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Abstract

The expected improvement (EI) is a popular technique to handle the tradeoff
between exploration and exploitation under uncertainty. This technique has been
widely used in Bayesian optimization but it is not applicable for the contextual
bandit problem which is a generalization of the standard bandit and Bayesian
optimization. In this paper, we initiate and study the EI technique for contextual
bandits from both theoretical and practical perspectives. We propose two novel
EI based algorithms, one when the reward function is assumed to be linear and
the other for more general reward functions. With linear reward functions, we
demonstrate that our algorithm achieves a near-optimal regret. Notably, our regret
improves that of LinTS [3] by a factor

√
d while avoiding to solve a NP-hard

problem at each iteration as in LinUCB [1]. For more general reward functions
which are modeled by deep neural networks, we prove that our algorithm achieves
a Õ(d̃

√
T ) regret, where d̃ is the effective dimension of a neural tangent kernel

(NTK) matrix, and T is the number of iterations. Our experiments on various
benchmark datasets show that both proposed algorithms work well and consistently
outperform existing approaches, especially in high dimensions.

1 Introduction

The contextual bandit problem is an important field in machine learning ([9, 25]) to optimize the trade-
off between exploration and exploitation in sequential decision making, and has been extensively
studied in real-world applications such as personalized recommendation [26], advertising [19], robotic
control [27], and healthcare [20]. At each round, the agent observes a feature vector (the “context")
for each of the K arms, pulls one of them, and in return receives a scalar reward. The goal is to
maximize the cumulative reward, or minimize regret (see our definition in Section 2), in a total of T
rounds. To do so, the agent must find a trade-off between exploration and exploitation.

There are two standard techniques to solve the trade-off in contextual bandits. The first technique uses
the optimism in face of uncertainty which chooses promising actions by maximizing upper-confidence
bounds (UCB), and the second one using Thompson Sampling (TS) whose basic idea is to estimate
a posterior distribution on the reward, and sample an arm that maximises a random reward drawn
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from this distribution. A series of work has applied both UCB and TS techniques or their variants
to explore in contextual bandits with many forms of reward functions - from linear to nonlinear. In
the line of UCB, there are works of [26, 14, 1] for the linear bandits, works of [18, 38] for nonlinear
contextual bandits, and very recently [43], which uses neural networks to learn the reward function.
In the line of TS, [3, 33] are for linear bandits, [33, 23] for generalized linear functions, and [32, 42]
for nonlinear bandits using deep neural networks.

Different from UCB and TS, the expected improvement (EI) [28] is a greedy improvement-based
heuristic that samples an action offering the greatest expected improvement over an incumbent. EI
is also one of the oldest and popular techniques to handle the tradeoff between exploration and
exploitation under uncertainty. Due to its ability to handle uncertainty, EI has been widely used in
Bayesian optimization [30, 41] - a problem that is closely related to infinite-arm multi-arm bandits.
However, to the best of our knowledge, EI has not been used in contextual bandits.

In addition, in many situations where the exploration may costly or infeasible, EI can be a safer
strategy than UCB and TS which are considered as over-exploration strategies. For example, in a
medical application of contextual bandits, choosing a treatment that is not the estimated-best choice
(pure exploration) for a specific patient may be unethical [7]. Compared to UCB and TS strategies, EI
brings a safer treatment because EI only chooses a treatment with high possibilities for improvement
over the estimated-best choice.

Motivated by these advantages, it is valuable to study EI technique in the contextual bandit setting.
Whether EI can handle well the trade-off between exploration and exploitation in a contextual bandit
setting and further in reinforcement learning is an interesting question. Our main contributions in this
paper are as follows:

• We introduce and formalize Expected Improvement as a new strategy for contextual bandits
creating a parallel to UCB and TS.

• We propose two EI-based algorithms. The first algorithm (LinEI) is designed for the linear
bandits whilst the second algorithm (NeuralEI) is designed for more general reward function
and we model it by a deep neural network.

• For the linear reward function, our LinEI algorithm is able to achieve Õ(d
√
T ) regret with

probability 1− δ, which matches the information theoretic lower bound Ω(d
√
T ) for this

problem (up to ln(T )). Our regret improves that of LinTS [3] by a factor
√
d while avoiding

to solve a NP-hard problem at each iteration as in LinUCB [1]. By this advantage, we will
show in section 6.1.1 that our proposed LinEI scales to high dimensions (in term of d) better
than LinUCB and LinTS; in terms of computations, LinEI is also significantly cheaper than
both LinUCB and LinTS. Our source code is publicly available at https://github.com/
Tran-TheHung/Expected-Improvement-for-Contextual-Bandits.

• For the general reward function, we prove that, under standard assumptions (see section
4.1), our NeuralEI algorithm is able to achieve Õ(d̃

√
T ) regret, where d̃ is the effective

dimension of a neural tangent kernel matrix and T is the number of rounds. The regret
bound of NeuralEI has the same order as those of NeuralUCB [43] and NeuralTS [42].

