
Hierarchical Agglomerative Graph Clustering
in Poly-Logarithmic Depth

Laxman Dhulipala
University of Maryland and

Google Research
laxman@umd.edu

David Eisenstat
Google Research

eisen@google.com

Jakub Łącki
Google Research

jlacki@google.com

Vahab Mirrokni
Google Research

mirrokni@google.com

Jessica Shi
MIT CSAIL

jeshi@mit.edu

Abstract

Obtaining scalable algorithms for hierarchical agglomerative clustering (HAC) is
of significant interest due to the massive size of real-world datasets. At the same
time, efficiently parallelizing HAC is difficult due to the seemingly sequential nature
of the algorithm. In this paper, we address this issue and present ParHAC, the first
efficient parallel HAC algorithm with sublinear depth for the widely-used average-
linkage function. In particular, we provide a (1 + ε)-approximation algorithm
for this problem on m edge graphs using Õ(m) work and poly-logarithmic depth.
Moreover, we show that obtaining similar bounds for exact average-linkage HAC
is not possible under standard complexity-theoretic assumptions.
We complement our theoretical results with a comprehensive study of the ParHAC
algorithm in terms of its scalability, performance, and quality, and compare
with several state-of-the-art sequential and parallel baselines. On a broad set
of large publicly-available real-world datasets, we find that ParHAC obtains a
50.1x speedup on average over the best sequential baseline, while achieving quality
similar to the exact HAC algorithm. We also show that ParHAC can cluster one of
the largest publicly available graph datasets with 124 billion edges in a little over
three hours using a commodity multicore machine.

1 Introduction

Hierarchical Agglomerative Clustering (HAC) [49, 51, 72] is a fundamental and widely-used cluster-
ing method with numerous applications in unsupervised learning, community detection, and biology.
Given n input points, the HAC algorithm starts by forming a separate cluster for each input point,
and proceeds in n − 1 steps. Each step replaces the two most similar clusters by its union. The
exact notion of similarity between two clusters is specified by a configurable linkage function. This
function is typically given all pairwise similarities between points from the two clusters. Some
of the most popular choices are average-linkage (the arithmetic mean of all similarities), single-
linkage (the maximum similarity), and complete-linkage (the minimum similarity). Among these,
average-linkage is of particular importance, as it is known to find high-quality clusters in real-world
applications [25, 55, 56, 65].1

1We note that HAC can also be defined in terms of input points and dissimilarities between the points. We
discuss and compare both settings in Section 1.2

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Although HAC has been of significant interest to statisticians, computer scientists, and clustering
practitioners since the 1960s, applying HAC to very large datasets remains a major challenge. A
significant source of difficulty is the need to compute all pairwise similarities between sets of points,
which HAC implementations typically perform at the start of the algorithm at the expense of Θ(n2)
work and space [58, 59, 76]. To address this difficulty, two directions have recently been explored in
the literature. The first has focused on designing approximate sub-quadratic work algorithms in the
dissimilarity setting, using sketching and approximate nearest neighbor (ANN) techniques [4, 57].
The second approach focuses on the similarity-graph setting, and is what we build on in this paper.
Here, the idea is to build a (typically sparse) similarity graph over the pointset input, e.g., by
representing each point as a vertex, connecting a point to its k most similar neighbors, and then
applying a graph-based HAC algorithm on this similarity graph [38].2 Surprisingly, despite only
using a sub-quadratic number of similarities, similarity graph-based HAC algorithms can match or
sometimes even surpass the quality of an algorithm using the full O(n2) similarity matrix [38].

Prior works on these approaches [4, 38] give provable guarantees on the quality of the resulting
approximation algorithms; in fact, both yield (1 + ε)-approximate HAC algorithms, as proposed
by [57]. Specifically, a (1 + ε)-approximate HAC algorithm is an algorithm in which each step
only merges edges that have similarity at leastWmax/(1 + ε) whereWmax is currently the largest
similarity.3 Hence, an (1 + ε)-approximate algorithm is constrained to merge an edge that is “close”
in similarity to the merge that the exact algorithm would perform. At the same time, the algorithm
has flexibility in which edge to merge, which can potentially be algorithmically exploited.

Despite the progress on scaling up HAC, further improvements appeared challenging due to the
seemingly inherently sequential nature of the HAC algorithm [8, 55]. Several recent attempts at
parallelizing HAC either rely on optimistic assumptions on the input [73, 79], significantly diverge
from the original algorithm, potentially impacting quality [8, 23, 55], or deliver weak approximation
guarantees [57]. Understanding if HAC can be solved in sub-quadratic work and poly-logarithmic
depth (or even polynomial work and sub-linear depth) has thus remained an intriguing open question,
even when allowing for approximation.

1.1 Our Contributions

In this paper, we introduce the first efficient parallel algorithm computing (1 + ε)-approximate
average-linkage HAC with poly-logarithmic depth and near-linear total work. We use the standard
work-depth model of parallel computation [14, 26] to analyze the theoretical cost of our algorithm,
where briefly, the work is the total number of operations performed, and the depth is the longest chain
of dependencies. The work-depth model is the parallel model used in a variety of recent papers on
shared-memory multicore algorithms for graph problems [31–33, 35, 71] pointset clustering [79], as
well as tree-based algorithms [74, 75]. Deriving good bounds for the work and depth of an algorithm
also implies good bounds for the problem in a variety of other models for parallelism, such as different
PRAM variants, by using efficient simulation results (e.g., see [14, 15]).

The algorithm takes as input a similarity graph, which contains n vertices (representing input points)
and m weighted edges (representing nonzero similarities between points).

Theorem 1.1. There is a parallel (1 + ε)-approximate average-linkage graph-based HAC algorithm
that given a similarity graph containing n vertices and m weighted edges runs in Õ(m+ n) work in
expectation and has O(log4 n) depth with high probability.4

For a fixed ε, our algorithm, which we call ParHAC, runs in poly-logarithmic depth and Õ(m)-work.
Thus, it is work-efficient up to logarithmic factors and achieves high parallelism (ratio of work to
depth). We note that the same setting, i.e., parametrizing the input size by the number of nonzero
similarities, has been recently studied in the sequential case [38], where an Õ(m)-work sequential
(1 + ε)-approximate algorithm is known. Prior to our result, no average-linkage HAC algorithm with
sublinear depth was known (even allowing approximation).

2We note that [38] introduce both an exact algorithm for average-linkage HAC running in O(n
√
m) work

and an approximate algorithm running in Õ(m) work. We define Õ(f(x)) := O(f(x)polylog(f(x))).
3We note that [57] deals with dissimilarities, but we adapt the definition to similarities in the natural way.
4An algorithm has O(f(n)) cost with high probability (whp) if it has O(k · f(n)) cost with probability at

least 1− 1/nk.

