as baselines.

Image Segmentation. Following [39, 40], Synapse Dataset and CANDI Dataset are used as the
testbed of medical image segmentation. We adopt the two representative image segmentation
algorithms, U-Net [1] and Att-UNet [41], as the base models.

Image De-raining. Following [42], we choose two widely-used standard benchmark datasets,
including Rain200H and Rain200L, for evaluations. we employ two representative de-raining
methods, LPNet with up-sampling [11] and PReNet without up-sampling [42], as baselines.

Image Dehazing. Following [10], we employ RESIDE[43] dataset [44] for evaluations. We also use
two different network designs AODNet [45] without up-sampling operator and MSBDN [10] with
up-sampling operator, for validation.

Guided Image Super-resolution. Following [14, 46], we adopt the pan-sharpening, the representative
task of guided image super-resolution, for evaluations. The WorldView II, WorldView III, and
GaoFen2 in [14, 46] are used for evaluations. We employ two different network designs for validation,
including PANNET [47] without up-sampling operator and DCFNET [48] with up-sampling operator.

Several widely-used image quality assessment (IQA) metrics are employed to evaluate the per-
formance, including the relative dimensionless global error in synthesis (ERGAS) [49], the peak
signal-to-noise ratio (PSNR), the spectral angle mapper (SAM) [50], DSC, and HD95.

4.2 Implementation Details

Regarding the above competitive baselines, they can be divided into two categories: one with spatial
up-sampling ([1], Att-UNet [41], DCFNET [48], LPNet [11], MSBDN [10]) and another one without
spatial up-sampling (PReNet [42], AODNet[45], PANNET [47]). The purpose of the exploration on
the baselines without spatial up-sampling is to show the versatility of our FourierUp for different
network structures. Different from directly replacing the spatial up-sampling with the FourierUp
in the baselines with spatial up-sampling, we need to encapsulate the FourierUp for the baselines
without spatial up-sampling, in which a down-sampling operation is introduced to first reduce the
resolution of features. We provide the detailed structures of the encapsulated FourierUp and the
baselines with the FourierUp in the Figure 5 and supplementary material.

For the baselines with spatial up-sampling, we perform the comparison over four configurations:
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Figure 5: The implementation details of FourierUp into the existing baselines with up-sampling.

1) Original: the baseline without any changes;
2) FourierUp-AreaUp: replacing the original model’s spatial up-sampling with the union of

the Area-Interpolation variant of our FourierUp and the spatial up-sampling itself;
3) FourierUp-Padding: replacing the original model’s spatial up-sampling operator with the

union of the Periodic-Padding variant of our FourierUp and the spatial up-sampling itself;
4) Spatial-Up: replacing the variants of FourierUp in the settings of 2)/3) with the spatial

up-sampling. For a fair comparison, we use the same number of trainable parameters as
2)/3).

For the baselines without spatial up-sampling, we perform the comparison over four configurations:

1) Original: the baseline without any changes;
2) FourierUp-AreaUp: replacing the original model’s convolution with the encapsulated

FourierUp that is equipped with the Area-Interpolation variant;
3) FourierUp-Padding: replacing the original model’s convolution with the encapsulated

FourierUp that is equipped with the Periodic-Padding variant;
4) Spatial-Up: replacing the the encapsulated FourierUp of the settings of 2)/3) with the

spatial up-sampling. For a fair comparison, we use the same number of trainable parameters
as 2)/3).

4.3 Comparison and Analysis

Quantitative Comparison. We perform the model performance comparison over different config-
urations, as described in implementation details. The quantitative results are presented in Tables 1
to 5 where the best and second best results are highlighted in bold and Underline. From the results,
by integrating with our proposed two FourierUp variants, we can observe performance gain against
the baselines across all the datasets in all tested tasks, suggesting the effectiveness of our approach.
For example, for the PReNet of Table 1, “FourierUp-padding” and “FourierUp-AreaUp” obtain
0.83dB/0.65dB and 2.1dB/1.9dB PSNR gains than the “Original”, 0.52dB/0.34dB and 1.7dB/1.5dB
PSNR gains than “Spatial-Up” on the Rain200H and Rain200L datasets, respectively. Such results
validate the effectiveness of our proposed FourierUp. The corresponding visualization consistently
supports the analysis in Figure 6, where the FourierUp is capable of better maintaining the details.

Qualitative Comparison. Due to the limited space, we only report the visual results of the de-
raining/dehazing task in Figures 6 and 7 that can more clearly show the effectiveness of FourierUp.
More results can be found in the supplementary materials. As shown, integrating the FourierUp with
the original baseline achieves more visually pleasing results. Specifically, zooming-in the red box
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region of Figures 6 and 7, the model equipped with the FourierUp is capable of better recovering the
texture details while removing the rain/hazy effect.