• Finally, we demonstrate the performance of our proposed EI-based algorithms against
UCB and TS based approaches and other baselines on various benchmark datasets. Our
experiments show that LinEI outperforms other baselines in the linear setting, and when the
reward function is non-linear, NeuralEI outperforms all baselines.

Under a theoretical perspective, we remark that the EI technique have not been well studied compared
to UCB and TS even in the Bayesian optimization setting. A key challenge of analyzing EI algorithms
theoretically comes from its improvement function involving nonlinear, nonconvex term. A notable
exception is the work in [11], which provides a convergence analysis of EI for Bayesian optimization
in the noise-free setting. Another work in [37] provides the convergence analysis of EI for Bayesian
optimization in the noisy setting. There are also several papers [35, 31] using EI to study the best-arm
identification problem (also known as “pure exploration”) which is a finite variant of Bayesian
optimization. However, none of these works provides the optimal convergence rate in their settings.
In contrast, our work is the first to show that EI can achieve the optimal convergence rate at least in
linear contextual bandit setting.
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2 Problem Setting

We consider the problem of K-arm contextual bandits. At time t = 1, 2, ..., the agent observes K
contextual vectors xi,t ∈ Rd, then selects an arm a(t) and receives a reward ra(t),t which has a
general form as follows:

ra(t),t = h(xa(t),t) + ξa(t),t,

where h is an unknown reward mean function satisfying 0 ≤ h(x) ≤ 1 for any x ∈ Rd, and
ξa(t),t is a zero mean, conditionally R-subGaussian noise with a constant R ≥ 0, i.e., ∀λ ∈
R,E[eλξa(t),t |{xi,t}Ki=1] ≤ exp(λ

2R2

2 ). In our setting, we assume that these context vectors may be
chosen by an adversary in an adaptive manner after observing the arms played and their rewards up
to time t− 1. For the unknown function h, we consider two cases as follows:

• The reward function h is linear, i.e., h(xt,i) = xT
t,iθ

∗, where θ∗ ∈ Rd is fixed but unknown
parameters. Without loss of generality, we here assume that ||xi,t|| ≤ 1, ||θ∗|| ≤ 1.

• The reward function h is modelled by a fully connected neural network with depth L ≥ 2
defined recursively by

f(x; θ) =
√
mWLσ(WL−1σ(...σ(W1x))),

where σ(x) := max{x, 0} is the ReLU activation, θ = (vec(W1); ...; vec(WL)) ∈ Rp is the
collection of parameters of the neural network with p = dm+m2(L− 2) +m which is
the number of parameters of the network. Without loss of generality, we assume that the
width of each hidden layer is the same (i.e., m) for convenience in analysis. We denote the
gradient of the neural network function by g(x; θ) = ▽θf(x; θ) ∈ Rp.

Performance Measure. Let a∗(t) denote the optimal arm at time t. The objective is to minimize
the cumulative regret R(T ) =

∑T
t=1(x

T
a∗(t),tθ

∗ − xT
a(t),tθ

∗).

3 The LinEI algorithm for linear bandits

In this section, we design a provable version of EI algorithm for linear bandits. To do this, we make
some assumptions on the prior distribution of the reward function before defining a form of the
expected improvement.

Prior and Posterior Distributions. Inspired from the design of priors of the reward function
like TS algorithm [3], we assume that the reward ri,t of each arm i follows a Gaussian distribution
N (x⊤

i,tθ
∗, v2), where the variance v2 is a free parameter (possibly time-dependent) that can be set

specific to an algorithm. Let

X(t) = λI +

t−1∑
j=1

xa(j),jx
⊤
a(j),j

θ̂t = X(t)−1(

t−1∑
j=1

xa(j),jra(j),j).

Then if we assume that the prior for θ∗ at time t is given by N (θ̂t, v
2X−1(t)), then the posterior

distribution of θ∗ at time t+ 1 is N (θ̂t+1, v
2X−1(t+ 1)) ( see the proof in Appendix A.1 in [3]).

Expected Improvement. We now use this posterior distribution update to define the form of the
expected improvement of each arm in contextual bandits. We denote r+t = maxi∈K{xT

i,tθ̂t} which is
the largest mean estimate of reward among all arms at time t. We define the expected improvement
of an arm i at time t as

αEI
i,t = Eµ∼N (θ̂t,v2

tX(t)−1)[max{0, x⊤
i,tµ− r+t }], (1)

This form is similar to those of EI in the case of the multi-arm bandit [31] and in the case of Bayesian
optimization [37], but for contextual bandits. The αEI

i,t value measures the potential of arm i to
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Algorithm 1 The Linear Expected Improvement Algorithm (LinEI)
Input: Parameters C0, β

1: for t = 1 to T do
2: Observe contexts {xi,t}Ki=1

3: Set a(t) := argmaxi∈Kα
EI
i,t , ã(t) = argmaxi∈K{x⊤

i,tθ̂t}
4: if αEI

a(t),t ≥
C0

tβ
then

5: a(t) = a(t)
6: else
7: a(t) = ã(t)
8: end if
9: Play arm a(t), and observe reward ra(t),t