2

On the negative side, we show that allowing approximation is necessary, as obtaining an average-
linkage exact HAC algorithm with poly-logarithmic depth is not possible under standard complexity-
theory assumptions (i.e., it is a P-complete problem). In other words, an exact polynomial-work
parallel HAC algorithm for average-linkage in poly-logarithmic depth would imply poly-logarithmic
depth algorithms for all problems solvable in polynomial time (i.e., show that P = NC). Our lower
bound formalizes a commonly held belief that the algorithm is inherently sequential [73] and justifies
studying the approximate variant of HAC.

Theorem 1.2. Graph-based HAC using average-linkage is P-complete.

We complement our theoretical results by providing an efficient parallel implementation of ParHAC,
and comparing it with existing graph-based and pointset-based HAC baselines across a broad set of
publicly available real-world datasets. For scalability, we show that ParHAC achieves strong speedups
relative to other high-quality HAC baselines, achieving 50.1x average speedup over the approximate
sequential algorithm from [38] when run on a 72-core machine. Moreover, we study the overall
running times of using ParHAC in the pointset setting, and find that ParHAC can cluster significantly
larger datasets compared to fastcluster [59], a state-of-the-art pointset clustering algorithm, and
achieves up to 417x speedup over fastcluster in end-to-end running time.

We show that the above speedups are achieved without loss (or even with gain) for the final algorithm.
In particular, for the Adjusted Rand-Index quality measure, we find that the quality of ParHAC is on
average 3.1% better than the best approximate sequential baseline, and is on average within 3.69% of
the best score for any method on the datasets that we study. Finally, we find that ParHAC achieves
consistently strong quality results on three other quality metrics that we study compared with the best
solutions offered by exact and approximate algorithms.

We have made our implementation publicly available on GitHub.5

1.2 Graph-Based Hierarchical Agglomerative Clustering

As mentioned earlier in the introduction, our focus in this paper is on clustering (typically sparse)
weighted graphs where the edge weights represent similarities between vertices. More formally, we
study parallel algorithms for the graph-based hierarchical agglomerative clustering (HAC) problem,
which takes as input a graph G = (V,E,w) and proceeds by repeatedly merging the two most similar
clusters, where the similarity is given by a configurable linkage function. Equivalently, this process
can be viewed in terms of a graph H , whose vertices are clusters, and edges represent clusters of
positive similarity (in particular, the edge weights give the similarities between clusters). Initially,
when all clusters have size 1, H is equal to G. Each operation of merging two clusters corresponds to
contracting an edge of H (we call this operation a merge). In the following, we typically use this
alternative view of the algorithm.

The output of the algorithm is a dendrogram – a rooted binary tree that has a single leaf for each
vertex in the input graph, with internal nodes corresponding to clusters obtained by merges, and
weights of internal nodes representing the similarity of the corresponding merge that formed it.

We focus on the average-linkage measure, which assumes that the similarity between two clusters
(X,Y) is equal to

∑
(x,y)∈Cut(X,Y) w(x, y)/(|X| · |Y |), that is, the total weight of edges between X

and Y , divided by the maximum number of possible edges between the clusters. Throughout this
paper, we consider graphs with arbitrary positive edge weights representing similarities. We discuss
other linkage measures in the Appendix.

A natural question is, why use similarities instead of dissimilarities? Both settings have been
previously considered in the literature, and although it hard to argue that one approach is “better” than
the other, our primary reason for studying similarities is because the similarity setting is arguably
a more natural setting for clustering sparse graphs. Specifically, it is natural to assume that the
similarity between pairs of vertices not connected by an edge is 0, whereas no such assignment of a
dissimilarity to missing edges is obvious when edge weights represent dissimilarities.

5https://github.com/ParAlg/ParHAC

3

https://github.com/ParAlg/ParHAC

1.3 Related Works

ParHAC is inspired by a recent sequential (1+ε)-approximate average-linkage HAC algorithm, which
runs in Õ(m) time [38]. However, obtaining a theoretically-efficient and practical parallel algorithm
requires significant new ideas. The evaluation of [38] studied the difference in quality between exact
and (1 + ε)-approximate HAC and showed that even moderately small ε = 0.1 maintains the quality
of exact HAC. Our results on the quality of ParHAC are consistent with these findings.

Efficient parallelizations of HAC are known in the case of single-linkage (essentially equivalent
to maximum spanning forest), and centroid linkage, if one allows O(log2 n)-approximation [57].
In other cases, the existing parallelizations of exact HAC either use linear depth [60], much larger
work [28, 62] or do not come with any bounds on the running time [46, 73, 79]. The ParChain
framework [79] for parallel exact HAC on pointsets recently showed that average-linkage HAC
can be solved in hours for million-point datasets. Very recently, it was shown that a distributed
implementation of the RAC algorithm can exactly cluster a billion-point dataset in a few hours using
200 machines and 3200 CPUs [73]. However, the depth of the algorithm is linear in the worst case,
and can be large in practice.

In order to scale hierarchical clustering to large datasets, several HAC-inspired algorithm have
been proposed, including Affinity clustering [8] and SCC [55]. Both algorithms are designed for
a distributed setting, in which the number of computation rounds that one can afford is highly
constrained. In particular, SCC can be seen as a best-effort approximation of HAC, given a fixed
(usually small) number of rounds to run. We implemented both algorithms (using the framework that
we built to develop ParHAC) and included them in our empirical evaluation.

The theoretical foundations of HAC has been developed in recent years [22, 27, 56], and have
motivated using HAC in real-world settings [20, 21, 24, 25, 64]. The version of HAC that takes a
graph as input has also been studied before, especially in the context of graphs derived from point
sets [41, 42, 48], although without strong theoretical guarantees. Another line of work by Abboud
et al. [4] showed that if the input points are in the Euclidean space and the Ward linkage method is
used [78], approximate HAC can be solved in subquadratic time.

2 Parallel Approximate HAC

In this section we describe our parallel HAC algorithm, which we call ParHAC. We assume that the
input is a weighted graph G = (V,E,w), where w : E → R+ gives the edge weights.

Let us now provide some background for the main ideas behind ParHAC. As observed in [73, 79], a
simple exact parallel HAC algorithm can be obtained almost directly from the 40-year-old nearest-
neighbor chain algorithm [9]. The parallel algorithm finds all edges xy such that xy is the highest-
weight incident edge to each endpoint, x and y. For simplicity, we assume here that all edge weights
are distinct. One can see that these edges form a matching (which does not necessarily match all
vertices), and the correctness of the nearest-neighbor chain algorithm implies that if the endpoints
of these edges are merged in parallel, the output is equivalent to what a sequential HAC algorithm
produces. Following [73], we call this algorithm reciprocal agglomerative clustering (RAC). Clearly,
the amount of parallelism in RAC is data-dependent. In particular, it can take a linear number of steps
in the worst case [73], and, as we find in our experiments, up to 21,081 steps on the YouTube (YT)
real-world graph with just 1.1M vertices and 5.9M edges.