Table 1: Quantitative comparisons of image de-raining.

Model Configurations Rain200H Rain200L
PSNR SSIM PSNR SSIM

LPNet

Original 22.907 0.775 32.461 0.947
Spatial-Up 22.956 0.777 32.522 0.950
FourierUp-AreaUp 22.163 0.783 32.681 0.954
FourierUp-Padding 23.295 0.786 32.835 0.956

PReNet

Original 29.041 0.891 37.802 0.981
Spatial-Up 29.357 0.901 38.271 0.985
FourierUp-AreaUp 29.690 0.903 39.776 0.985
FourierUp-Padding 29.871 0.908 39.971 0.987

Table 2: Comparison over image dehazing.

Model configurations PSNR SSIM

AODNet

Original 18.80 0.834
Spatial-Up 18.91 0.838

FourierUp-AreaUp 19.16 0.843
FourierUp-Padding 19.35 0.847

MSBDN

Original 33.79 0.984
Spatial-Up 33.90 0.984

FourierUp-AreaUp 34.21 0.985
FourierUp-Padding 34.35 0.987

Table 3: Comparison over object detection.

Model Methods AP50 mAP

Faster RCNN

Original 79.13 79.10
Spatial-Up 79.14 79.10

FourierUp-AreaUp 79.16 79.13
FourierUp-Padding 79.19 79.15

YOLO-V3

Original 81.68 81.63
Spatial-Up 81.68 81.63

FourierUp-AreaUp 81.70 81.65
FourierUp-Padding 81.72 81.68

Table 4: Quantitative comparisons of medical image segmentation.

Model Configurations synapse CANDI
DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

U-Net

Original 76.85 39.70 86.50 3.946
Spatial-Up 76.94 38.59 86.59 3.826
FourierUp-AreaUp 77.25 36.02 86.63 3.751
FourierUp-Padding 77.37 35.86 86.70 3.327

Att-UNet

Original 77.77 36.02 86.29 5.601
Spatial-Up 77.85 35.91 86.35 5.588
FourierUp-AreaUp 78.11 34.54 86.50 4.851
FourierUp-Padding 78.34 34.29 86.64 4.833

Table 5: Quantitative comparisons of pan-sharpening.

Model Configurations WorldView-II GaoFen2
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

PANNET

Original 40.817 0.963 0.025 1.055 43.066 0.968 0.018 0.855
Spatial-Up 40.988 0.963 0.025 1.031 43.897 0.973 0.018 0.737
FourierUp-AreaUp 41.167 0.963 0.024 1.010 45.964 0.979 0.015 0.653
FourierUp-Padding 41.288 0.965 0.024 1.007 46.145 0.982 0.012 0.622

DCFNET

Original 40.276 0.968 0.028 1.051 42.986 0.967 0.019 0.858
Spatial-Up 40.319 0.968 0.028 1.046 43.157 0.970 0.017 0.850
FourierUp-AreaUp 40.484 0.968 0.025 1.115 43.881 0.979 0.014 0.829
FourierUp-Padding 40.546 0.968 0.025 1.102 44.153 0.981 0.014 0.765

5 Limitations
First, the more comprehensive experiments on broader computer vision tasks (e.g., image de-noising
and image de-blurring) have not been explored. Second, the deep Fourier Up-sampling integrated with
spatial up-sampling will increase the model parameter numbers. This is negligible at the significant
performance gain at fewer parameter increase. Note that, the focus of this work is beyond designing
a plug-and-play module to integrate it into existing networks for further performance gain. This work
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Figure 6: Visual comparison of PReNet on the Rain200H.

Figure 7: Visual comparison of AODNet on the SOTS.

also provides a powerful scale change choice of the up-sampling operator pool when developing a
new model from start.

6 Conclusion
In this paper, we have proposed a deep Fourier up-sampling to explore the possibility of the up-
sampling in the Fourier domain, which provides the key insight for the multi-scale Fourier pattern
modeling. We theoretically demonstrate that our designs of Fourier up-sampling are feasible. It
is appealing that the proposed FourierUp is a generic operator, thus being directly integrated with
existing networks. Extensive experiments demonstrate the effectiveness of our method. We believe
the FourierUp has the potential to advance broader computer vision tasks, e.g., image/video super-
resolution and image/video in-painting.

Broader Impact

Our work shows the promising capability of up-sampling in the Fourier domain for computer vision
algorithms through two novel designs with theoretical proofs. Using our deep Fourier up-sampling
with negligible computational cost will improve the performance of neural networks and facilitate
the development of AI in real-world applications. However, the efficacy of our method may raise
potential concerns when it is improperly used. For example, the safety of the applications of our
method in real-world applications may not be guaranteed. We will investigate the robustness and
effectiveness of our method in broader real-world applications.
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