10: Update X(t+ 1) = λId +
∑t

j=1 xa(j),jx
⊤
a(j),j , θ̂t+1 = X(t+ 1)−1(

∑t
j=1 xa(j),jra(j),j)

11: end for

improve upon an incumbent. Here we define the incumbent as the largest posterior reward mean r+t
at time t. In Bayesian optimization, the incumbent is usually selected as the best reward value so
far [11], or the largest reward mean so far [37]. In our setting with contextual bandits, we choose
the latter for convenience in analysis. We also note that the EI form here can not be considered as
an expected version of the TS in [3]. Even though the expected version of TS may be considered as
Eµ∼N (θ̂t,v2

tX(t)−1)x
⊤
i,tµ, but the expectation operator cannot be taken inside the max operator as it is

a nonlinear function

The closed form for EI. Since µ ∼ N (θ̂t, v
2X(t)−1), the random variable xT

i,tµ is Gaussian

with mean xT
i,tθ̂t and standard deviation vsi,t, where we define si,t =

√
xT
i,tX(t)−1xi,t. Setting

zi,t =
x⊤
i,tθ̂t−r+t
vsi,t

, we can express the expected improvement in closed form as follows

αEI
i,t = vsi,t[zi,tΦ(zi,t) + ϕ(zi,t)], (2)

where Φ(.) and ϕ(.) are the standard normal cdf and pdf function of the normal distribution respec-
tively.

3.1 Proposed LinEI Algorithm.

We now use the above form of expected improvement to design our algorithm. The algorithm is
performed iteratively as follows. At iteration t, it selects the arm suggested by the EI strategy if the
expected improvement (measured by αEI

i,t of all arms) is higher than a threshold. Otherwise it simply
selects the arm suggested by the greedy strategy (corresponding to the arms whose posterior reward
mean is r+t ). The choice of thresholds plays an important role for convergence of our algorithm. We
propose to use an adaptive threshold in the form of C0

tβ
which is controlled by two parameters C0, β.

A relevant choice of parameters for convergence guarantee will be discussed in the next section. Our
algorithm is summarized in Algorithm 1.

We remark that the proposed algorithm can be considered as a variant of EI strategy with a simple
modification. This modification comes from our observation that at an iteration, when the EI value is
less than some threshold, using a greedy strategy is better than the EI strategy in the sense that the
instantaneous regret is smaller. This is our interesting observation about the relation between the EI
and the greedy strategy, and we use this in our algorithm design. Without the modification, a pure EI
algorithm can make the cumulative regret become unbounded in our theoretical analysis.

Comparison with the LinUCB algorithm [1] and the LinTS algorithm [3]. LinUCB looks for
the most optimistic value for an arm in an ellipsoid defined by a level set of the posterior rather than
integrating over it, and then chooses an arm that maximizes the optimistic value. LinTS generates a
sample µ from the posterior distributions N (θ̂t, v

2
tX(t)−1) of reward, and then chooses an arm that

maximizes xT
i,tµ. In contrast, LinEI could choose an arm whose maximum optimistic value is lower

unlike LinUCB, and/or choose an arm having lower xT
i,tµ unlike LinTS but for which there are more

possibilities for improvement.
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3.2 Theoretical Analysis

In this section, we provide the regret bound for the proposed LinEI algorithm.

The EI technique is used so far in BAI and BO problems to seek the best arm with the highest reward
mean. In such problems, the reward mean of each arm is fixed in advance. To leverage this property,
[31] uses the allocation matching technique to allocate enough number of samples to suboptimal
arms so that we can eliminate these arm with a high confidence. In BO, [11] uses the monotonicity
property of incumbent to derive directly an upper bound for the simple regret. However, in contextual
bandits where the best arm does not exist, and the mean reward of any arm can be different in different
iterations, the monotonicity property of incumbent disappears, and the allocation technique is also no
longer applicable. The proposed LinEI addresses these challenges. Moreover, it selects an arm based
on not only EI strategy but also a greedy strategy depending on a threshold function. This makes our
regret analysis different from the standard EI technique in [40],[29].

In our proof, we first extend several results in [11] in Bayesian optimization in a non-contextual
setting to our setting with contexts and noises. For instance, the following lemma is used to upper
bound and lower bound the expected improvement for each arm i.
Lemma 3.1. Pick 0 < δ < 1. Set Ii,t = max{0, xT

i,tθ
∗ − r+t }. Then with probability 1− δ

t2 we have

Ii,t − βtsi,t ≤ αEI
i,t ≤ Ii,t + (βt + vt)si,t

Here, βt = R
√
dln( t3δ ) + 1, si,t =

√
x⊤
i,tX(t)−1xi,t and vt is used instead of v. Then, depending

on the arm selection by our LinEI algorithm, we can upper bound the instantaneous regret rt =
x⊤
a∗(t),tθ

∗ − x⊤
a(t),tθ

∗ by two different ways. Combining them, we achieve an upper bound for the
instantaneous regret rt = x⊤

a∗(t),tθ
∗ − x⊤

a(t),tθ
∗ as in section C of our Supplementary Material:

rt ≤
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t + βtsa(t),t +

τ(βt

vt
)

τ(−βt

vt
)

C0

tβ
+

√
2ln(Rtβ) + 2

√
3C−2

0 dln(
t

δ
)vtsa(t),t,

with probability at least 1− δ. The function τ is defined as τ(z) = zΦ(z) + ϕ(z). Here, we note that
parameter vt plays the role of parameter v at time t we discussed above. In our analysis, vt is used to
eliminate the influence of βt so that βt

vt
is bounded as t grows.