Once we consider (1 + ε)-approximate HAC, the set of edges that we can choose to merge in the
first step grows to include all edges whose weight is within (1 + ε) factor ofWmax, the largest edge
weight in the graph. Let us call these edges (1 + ε)-heavy. A major challenge is that the (1 + ε)-heavy
edges no longer form a matching, and thus cannot be all merged in parallel. To see this, consider an
example where all (1 + ε)-heavy edges have a common endpoint x. Once one vertex merges with x,
the size of the cluster represented by x increases, which decreases the weights of all edges incident to
x, and as a result some of these edges may cease to be (1 + ε)-heavy.

Considering the (1 + ε)-heavy edges motivates the use of geometric layering, a technique where
we group the edges into layers based on their weights and process edges in the same layer in
parallel (e.g., see [10, 12]). In more detail, let Wmax and Wmin be the maximum-weight and
minimum-weight in the graph, respectively. The i-th layer contains all edges with weight between

4

Algorithm 1 ParHAC-ContractLayer(G = (V,E,w), TL, ε,D)
Input: Similarity graph, G, threshold TL, ε > 0, dendrogram D.
Ensure: All edges in G have weight < TL.

1: Let Wmax be the current maximum-weight edge in G.
2: while Wmax ≥ TL do . Outer round
3: Randomly color active vertices of G either red or blue.
4: Let R,B be the sets of red and blue vertices respectively.
5: Let Gc = (V,Ec, w), where Ec contains all edges in G that have weight ≥ TL, and connect

a vertex x ∈ B with a vertex y ∈ R, where the size of y is not smaller than the size of x.
6: while |Ec| > 0 do . Inner round
7: Select a random priority πb for b ∈ B.
8: Let Cb be a random red neighbor for each b ∈ B.
9: Let T = {(Cb, πb, b) | b ∈ B}. Sort T lexicographically.

10: Let Tr be triples from T with first component equal to r.
11: For each r ∈ R, select the first prefix of Tr, in which the total size of blue vertices

exceeds ε|r|
12: Let M be the set of (red, blue) vertex pairs selected.
13: Merge vertices in G and Gc based on the pairs from M , updating edge weights in Gc.
14: Remove edges of Gc that have two red endpoints or weight below TL
15: Update D based on M . If multiple b ∈ B merge to a single r ∈ R, merge them into r in

the sorted order.
16: Remove r ∈ R from Gc whose cluster size grew by more than a (1 + ε) factor since the

start of the outer round.
17: Recompute Wmax based on the current state of G.

((1 + ε)−(i+1) ·Wmax, (1 + ε)−i ·Wmax]. ParHAC processes the layers one at a time; to compute the
next layer it computes the maximum weight edge in the graphWmax, and processes all edges between
((1 + ε)−1Wmax,Wmax]. We refer to an iteration of this loop as a layer-contraction phase.

Let us now describe how to implement a layer-contraction phase. The pseudocode for the procedure
is shown in Algorithm 1. The goal is to merge (1 + ε)-heavy edges in parallel until none are left. The
main challenge is in ensuring that the algorithm does not violate the approximation requirements. An
outer-round of Algorithm 1 begins by randomly coloring active (i.e., non-isolated) vertices either
red or blue (Line 3), assigning each color with probability 1/2. Then, it constructs a graph Gc which
consists of edges of G of weight belonging to the current layer (Line 5). Moreover, Gc only contains
edges whose endpoints have different colors, and whose red endpoint has larger size than the blue
endpoint. Observe that each edge of G is added to Gc with probability at least 1/4. The algorithm
then performs inner-rounds while the number of edges in Gc is non-zero.

Let us now describe a single inner-round (Lines 6–16). The goal of an inner round is for many blue
vertices to merge into red vertices. Here we allow multiple blue vertices to merge with a single red
vertex. A key property (also exploited in [38]) is that as long as the size of the cluster represented
by x does not grow too much within a single round, the weights of the edges incident to x are very
close to what they were in the beginning of the round. Specifically, assume that (in the beginning of a
round) x represents a cluster of size c. Then, until the size of this cluster exceeds (1 + ε) · c, the edges
incident to x that were (1 + ε)-heavy at the beginning of the round remain (at least) (1 + ε)2-heavy.
This allows us to merge multiple vertices with x in a single round, at the cost of increasing the
approximation ratio to (1 + ε)2 (which can be reduced to (1 + ε) by scaling ε by a constant factor).

More specifically, an inner round is implemented as follows. For each blue vertex b ∈ B, the
algorithm selects a uniformly random priority πb ∈ [0, 1] (Line 7) which is used to perform symmetry
breaking when merging vertices. It then chooses a random red neighbor, Cb, for each b ∈ B (Line 8).
If a blue vertex has no red neighbors it will not participate in the subsequent steps, but for simplicity
when describing the algorithm we assume that each b ∈ B has a valid Cb. The algorithm then builds
T , a set of triples for each b ∈ B containing the value of its candidate red neighbor Cb, its priority πb,
and its id, b (Line 9), and sorts this set lexicographically. We call the elements of T proposals. At this
point, a red vertex may have proposals to merge from a large number of blue neighbors, and so the
algorithm selects for each r ∈ R the first prefix of Tr (the merges proposing to r) whose total cluster
size exceeds ε|r| (Lines 10–11). If no prefix of Tr has this property, the algorithm selects all of Tr.

5

Finally, the algorithm gathers all of the (r, b) vertex pairs that were selected (Line 12) and applies
these merges to update both G and Gc (Line 13). Note that after this update we remove all edges of
Gc that have two red endpoints, and as a result we maintain the invariant that each edge of Gc has
two endpoints of distinct colors, and the size of the red endpoint is at least the size of the blue one.

2.1 Theoretical Analysis

We show that our algorithm performs nearly-linear total work, has poly-logarithmic depth, and thus
polynomial parallelism, and has good approximation guarantees. For the purpose of this analysis we
assume that ε > 0 is a constant. We provide proofs in the Appendix and outline the main ideas here.

We start by analyzing a layer-contraction phase, and bound the total work and number of rounds
required. We start by showing that within each inner round of Algorithm 1, each blue vertex makes
progress in expectation either by being merged, or by having many edges incident to it be deleted.
Lemma 2.1. Consider an arbitrary blue vertex b within an inner round. Within this round either (a)
a constant factor of edges incident to b are deleted, or (b) with constant probability b is merged into
one of its red neighbors.

Using this property, we can bound the number of inner rounds within an outer round to be O(log n)
whp. Next, we show that the number of outer rounds is also O(log n) whp.
Lemma 2.2. The number of outer rounds in a call to Algorithm 1 is O(log n) with high probability.

The proof works by showing that for each edge e of the graph Gc at the beginning of the loop, either
(a) the endpoints of e are merged together, or (b) the weight of e drops below TL, or (c) an endpoint
of e increases its size by a factor of (1 + ε).

Finally, assuming the aspect-ratioA =Wmax/Wmin = O(poly(n)), the number of layer-contraction
phases is O(polylog(n)).6 Putting all of the previous results together and implementing the algorithm
using standard parallel primitives in the work-depth model, we obtain the following result:
Theorem 2.3. ParHAC is a (1 + ε)-approximate algorithm for average-linkage HAC that runs in
Õ(m+ n) work in expectation and has O(log4(n)) depth with high probability.

2.2 Lower Bound

We complement our upper bound with a parallel hardness result for exact graph-based average-linkage
HAC. Since the problem is in P, we show P-hardness to show the P-completeness result. Specifically,
we give an NC reduction from the P-complete monotone circuit-value problem (monotone CVP) by
transforming a monotone circuit into a graph-based HAC instance such that two vertices are merged
into the same cluster with a given merge similarity if and only if a target output gate evaluates to
true. With minor modifications, our reduction extends to the show the P-completeness of a variant of
average-linkage called WPGMA-linkage; we provide our constructions and proofs in the Appendix.

2.3 Algorithm Implementation

We implemented ParHAC in C++ using the CPAM (Compressed Parallel Augmented Maps) frame-
work [39], which provides compressed and highly space-efficient ordered maps and sets. We build on
CPAM’s implementation of the Aspen framework [33, 39], which provides a compressed dynamic
graph representation that supports efficient parallel updates (batch edge insertions and deletions).

Compressed Clustered Graph Representation. In practice ParHAC can perform a large number
of rounds per-layer in the case where ε is small (e.g., ε = 0.01). Although updating the entire graph
on each of these rounds is theoretically-efficient (the algorithm will only perform Õ(m+ n) work),
many of these rounds only merge a small number of vertices, and leave the majority of the edges
unaffected, so updating the entire graph each round can be highly wasteful.

Instead, we designed an efficient compressed clustered graph representation using the CPAM
framework [39] which enables us to update the underlying similarity graph in work proportional
to the number of merged vertices and their incident neighbors, rather than proportional to the total

6All existing HAC approximation algorithms make similar assumptions on the aspect ratio [4, 38].

6

number of edges in the graph. Importantly, using CPAM enables lossless compression for integer-
keyed maps to store the cluster adjacency information using just a few bytes per edge.7 We provide
more details about the representation and the supported operations in the Appendix.

Other Hierarchical Graph Clustering Algorithms. Our new clustered graph representation makes
it very easy to implement other parallel graph clustering algorithms. In particular, we developed a
faithful version of the Affinity clustering algorithm [8] and the recently proposed SCC algorithm [55]
(which is essentially a thresholded version of Affinity) using a few dozens of lines of additional code.
Both algorithms are essentially heuristics that are designed to mimic the behavior of HAC, while
running in very few rounds (an important constraint for the distributed environments these algorithms
are designed for). We note that most of the work done by these algorithms is the work required
to merge clusters in the underlying graph, so by using the same primitives for merging graphs, we
eliminate a significant source of differences when comparing algorithms.

3 Empirical Evaluation

Experimental Setup. We ran all of our experiments on a 72-core Dell PowerEdge R930 (with
two-way hyper-threading) with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a
4800MHz bus and 45MB L3 cache) and 1TB of main memory. Our programs use a lightweight
work-stealing parallel scheduler [5, 13]. Further details about our setup and input data can be found
in the Appendix.

HAC Algorithms Evaluated. We compare ParHAC with several HAC baselines. SeqHAC is the
approximate sequential average-linkage algorithm that was recently introduced [38]. ParHACE and
SeqHACE are exact versions of the ParHAC and SeqHAC algorithms, where the ParHAC code takes
TL = Wmax in each layer-contraction phase and sets ε = 0 (i.e., the layer only consists of equal-
weight edges). ParHAC0.1 and SeqHAC0.1 both use ε = 0.1. We also evaluate our implementation of
Affinity clustering [8] and the recently developed SCC algorithm [55], which we refer to as ParAffinity
and ParSCCsim. Both these algorithms can be thought of as heuristic parallelizations of the HAC
algorithm, which are designed with speed and good parallelization properties in mind. We describe
these in more detail in the Appendix. Lastly, we also compare the graph-based implementations of
HAC to pointset-based HAC implementations from the scipy package using the single-, complete-,
average-, and Ward-linkage measures. These are exact HAC algorithms, which look at the complete
similarity matrix and thus require time which is at least quadratic in the input size.

Building Similarity Graphs from Pointsets. Some of our experiments generate graphs from a
pointset by computing the approximate nearest neighbors (ANN) of each point, and converting the
distances to similarities. We convert distances to similarities using the formula sim(u, v) = 1

1+dist(u,v) .
We then reweight the similarities by dividing each similarity by the maximum similarity. We note that
we tried other similarity functions, e.g., the function sim(u, v) = 1

1+logk(dist(u,v))
for small values of

k and obtained slightly better quality results than the original formula used in this paper. However,
the relative ranking of algorithms did not change for these different functions, and as tuning the
distance-to-similarity conversion seemed outside of the scope of this paper, we use the simple original
formula described above in the rest of the paper. We compute the k-approximate nearest neighbors
using a shared-memory parallel implementation of the Vamana approximate nearest neighbors (ANN)
algorithm [45] with parameters R = 75, L = 100, Q = max(L, k). We discuss more details about
the process in the Appendix.

3.1 Quality Evaluation

We start by investigating the quality of ParHAC with respect to ground-truth clusterings. Our goal is
to understand (1) whether ParHAC preserves the clustering quality of exact average-linkage HAC
(using a complete similarity matrix), and (2) what value of ε to use in practice. The results in this
sub-section affirmatively answer (1), and show that a value of ε = 0.1 achieves comparable quality
to exact average-linkage HAC, which prior works have identified as a state-of-the-art hierarchical
clustering method and use as their primary quality baseline [8, 38, 55].

7We obtain a 2.9x space savings using our CPAM-based implementation over an optimized hashtable-based
implementation of a clustered graph; the running times of both implementations are essentially the same.