Finally, by a relevant choice of parameters C0 and β, we achieve the regret bound for our proposed
algorithm as follows:

Theorem 3.2. Given any δ ∈ (0, 1). If vt = R
√
3dln t

δ + 1,
√
d ≤ C0 ≤ d and 0.5 ≤ β ≤ 3 then

with probability 1− δ, the cumulative regret of the LinEI algorithm is bounded as

R(T ) = O(d

√
T ln2(T )ln

T

δ
)

4 The NeuralEI algorithm for Neural Contextual Bandits

In this section, we extend our Algorithm 1 to the more general setting where the reward func-
tion is modelled by a fully connected neural network. Similar to the Neural Thompson Sam-
pling approach [42], our algorithm maintains a Gaussian distribution for each arm’s reward.
At time t, the posterior distribution of the reward of arm i is updated as follows. The mean
is set to the output of the neural network, denoted by f(xi,t; θt−1), and the variance is de-
fined as σ2

i,t = λg⊤(xi,t; θt−1)U
−1
t−1g(xi,t; θt−1)/m, where the matrix U−1

t is updated as Ut =

Ut−1+g(xa(t),t; θt)g
⊤(xa(t),t; θt)/m and parameter θt is the solution to the following minimization

problem:

minθ

t∑
i=1

[f(xa(i),i;θ)− ra(i),i]
2/2 +mλ||θ − θ0||22/2, (3)

where θ0 is randomly initialized network parameter. We can adapt gradient descent algorithms to
solve this problem with step size η and total number of iterations J like the gradient descent algorithm
of [43].
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Algorithm 2 Neural Expected Improvement Algorithm (NeuralEI)
Input: Number of rounds T , exploration variance ν, network width m, regularization parameter λ
and parameters C0, β

1: Set U0 = λI
2: for t = 1 to T do
3: Set a(t) := argmaxi∈[K]α

EI
i,t , ã(t) = argmaxi∈[K]{f(xi,t; θt−1)}

4: if αEI
a(t),t ≥

C0

tβ
then

5: a(t) = a(t)
6: else
7: a(t) = ã(t)
8: end if
9: Play arm a(t), and observe reward ra(t),t

10: Set θt to be the output of gradient descent for solving Eq(3)
11: Ut = Ut−1 + g(xa(t),t; θt)g

⊤(xa(t),t; θt)/m
12: end for

Expected Improvement for Neural Contextual Bandits. We now define the form of the expected
improvement in this setting. At each time step t, we denote f+

t = maxi∈[K]{f(xi,t; θt−1)} which
is the highest mean estimate of f(x, θt−1) among all arms at time t. We define the expected
improvement value of an arm i at time t as

αEI
i,t = Ef̃i,k∼N (f(xi,t;θt−1),ν2σ2

i,t)
[max{0, f̃i,k − f+

t }].

Further, by setting zi,t =
f(xi,t;θt−1)−f+

t

νσi,t
, the above expectation can be computed analytically as

follows

αEI
i,t = νσi,t[zi,tΦ(zi,t) + ϕ(zi,t)] (4)

Our NeuralEI algorithm is given in Algorithm 2. It starts by initializing θ0 = (vec(W1); ...; vec(WL)),
where for each 1 ≤ l ≤ L − 1,Wl = (W, 0; 0,W ), each entry of W is generated independently
from N(0, 4/m); WL = (w⊤,−w⊤), each entry of w is generated independently from N(0, 2/m).
NeuralEI extends our LinEI algorithm to the setting where the reward function h is modelled by a
fully connected neural network.

4.1 Regret Analysis

In this section, we provide a regret analysis of the NeuralEI algorithm. We first provide necessary back-
ground on the neural tangent kernel (NTK) theory, which plays an important role in our analysis. Fol-
lowing a recent line of research [43, 42], we define the covariance between two data point x, y ∈ Rd

as follows: H̃(1)(x, y) = σ(1)(x, y) = x⊤y, A(l)(x, y) =

(
σ(l)(x, x) σ(l)(x, y)
σ(l)(x, y) σ(l)(y, y)

)
, σl+1(x, y) =

2E(u,v)∼N(0,A(l)(x,y))[σ(u)σ(v)], H̃(l+1)(x, y) = 2H̃(l)(x, y)E(u,v)∼N(0,A(l)(x,y))[σ
′(u)σ′(v)] +

σ(l+1)(x, y). Similar to [43, 42], we assume that the number of rounds T is known and denote the
neural tangent kernel (NTK) matrix H ∈ RTK×TK based on all contextual vectors {xt,k}t∈[T ],k∈[K].
Renumbering {xt,k}t∈[T ],k∈[K] as {xi}i=1,...,TK , then each entry Hij is defined as

Hij = (H̃(L)(xi, xj) + σ(L)(xi, xj))/2, (5)

for all i, j ∈ [TK]. Based on the above definition, we impose the following assumption on the
contexts generated by the adversary and the corresponding NTK matrix H .