7

22 24 26 28 210

k in k-NN graph

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

SciPy

k = 10

Affinity

ParHac-0.0

ParHac-0.01

ParHac-0.1

ParHac-1.0

SCC

103 104 105 106

Number of points (logscale)

10−2

10−1

100

101

102

103

R
un

ni
ng

ti
m

e
in

se
co

nd
s

(l
og

sc
al

e) ParHAC-Cluster

ParHAC

SeqHAC

fastcluster

Figure 1: ARI score on the digits point dataset as
a function of the k used in graph building. ParHAC
using ε = 0.1 is the green line using + markers. The
gray vertical line highlights the values for k = 10,
which is the value of k we use in our detailed quality
evaluation in the Appendix. The red horizontal line is
the ARI of SciPy’s average-linkage.

Figure 2: End-to-end running times of fastcluster’s
unweighted average-linkage, SeqHAC using ε = 0.1,
and ParHAC using ε = 0.1 and 144 hyper-threads on
varying-size slices of the glove-100 dataset. The time
for SeqHAC and ParHAC includes the cost of solv-
ing ANN and generating the input similarity graph;
ParHAC-Cluster shows only the clustering time. We
terminated methods that run for more than 3 hours.

We evaluate our algorithms on the iris, wine, digits, and cancer, and faces classification datasets from
the UCI dataset repository (found in the sklearn.datasets package). We run all of the graph-based
clustering algorithms on similarity graphs generated from the input pointsets using k = 10 in the
approximate k-NN construction. We run the scipy pointset clustering algorithms directly on the
input pointsets. To measure quality, we use the Adjusted Rand-Index (ARI) and Normalized Mutual
Information (NMI) scores, as well as the Dendrogram Purity measure of a hierarchical clustering [43]
which we define in the Appendix. We also study the unsupervised Dasgupta Cost [27] measure. We
give definitions of the measures in the Appendix.

Results. We present a table of our results in the Appendix and summarize our findings here. Our
main finding is that ParHAC0.1 achieves consistently high-quality results across all of the quality
measures. For instance, for the ARI measure, ParHAC0.1 is on average within 1.5% of the best ARI
score for each graph (and achieves the best score for one of the graphs). For the NMI measure,
ParHAC0.1 is on average within 1.3% of the best NMI score for each graph (and again achieves the
best score for two of the graphs). ParHAC0.1 also achieves good results for the dendrogram purity
and Dasgupta cost measures. For purity, it is on average within 1.9% of the best purity score for each
graph, achieving the best score for one of the graphs, and for the unsupervised Dasgupta cost measure
it is on average within 1.03% of the smallest Dasgupta cost score for each graph.

Compared with the SciPy average-linkage which is an exact HAC algorithm running on the underlying
pointset, ParHAC0.1 achieves 14.4% better ARI score on average, 3.6% better NMI score on average,
4.7% better dendrogram purity on average, and 1.02% larger Dasgupta cost on average. Compared to
the best quality result obtained by either SCCsim or Affinity, ParHAC0.1 consistently obtains better
quality results, achieving 35.6% better ARI score on average, 12.1% better NMI score on average,
6.7% better dendrogram purity on average, and 3.1% better Dasgupta cost on average.

Overall, we find that ParHAC achieves consistently high quality results across the four quality
measures that we evaluate. Our results show that being more faithful to the HAC algorithm allows
ParHAC to obtain meaningful quality gains over Affinity and SCCsim.

Results with Varying k. When converting a pointset input to the similarity setting using the k-NN
approach as in this paper, what value of k is required to achieve high quality? We studied each of the
quality measures for the studied algorithms as a function of the k used in the k-NN construction, and
present our full results for each measure and each dataset in the Appendix. Here, Figure 1 shows a
representative result for the ARI measure on the digits point dataset.

We find that even modest values of k yield very high quality results and can significantly outperform
exact metric HAC algorithms on the original pointset. Furthermore, even tripling, or increasing k
an order of magnitude either yields negligible improvement for most quality measures, or in fact
degrades the quality. For example, for ParHAC with ε = 0.1, using k = 100 is 10% worse than using
k = 10, and using k = 1000 is 47% worse than k = 10. Our results suggest a twofold benefit from
using a graph-based approach: (1) since small values of k are sufficient for high quality results, the
inputs to the clustering algorithm can be smaller, resulting in faster running times, and (2) the overall

8

DB YT RD LJ OK TW FS CW HL
100

101

102

103

104

R
el

a
ti

ve
p

er
fo

rm
a

n
ce

1
.1

1

3
.4

2

1
1

.2

1
8

.4 3
2

.2

6
2

3

9
5

1

4
.9

4
e+

0
3

1
.0

9
e+

0
4

6
.8

5

9
6

.8

2
3

0

1
.2

e+
0

3

4
.1

8
e+

0
3

x x x x

7
.6

6

4
0

4

2
3

4

2
.5

8
e+

0
3

4
.7

e+
0

3

x x x x

0
.9

7
2

1
5

.7

1
4

.2

6
6

.9 1
5

9

x x x x

0
.1

7
7

0
.3

8
2

2
.0

3

1
.5

4

2
.0

4

1
8

.7

4
7

.5

3
1

2

6
4

0

0
.9

7
4

2
.3

7

1
3

.6 1
5

.4 3
0

.5

3
5

0

7
3

9

3
.9

e+
0

3

8
.7

6
e+

0
3

Values on top of bars are running times (in seconds)

ParHAC

SeqHAC

SeqHACE

ParRAC

ParAffinity

ParSCCsim

Figure 3: Relative performance of our ParHAC algorithm compared to other graph-HAC and HAC-inspired
algorithms. We prefix new implementations developed in this paper with the Par prefix. The values on top of
each bar show the running time of each algorithm in seconds. The times shown for the parallel algorithms are
144 hyper-thread times. We run the ParHAC and SeqHAC algorithm using ε = 0.1. We terminated algorithms
that ran longer than 6 hours and mark them with a red x.

clustering quality is higher with small inputs and can lead to significant improvements over using
more similarities (or using the full dissimilarity matrix, as in pointset clustering algorithms).

3.2 Evaluation on Large Real-World Graphs

Next, we evaluated ParHAC’s scalability on large real-world graphs, including both social network
graphs, as well as sparse, high-diameter networks. We note that the Hyperlink (HL) graph is one of
the largest publicly-available graphs and contains 1.7B vertices and 125B edges. Additional details
and experiments can be found in the supplementary material; we summarize them:

(1) ParHAC achieves betewen 25.7–61.3x speedup over its running time on a single thread.
(2) We evaluated the running time of ParHAC when the edge weights in the graph are selected

based on structural properties of the input, e.g., the degree, or the number of triangles closed
by the edge. Overall, we evaluated 6 highly-different weighting schemes, and find that the gap
between the fastest and slowest schemes per-graph is at most 5x.

(3) Running ParHAC with larger values of ε consistently results in lower running times, due to the
fewer number of rounds used for large ε.

Figure 3 shows the relative performance and of ParHAC compared with the SeqHAC and SeqHACE
algorithms, and our implementations of the RAC, Affinity, and SCCsim algorithms. We see that our
Affinity implementation is always the fastest on our graph inputs. This is due to the low theoretical
and empirical round-complexity of Affinity. Compared with Affinity, SCCsim, which runs Affinity
with weight thresholding using 100 iterations is an average of 11.5x slower than Affinity due to the
cost of the additional iterations. Compared to Affinity and SCCsim, ParHAC is an average of 14.8x
slower than our Affinity implementation and 1.24x slower than our SCCsim implementation. The
speed difference between ParHAC and Affinity is due to the larger number of fine-grained rounds
required by ParHAC. However, as we showed in Section 3.1, the faster running time of affinity
clustering and SCCsim comes at the cost of significantly lower quality.

Compared with methods that implement exact or 1 + ε-approximate HAC, ParHAC is significantly
faster. Compared with SeqHAC and SeqHACE , ParHAC obtains 50.1x and 86.4x speedup on average
respectively. Compared with RAC, ParHAC achieves an average speedup of 7.1x on the graphs that
RAC can successfully complete within the time limit. Although RAC is faster than ParHAC on two
of our small graph inputs, it requires a very large number of rounds on the remaining graphs.

To the best of our knowledge, our results are the first to show that graphs with tens to hundreds
of billions of edges can be clustered in a matter of tens of minutes (using heuristics like Affinity
and SCCsim with fewer iterations) to hours (using SCCsim with many iterations, or methods with
approximation guarantees such as ParHAC). Recently, results on trillion-edge similarity graphs
have been reported [55, 73]. Due to the memory requirements of storing such large datasets in
memory, ParHAC may not be directly applicable; however, it may be possible to design a distributed
(1 + ε)-approximate HAC algorithm with low round-complexity by building on the ideas in this paper.

9

Discussion. To the best of our knowledge, our results are the first to show that graphs with tens
to hundreds of billions of edges can be clustered in a matter of tens of minutes (using heuristic
methods like Affinity and SCCsim with fewer iterations) to hours (using SCCsim with many iterations
or methods with approximation guarantees such as ParHAC). We are not aware of other shared-
memory clustering results that work at this large scale. Our theoretically-efficient implementations
can be viewed as part of a recent line of work showing that theoretically-efficient shared-memory
parallel graph algorithms can scale to the largest publicly available graphs using a modest amount of
resources [31–33, 36, 66, 67].

3.3 Pointset Clustering: End-to-End Evaluation

We conclude by evaluating the performance of ParHAC in the case when the input is a pointset.
In this setting, in order to use a graph-based HAC algorithm, one needs to construct a similarity
graph before running the clustering algorithm. As a baseline, we use the average-linkage HAC
implementation from fastcluster [59], which takes a pointset input. We compare with fastcluster as
we found it yields more consistent (and slightly faster) performance for larger numbers of points than
the implementations in sklearn and SciPy.8 We also compare ParHAC to the SeqHAC algorithm in
this setting, where SeqHAC uses the same similarity-graph building method as ParHAC described
earlier in this section, and both algorithms are run using ε = 0.1.

We run our end-to-end experiment on the Glove-100 dataset, which is a 100-dimensional dataset
containing vector-embeddings for 1.18 million words. Figure 2 shows the results of our experiment.
We stress that the running times of the graph-based algorithms (SeqHAC and ParHAC) include the
time spent building the graph. First, we found that for n > 3000, the end-to-end times of ParHAC are
always faster than the time taken by fastcluster, and for n > 9400, the end-to-end times of SeqHAC
are always faster than the time taken by fastcluster. Comparing fastcluster on the largest slice of the
Glove-100 dataset it can solve in under three hours with the graph-based methods, SeqHAC is 20x
faster, and ParHAC is 417x faster.

4 Conclusion

In this paper we have introduced ParHAC, the first parallel algorithm for hierarchical agglomerative
graph clustering using the average-linkage measure that has strong theoretical-bounds on its work
and depth, as well as provable approximation guarantees. We have shown that ParHAC scales to
massive real-world graphs with tens to hundreds of billions of edges on a single machine and achieves
high-quality results compared to existing graph-based and pointset-based hierarchical clustering
methods.

An interesting question for future work is whether we can reduce the round complexity of our
algorithm to make it more suitable for distributed settings. One promising idea is to analyze a version
of ParHAC in which we process edges from all weight buckets simultaneously, while ensuring that all
merges satisfy the approximation guarantees. Another interesting question is to compare the running
time and quality of bottom-up HAC methods for size-constrained clustering and balanced partitioning
problems, which typically rely on top-down methods [7, 19, 30, 47]. Although it has recently been
shown that it may not be possible to design algorithms for incremental and dynamic HAC with good
worst-case guarantees [77], it would be interesting to design practical (1 + ε)-approximations for
these settings, potentially building on ideas from ParHAC.

References
[1] Chem dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensor+

array+under+dynamic+gas+mixtures.

[2] Geolife dataset. https://www.microsoft.com/en-us/research/
publication/geolife-gps-trajectory-dataset-user-guide/.

[3] Uci1 dataset. https://archive.ics.uci.edu/ml/datasets/magic+gamma+
telescopes.

8We performed a similar comparison with the recently proposed ParChain framework for exact euclidean
HAC [79]; here, ParHAC obtained an average of 39.3x speedup (end-to-end) in parallel over ParChain.

10

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescopes
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescopes

[4] Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-dimensional
hierarchical clustering. In Advances in Neural Information Processing Systems, pages 11580–
11590, 2019.

[5] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems (TOCS), 34(2):115–144, 2001.

[6] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmark-
ing tool for approximate nearest neighbor algorithms. In International Conference on Similarity
Search and Applications, pages 34–49. Springer, 2017.

[7] Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. Distributed balanced partitioning
via linear embedding. Algorithms, 12(8).

[8] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Haji-
aghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. Affinity clustering: Hierarchi-
cal clustering at scale. In Advances in Neural Information Processing Systems (NeurIPS), pages
6864–6874, 2017.

[9] Jean-Paul Benzécri. Construction d’une classification ascendante hiérarchique par la recherche
en chaîne des voisins réciproques. Cahiers de l’analyse des données, 7(2):209–218, 1982.

[10] Bonnie Berger, John Rompel, and Peter W. Shor. Efficient NC algorithms for set cover with
applications to learning and geometry. J. Computer and System Sciences, 49(3):454–477, 1994.