Assumption 4.1. Let H be defined in Eq(5). There exists λ0 > 0 such that H ≥ λ0I . In addition,
for any t ∈ [T ], k ∈ [K], ||xt,k||2 = 1 and [xt,k]j = [xt,k]j+d/2.

Remark 1. Compared to Algorithm 1 for linear bandits, our Algorithm 2 needs an additional
Assumption 1 to guarantee the convergence. The assumption that the NTK matrix is positive definite
has been considered in prior work on NTK which is a mild condition and also imposed in other
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related works [4, 16, 43, 42]. The assumption on contexts ensures that f(xi,t; θ0) = 0 for any
i ∈ [K], t ∈ [T ].

The NTK technique builds a connection between deep neural networks and kernel methods. It
enables us to adapt some complexity measures for kernel methods to describe the complexity of the
neural network through the notation of the effective dimensions as defined in [43, 42]. The effective
dimension d̃ of matrix H with regularization parameter λ is defined as d̃ = log det(I+H/λ)

log(1+TK/λ) .

Using these notations, we are now ready to present the second main result of the paper. Let
a∗(t) = argmaxi∈[K]E[ri,t] be the optimal action at round t that maximizes the expected reward, we

define the expected cumulative regret after T iterations as R(T ) = E[
∑T

t=1(ra∗(t),t − ra(t),t)]. Then,
we achieve the following upper regret bound for our Algorithm 2 by combining our EI techniques for
LinEI with NTK techniques. A completed proof is provided in Supplementary Material.
Theorem 4.2. Under Assumption 1, set the parameters in Algorithm 2 as λ = 1 + 1/T ,

ν = B + R
√

d̃log(1 + TK/λ) + 2 + 2log(1/δ), where B = max{1,
√
2h⊤H−1h} with h =

(h(x1), ..., h(xTK))⊤. If
√

d̃ ≤ C0 ≤ d̃, β ≥ 2, and the network width m satisfies m ≥
poly(γ, T,K,L, log(1/δ)), then with probability at least 1− δ, the regret of Algorithm 2 is bounded
as

R(T ) ≤ O(d̃
√
βlog(1 + TK)log(T )T )

Remark 2. The regret bound depends on the parameter β. The best choice is β = 2 that tightens the
regret. Theorem 4.2 implies the regret of NeuralEI is on the order of Õ(d̃

√
T ). This result matches

the regret bound of NeuralUCB ([43]), NeuralTS ([42]), as well as of [13]. The effective dimension
d̃ measures how quickly the eigenvalues of H diminish, and only depends on T logarithmically in
several special cases ([38]), according to [43]. Furthermore, [42] shows that d̃ can be upper bounded
if all contexts are nearly on some low-dimensional subspace of the RKHS space spanned by NTK.
Currently, [21] gives an explicit sublinear regret bound for a neural network based UCB algorithm.
However, their solution requires that contexts lie on on the d-dimensional hyper-sphere. Compared to
these works, our EI based results may be of independent interest.

Remark 3. Similar to most of existing results in neural bandits, our results require a large value of
m. This is rooted in the current deep learning theory based on the neural tangent kernel.

4.2 Technical Challenges

While the proof of NeuralEI follows the same lines as that of LinEI, we emphasize several key
differences. First, we define filtration Ft−1 as the union of history until time t− 1, and the contexts
at time t. Given a time t, we define an event Eσ

t as follows:

Eσ
t = {ω ∈ Ft : ∀i ∈ [K], |f̃i,t − f(xi,t; θt−1)| ≤ ctνσi,t},

where ct =
√
4logt+ 2logK.

Similarly, we define an event Eµ
t as follows:

Eµ
t = {ω ∈ Ft : ∀i ∈ [K], |f(xi,t; θt−1)− h(xt,k)| ≤ νσi,t + ϵ(m)},

where ϵ(m) is defined as in [42].

Based on the definitions of event Eσ
t and Eµ

t , we achieve two different ways to lower bound and upper
bound the expected improvement as follows:
Lemma 4.3. Assume that the event Eµ

t holds. Set Ji,t = max{0, h(xi,t) − f+
t }. Then for every

i ∈ [K], we have
Ji,t − νσi,t − ϵ(m) ≤ αEI

i,t ≤ Ji,t + νσi,t + ϵ(m).

Lemma 4.4. Assume that the event Eσ
t holds. Set Ii,t = max{0, f̃i,t − f+

t }. Then for every i ∈ [K],
we have

Ii,t − ctνσi,t ≤ αEI
i,t ≤ Ii,t + ν(ct + 1)σi,t.
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While Lemma 4.3 is an adaptation of Lemma 3.1 to neural contextual bandits, Lemma 4.4 is a novel
result compared to the regret analysis in our Section 3.1 for linear bandits. Challenges of analyzing
the regret of NeuralEI come from the fact that there exists additionally a factor ϵ(m) in 4.3. Compared
to LinEI, it is hard to analyze directly the regret h(xa∗(t),t)− h(xa(t),t). We divide the analysis into
two cases: if σa∗(t),t ≤ ϵ(m), we can follow the technique as in LinEI. Otherwise, we use another
way to bound the regret using a novel result as we mentioned in the main paper. Please see Lemma
D.11 in the appendix for details.