[11] Guy E. Blelloch and Bruce M. Maggs. Algorithms and theory of computation handbook. chapter
Parallel Algorithms. Chapman & Hall/CRC, 2010. ISBN 978-1-58488-820-8.

[12] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approxi-
mate set cover and variants. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 23–32, 2011.

[13] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib - a toolkit for parallel
algorithms on shared-memory multicore machines. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 507—-509, 2020.

[14] Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 89–102, 2020.

[15] Guy E. Blelloch, Laxman Dhulipala, and Yihan Sun. Introduction to parallel algorithms.
http://www.cs.cmu.edu/~guyb/paralg/paralg/parallel.pdf, 2021.

[16] RK Bock, A Chilingarian, M Gaug, F Hakl, Th Hengstebeck, M Jiřina, J Klaschka, E Kotrč,
P Savickỳ, S Towers, et al. Methods for multidimensional event classification: a case study
using images from a cherenkov gamma-ray telescope. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
516(2-3):511–528, 2004.

[17] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
International World Wide Web Conference (WWW), pages 595–601, 2004.

[18] Otakar Borůvka. O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně III, 3:
37–58, 1926.

[19] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. Algorithm engineering, pages 117–158, 2016.

[20] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest
cut and spreading metrics. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
841–854, 2017.

[21] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than
average-linkage. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2291–2304,
2019.

11

http://www.cs.cmu.edu/~guyb/paralg/paralg/parallel.pdf

[22] Evangelos Chatziafratis. Hierarchical clustering with global objectives: Approximation algo-
rithms and hardness results. Stanford University, 2020.

[23] Michael Cochez and Hao Mou. Twister tries: Approximate hierarchical agglomerative clustering
for average distance in linear time. In ACM SIGMOD International Conference on Management
of Data, pages 505–517, 2015.

[24] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. Hierarchical clustering
beyond the worst-case. In Advances in Neural Information Processing Systems, volume 30,
pages 6201–6209. Curran Associates, Inc., 2017.

[25] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierar-
chical clustering: Objective functions and algorithms. J. ACM, 66(4), 2019.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009.

[27] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In ACM Sympo-
sium on Theory of Computing (STOC), pages 118–127, 2016.

[28] Manoranjan Dash, Simona Petrutiu, and Peter Scheuermann. pPOP: Fast yet accurate parallel
hierarchical clustering using partitioning. Data Knowl. Eng., 61(3):563–578, 2007.

[29] Camil Demetrescu, Andrew Goldberg, and David Johnson. 9th dimacs implementation chal-
lenge: Shortest paths. http://www.dis.uniroma1.it/challenge9/, 2019.

[30] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and Alon
Shalita. Compressing graphs and indexes with recursive graph bisection. In ACM International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1535–1544, 2016.

[31] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 293–304, 2017.

[32] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 293–304, 2018.

[33] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Low-latency graph streaming using
compressed purely-functional trees. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 918–934, 2019.

[34] Laxman Dhulipala, Changwan Hong, and Julian Shun. ConnectIt: A framework for static and
incremental parallel graph connectivity algorithms. Proc. VLDB Endow., 14(4):653–667, 2020.

[35] Laxman Dhulipala, Quanquan C Liu, and Julian Shun. Parallel batch-dynamic k-clique counting.
arXiv preprint arXiv:2003.13585, 2020.

[36] Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E Blelloch, Phillip B
Gibbons, and Julian Shun. Sage: Parallel semi-asymmetric graph algorithms for NVRAMs.
Proc. VLDB Endow., 13(9):1598–1613, 2020.

[37] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. The graph based
benchmark suite (GBBS). In International Workshop on Graph Data Management Experiences
and Systems (GRADES) and Network Data Analytics (NDA), pages 11:1–11:8, 2020.

[38] Laxman Dhulipala, David Eisenstat, Jakub Łącki, Vahab Mirrokni, and Jessica Shi. Hierarchical
agglomerative graph clustering in nearly-linear time. In International Conference on Machine
Learning (ICML), pages 2676–2686, 2021.

[39] Laxman Dhulipala, Guy E Blelloch, Yan Gu, and Yihan Sun. PaC-trees: Supporting parallel
and compressed purely-functional collections. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2022.

12

[40] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reservoir computing
compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in
continuous monitoring. Sensors and Actuators B: Chemical, 215:618–629, 2015.

[41] P. Franti, O. Virmajoki, and V. Hautamaki. Fast agglomerative clustering using a k-nearest
neighbor graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):
1875–1881, 2006.

[42] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering algorithm for
categorical attributes. In Proceedings of the International Conference on Data Engineering,
pages 512–521, USA, 1999.

[43] Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In International
Conference on Machine Learning (ICML), pages 297–304, 2005.

[44] Changwan Hong, Laxman Dhulipala, and Julian Shun. Exploring the design space of static and
incremental graph connectivity algorithms on gpus. In International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 55–69, 2020.

[45] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,
and Rohan Kadekodi. DiskANN: Fast accurate billion-point nearest neighbor search on a single
node. Advances in Neural Information Processing Systems, 32, 2019.

[46] Yongkweon Jeon and Sungroh Yoon. Multi-threaded hierarchical clustering by parallel nearest-
neighbor chaining. IEEE Trans. Parallel Distributed Syst., 26(9):2534–2548, 2015.

[47] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, and Alon Shalita. Social hash par-
titioner: A scalable distributed hypergraph partitioner. Proc. VLDB Endow., 10(11):1418–1429,
2017.

[48] George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. Chameleon: Hierarchical clustering
using dynamic modeling. Computer, 32(8):68–75, August 1999.

[49] Benjamin King. Step-wise clustering procedures. Journal of the American Statistical Associa-
tion, 69:86–101, 1967.

[50] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network
or a news media? In International World Wide Web Conference (WWW), pages 591–600, 2010.

[51] G. N. Lance and W. T. Williams. A general theory of classificatory sorting strategies 1.
Hierarchical systems. Computer Journal, 9(4):373–380, February 1967.

[52] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,
2014.

[53] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[54] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure
in the web–analyzed on different aggregation levels. The Journal of Web Science, 1(1):33–47,
2015.

[55] Nicholas Monath, Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew
McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, et al. Scalable
agglomerative clustering. In ACM International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1245–1255, 2021.

[56] Benjamin Moseley and Joshua R. Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. In Advances in Neural Information
Processing Systems, pages 3094–3103, 2017.

[57] Benjamin Moseley, Kefu Lu, Silvio Lattanzi, and Thomas Lavastida. A framework for paral-
lelizing hierarchical clustering methods. In ECML PKDD 2019, 2019.

13

[58] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[59] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines for r and python.
Journal of Statistical Software, Articles, 53(9):1–18, 2013.

[60] Clark F. Olson. Parallel algorithms for hierarchical clustering. Parallel Comput., 21(8):1313–
1325, 1995.

[61] C. A. Phillips. Parallel graph contraction. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 148–157, 1989.

[62] Sanguthevar Rajasekaran. Efficient parallel hierarchical clustering algorithms. IEEE Transac-
tions on Parallel and Distributed Systems, 16(6):497–502, 2005.

[63] J. Reif. Optimal parallel algorithms for integer sorting and graph connectivity. Technical Report
TR-08-85, Harvard University, 1985.

[64] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. In Advances
in Neural Information Processing Systems (NIPS), volume 29, pages 2316–2324. Curran
Associates, Inc., 2016.

[65] Jianyin Shao, Stephen W. Tanner, Nephi Thompson, and Thomas E. Cheatham. Clustering
molecular dynamics trajectories: 1. Characterizing the performance of different clustering
algorithms. Journal of Chemical Theory and Computation, 3(6):2312–2334, 2007.

[66] Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Łăcki, and Vahab Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14(11):2305–2313,
2021.

[67] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms.
In SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), pages
135–146. SIAM, 2021.

[68] Julian Shun and Guy E Blelloch. Phase-concurrent hash tables for determinism. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 96–107, 2014.

[69] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. A simple and practical linear-work
parallel algorithm for connectivity. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 143–153, 2014.

[70] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster: Parallel processing
of compressed graphs with Ligra+. In Data Compression Conference (DCC), pages 403–412,
2015.

[71] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W. Mahoney. Parallel
local graph clustering. Proc. VLDB Endow., 9(12):1041–1052, 2016.

[72] Peter H.A. Sneath and Robert R. Sokal. Numerical Taxonomy: The Principles and Practice of
Numerical Classification. W.H. Freeman, San Francisco, 1973. ISBN 0 7167 0697 0.

[73] Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier Bachem, Pradipta
Mitra, Sam Blasiak, Mason Liang, and Sanjiv Kumar. Scaling hierarchical agglomerative
clustering to billion-sized datasets. CoRR, abs/2105.11653, 2021.

[74] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 290–304,
2018.

[75] Yihan Sun, Guy E Blelloch, Wan Shen Lim, and Andrew Pavlo. On supporting efficient
snapshot isolation for hybrid workloads with multi-versioned indexes. Proc. VLDB Endow., 13
(2):211–225, 2019.

14

[76] The SciPy community. scipy.cluster.hierarchy.linkage. URL https://docs.scipy.org/
doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.
html. [Online; accessed 1-May-2022].

[77] Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel batch-dynamic minimum span-
ning forest and the efficiency of dynamic agglomerative graph clustering. arXiv preprint
arXiv:2205.04956, 2022.

[78] Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58(301):236–244, 1963. ISSN 01621459.

[79] Shangdi Yu, Yiqiu Wang, Yan Gu, Laxman Dhulipala, and Julian Shun. Parchain: A framework
for parallel hierarchical agglomerative clustering using nearest-neighbor chain. Proc. VLDB
Endow., 15(2):285–298, 2021.

[80] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation mode from raw
GPS data for geographic applications on the web. In International Conference on World Wide
Web, pages 247–256, 2008.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We carefully delineate that we are focusing on the
graph-based setting for hierarchical clustering, and that our main contributions are new
theoretical and experimental results in this setting.

(b) Did you describe the limitations of your work? [Yes] We point out that ParHAC may
not be suitable for inputs containing trillions of vertices and edges, which are currently
challenging to fit in-memory on an average commodity multicore machine. We also
note that further reducing the number of rounds of our approach would be necessary to
run in a distributed setting.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is
primarily a theoretical work; the caveats about carefully evaluating clustering quality
that are true for any unsupervised clustering or learning method also apply to our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read them and ensured our paper conforms to the guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We clearly

state that our results are for the graph-based versions of the problems that we study.
It would be interesting to generalize our approximation and hardness results to the
(low-dimensional) metric setting; this is an intriguing direction for future work.

(b) Did you include complete proofs of all theoretical results? [Yes] Due to space
constraints, we present the high-level ideas of the proofs in the main paper, but all
proofs are given in the Appendix (supplementary materials).

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] We have included our code as an anonymized repository here:
https://anonymous.4open.science/r/ParHAC-AE-A2D7 (also mentioned in the intro-
duction). The repository contains all source files used in our experiments, including
sources for ParChain, and scripts to run the expeirments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We discuss the values of ε used, and for evaluation on pointsets,
the values of k used in our similarity graph construction.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report results on the average error (both for quality
and running time) in the Appendix.

15

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://anonymous.4open.science/r/ParHAC-AE-A2D7

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We have specified the exact
machine used, and its characteristics in the main body of the paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We mention and cite

the sources of all datasets and code that we use in the Appendix.
(b) Did you mention the license of the assets? [Yes] We also discuss the licenses of the

datasets and code that we use in the Appendix.
(c) Did you include any new assets either in the supplemental material or as a

URL? [Yes] We have included our code as an anonymized repository here:
https://anonymous.4open.science/r/ParHAC-AE-A2D7 (also mentioned in the introduc-
tion). We also include several low-dimensional pointsets in the supplemental material
that are used in the ParChain paper. The ParChain method is mostly suitable for
low-dimensional data, and could not run on the other high-dimensional inputs we use
in the main body of our paper. For a fair comparison, we ran on the same datasets as
ParChain, and we document the sources, availability, and licenses of these additional
datasets.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A] The datasets and sources we build on are made publicly-
available (e.g., on the UCI-dataset repository, or on the ANN-benchmarks repository)
with the intent to be used as benchmarks in academic works.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The datasets we are using do not contain PII
or offensive content.

5. If you used crowdsourcing or conducted research with human subjects... [N/A] (we do not
use crowdsourcing or research with human subjects in this paper)
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

https://anonymous.4open.science/r/ParHAC-AE-A2D7

	Introduction
	Our Contributions
	Graph-Based Hierarchical Agglomerative Clustering
	Related Works

	Parallel Approximate HAC
	Theoretical Analysis
	Lower Bound
	Algorithm Implementation

	Empirical Evaluation
	Quality Evaluation
	Evaluation on Large Real-World Graphs
	Pointset Clustering: End-to-End Evaluation

	Conclusion
	Missing Details and Proofs
	Sequential HAC
	Motivating ParHAC
	Missing Proofs

	Parallel Hardness of Graph-Based HAC
	Hardness for Graph-Based HAC using Weighted Average-Linkage
	Hardness for Graph-Based HAC using Average-Linkage

	ParHAC Implementation
	Experimental Results
	Quality Evaluation
	Scalability Evaluation
	Ablation: Comparing CPAM with Hash-based Representations
	Comparing ParHAC with ParChain