5 Related Works and Discussion

Given the vast literature on bandit algorithms, we restrict our review to linear bandits and neural
contextual bandits.

Linear Contextual Bandit. A lower bound of Ω(d
√
T ) for linear bandits was given in [15], when

the number of arms is allowed to be infinite. [1] analyze a UCB-style algorithm and provide a regret
upper bound O(dlog(T )

√
T +

√
dT log(T/δ)). Compared to this work, the regret of our proposed

LinEI has an additional
√

lnT , however, it still matches the information theoretic lower bound in this

setting. When the number of arms K is finite, [14] achieve a regret bound of O(
√
Tdln3(KT lnT )/δ)

with probability at least 1− δ. [10] provides an algorithm based on exponential weights, with regret
of order O(d

√
T logK). These algorithms may not be effective when the number of arms K is large.

For example, when K is exponential in d, the regret bound of [14] would become Õ(d2
√
T ) showing

a quadratic growth in d.

The Thompson Sampling algorithm [3] and an alternative given in [2] bear an additional
√
d in the

regret bound. Very recently, [22] improved this regret bound of TS in some cases by integrating a
doubly robust estimator with TS. However, this work requires additional significant computations
and their setting is limited in independent contexts. In contrast, our EI-based algorithm achieves the
optimal order of d even in a general setting where the contexts may be controlled by an adaptive
adversary.

Another approach for linear bandits is the Information Directed Sampling (IDS) which was introduced
in [34]. It provides an action-selection mechanism by minimizing the information ratio between the
squared expected regret and the mutual information between optimal action and the next observation
over all action sampling distributions. IDS obtains a performance improvement over TS and UCB
algorithms in some cases, but has heavy sampling requirements. It has been shown in their experiments
that IDS requires significantly more compute time than Thompson sampling and UCB algorithms.
Recently, [5] provided a modification of the arm scoring rule of IDS to reduce computations. However,
both [34] and [5] only provide the bounds on expected regret. In contrast, our work provides regret
bounds in terms of cumulative regret which is tighter than expected regret.

Neural Contextual Bandit. Neural contextual bandits are becoming attractive due to the current
advancement in optimization and generalization of deep neural networks [4, 16]. Neural contextual
bandits have been considered in both popular techniques UCB [43] and Thompson Sampling [42].
Currently, [6] proposes a novel neural exploration strategy and their solution achieves a sublinear
regret on T . Compared to all existing works in this sub-field, our EI based algorithm is new, and may
be of independent interest.

Due to space limit, we will add additional related works in Section B of Supplementary Material.

6 Experiments

6.1 Linear Bandits

In this subsection, we assess the performance of our LinEI algorithm on several benchmark datasets
including covertype, magic, avila, dry bean, statlog, letter, pendigits, all from UCI
[17]. See our Table for details. We compare the LinEI with methods designed for linear bandits
including: LinTS [3], LinUCB [1], Linear Epsilon Greedy for the linear reward, LinIDS [34] for
linear bandits. To transform these classification problems into multi-armed bandits, we adapt the
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Table 1: Characteristics of benchmark datasets used in Section 6.

Dataset letter pendigits covertype avila magic dry bean statlog
Classes (K) 26 10 7 12 2 7 7
Feature Dimension 17 16 54 10 10 16 8
Dataset size 20000 10992 581012 20867 19020 13611 58000

Figure 1: Comparison of our proposed LinEI and baseline algorithms in linear bandits.

disjoint models to build a context feature vector for each arm: given an input feature x ∈ Rd of
a k-class classification problem, we build the context feature vector with dimension kd as x1 =
(x; 0; ...; 0), x2 = (0;x; ...; 0), ..., xk = (0; 0...;x). The algorithm generates a set of predicted reward
and pulls the greedy arm. For these classification problems, if the algorithm selects a correct class by
pulling the corresponding arm, it will receive a reward as 1, otherwise 0. The cumulative regret over
time horizon T is measured by the total mistakes made by the algorithm.

We set the time horizon of our algorithm to 10000 for all data sets. In the experiments, we shuffle all
datasets randomly. For (λ, ν) used in LinUCB and LinTS and our algorithm, we set λ = 1 following
previous works and do a grid search of ν ∈ {1, 0.1, 0.01} to select the parameter with the best
performance. All experiments are repeated 10 times, and the average with standard error are reported.
For LinIDS, we use the number of samples M = 100. For Linear Epsilon Greedy, we use ϵ = 0.1.
For our LinEI algorithm, we can choose any value C0 ∈ [

√
d, d] and β ∈ [0.5, 3]. For LinEI, we set

C0 =
√
d and β = 2.

Figure 1 shows the total regret of all algorithms for datasets bean, covertype and statlog. The
Linear Epsilon Greedy performs the worst. While LinUCB, LinTS and LinIDS are competitive,
all these methods are significantly outperformed by the proposed algorithm. This difference in
performance is because of the strategy used by each method. Due to space limit, the additional results
on magic, pendigits, letter, and avila are shown in Section A of Supplementary Material.
Our results on various datasets confirm that the exploration of the expected improvement is effective
in practice. This also is widely observed in Bayesian optimization.

6.1.1 Comparison of LinUCB, LinTS and LinEI on a large-scale multi-label dataset

Figure 2: Comparison of LinUCB, LinTS and our proposed LinEI on a large-scale multi-label dataset.

We now compare our proposed LinEI against LinUCB and LinTS on the eurlex-4k dataset which is a
large multi-label dataset [8]. It contains data with 5000 features and 3993 labels. It corresponds to a
contextual bandit problem with 3993 actions and the dimension of context is 5000 + 3993 = 8993
when mapped to our setting. This can be considered as a contextual bandit problem with large action

9



Figure 3: Comparison of NeuralEI and baseline algorithms on real-world datasets.

space and with very high dimensions. Due to the heavy computation, we run algorithms on only
3000 datapoints from the test set. Our experimental results show that LinEI scales better to high
dimensions and to large action space (see our Figure 2). This can be explained as the regret of LinEI
is better than that of LinTS by a factor

√
d while LinUCB is an over- exploration strategy in high

dimensions. In terms of required computations, LinEI is significantly cheaper than LinUCB and
LinTS. Please see Section A.2 of the supplementary material for details. Due to space limit, we will
add additional comparisons in term of dimension d in Section A.1 of Supplementary Material.

6.2 Neural Bandits

We compare the proposed NeuralEI with baselines including: LinUCB [1], our LinEI for linear bandits
problem, Neural Epsilon Greedy, NeuralUCB [43], NeuralTS [42]. We do the same classification
problems as the experiments in subsection Linear Bandits. For methods using the neural network,
we use one-hidden layer neural networks with 100 neurons to model the reward function. During
posterior updating, gradient descent is run for 100 iterations with learning rate 0.001. For Neural
UCB/Thompson Sampling and Neural EI, we use a grid search on λ ∈ {1, 101, 10−2, 10−3} and
ν ∈ {10−1, 10−2, 10−3, 10−4, 10−5} as in [43] and [42]. We consider our algorithm on both
synthetic datasets and real-world datasets. Due to space limit, we will provide results on synthetic
datasets in Section A of Supplementary Material.

Real-world Datasets. Similar to the subsection Linear Bandit, we build the context feature vector
with dimension kd as x1 = (x; 0; ...; 0), x2 = (0;x; ...; 0), ..., xk = (0; 0...;x). We also estimate
our algorithm on datasets bean, covertype and statlog. Figure 3 show our results in the case
of the neural bandits problem. Neural-based methods perform better because they can capture
the nonlinearity of the underlying reward function. In real-datasets, while neural-based methods
outperform LinEI and LinUCB for datasets covertype and statlog, these methods are not sample-
efficient for learning the reward function of dataset bean. Perhaps, the reward function for dataset
bean is linear. However, in all cases, our NeuralEI algorithm performs better than other neural-based
methods. This suggests that using the expected improvement strategy is effective in both linear
bandits and neural contextual bandits.

7 Conclusion

We introduced and formalized Expected Improvement as a new strategy for contextual bandits. We
proposed two EI-based algorithms and analyzed them theoretically. The first algorithm assumes the
reward function to be linear whilst the second algorithm is designed for the case when the reward
function is general and can be modelled by a deep neural network. Our promising empirical results
on real-world datasets suggested that our EI-based algorithms work well in practice compared to
other approaches especially in high dimensions. We believe our work would be useful for further
improvements and extensions. For example, extending EI to the reinforcement learning setting is an
interesting open problem.
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Supplementary Material
A Additional Experiments

As mentioned in the main paper, in this section, we provide several additional experiments for linear
bandits on datasets: pendigit, avila, magic and letter. Figure 4 also showed that our proposed LinEI

Figure 4: Comparison of LinEI and baseline algorithms on datasets.

algorithm outperforms LinUCB, LinTS and LinIDS and Linear Epsilon Greedy.

A.1 Comparing LinEI with LinUCB and LinTS in terms of dimensions d

Figure 5: Comparison of our proposed LinEI and baseline algorithms with different dimensions.

Table 2: The average computation time (second)

Dimension LinUCB LinTS LinEI
d = 10 0.018 0.015 0.024
d = 100 0.46 0.73 0.12
d = 1000 1.37 2.32 0.26

To demonstrate that our proposed LinEI scales to higt dimensions better than LinUCB, LinEI, we
build a contextual bandit in linear setting as follows. We fix K = 100 actions. The context vectors
are chosen uniformly at random from the unit ball. The reward function r = xT θ∗, where θ∗ is
generated a priori. Using this setting, we compared our LinEI with LinUCB and LinTS in a range of
dimensions d = 10, 100 and 1000. Our results show that

15



• LinEI scales to high dimensions better than LinUCB and LinTS. This can be explained
as the regret of LinEI is better than that of LinTS by a factor

√
d while LinUCB can be

considered as an over-explored strategy in high dimensions. See our Figure 5.
• Concerning the computation time, LinUCB faces a NP-hard problem at each iteration [3],

and thus spends more time for optimization especially in high dimensions. LinTS uses a
random sampling based heuristic and requires a a multivariate Gaussian sampling step at
each iteration. This is a high-dimensional multivariate Gaussian sampling problem [39]. It
has computational cost and memory requirements which can rapidly become prohibitive
in high dimension. In contrast, our LinEI can avoid both the NP-hard problem and the
high-dimensional Gaussian sampling problem. Thus, the computation cost of LinEI is
significantly cheaper in high dimensions. See our Table 2.

A.2 Comparing LinEI with LinUCB and LinTS on an Large-scale Multi-Label Dataset

We now compare our proposed LinEI against LinUCB and LinTS on the eurlex-4k dataset which is a
large multi-label dataset [8]. It contains data with 5000 features and 3993 labels. It corresponds to a
contextual bandit problem with 3993 actions and the dimension of context is 5000 + 3993 = 8993
when mapped to our setting. This can be considered as a contextual bandit problem with large action
space and with very high dimensions. Due to the heavy computation, we run algorithms on only
3000 datapoints from the test set. Our experimental results show that LinEI scales better to high
dimensions and to large action space (see our Figure 2). This can be explained as the regret of
LinEI is better than that of LinTS by a factor

√
d while LinUCB is an over- exploration strategy in

high dimensions. In terms of required computations, LinEI is significantly cheaper than LinUCB
and LinTS. The average-per iteration computation times of LinUCB, LinTS and LinEI are 1055.5s,
1496.2s and 181.3s respectively as shown in Table 3. This is because LinTS faces a high-dimensional
multivariate Gaussian sampling problem. LinUCB requires to maximize quadratic forms at every
round 1 ≤ t ≤ T : argmax xT

t,iθ, where i ∈ [K], and θ ∈ Ct, where Ct is the confident set at round
t. We note that θ has the same dimension as the input xt,i. This is an NP-hard problem as [1] has
mentioned in the Related Work section. When the input dimension is high, it is expensive to find
a maximum with a limited computational budget. In contrast, the proposed LinEI can avoid this
NP-hard problem as long as finding argmax αEI

i,t , where i ∈ [K] is solved. We can see that with a
not very large value of K, this is no problem.

Table 3: The average computation time (second)

Dataset LinUCB LinTS LinEI
Eurlex-4k 1055.5 1496.2 181.3

B Additional Related Works

Bayesian optimization. EI has been widely used in Bayesian optimization which is a non-
contextual problem. In contextual bandits we consider here, the mean reward of an arm is additionally
associated with a context which may be controlled by an adversary. It follows that the mean reward
for each arm can be different in each iteration depending on contexts, thus the notion of “best arm"
does not exist. Due to this, the framework of EI as in Bayesian optimization does not naturally extend
to contextual bandits. Moreover, our proposed algorithm in contextual bandits selects an arm based
on not only EI strategy but also a greedy strategy depending on a threshold function. This makes our
regret analysis different from the standard EI technique in [40],[29], and [37].

Nonlinear Bandits The works of [38] and [23] extended linear bandits to kernel bandits and
generalized linear bandits, respectively. However, they still required fairly restrictive assumptions on
the reward function compared to neural contextual bandits. Neural contextual bandits are becoming
attractive due to the current advancement in optimization and generalization of deep neural networks
[4, 16]. Most of existing algorithms for neural bandits used either UCB technique [43, 21], or
Thompson Sampling technique [42]. Currently, [6] proposed a novel neural exploration strategy and
their solution achieved a sublinear regret on T . Compared to all existing works in this sub-field, our
EI-based algorithm is new, and may be of independent interest.
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On the asymptotic regret. In [24], authors analyzed the asymptotic regret for linear bandits. While
showing that both optimism principle and Thompson sampling cannot be close to asymptotically
optimal in the setting of linear bandits. Currently, the work in [36] analyzed the asymptotic regret
for the contextual linear bandit problem which is similar to our setting. In their setting, context xt

are drawn i.i.d. from a context distribution. Different from these settings, we consider contextual
linear bandits where contexts may be controlled by an adversary. Further, we also consider the neural
contextual bandits which are more general than the linear bandit considered in [24] and [36]. To
our knowledge, the analysis of the asymptotic regret for neural contextual bandits is still an open
problem.

C Regret Analysis for LinEI Algorithm

C.1 Auxiliary Results

For our theoretical analysis for LinEI, we use following several auxiliary lemmas.
Lemma C.1. (Upper Bounds of a Hyperharmonic Series, [12]) Given a hyperharmonic series
pn =

∑n
t=1

1
tβ

, where n ∈ N. Then,

• pn < 1 + n1−β−1
1−β if β ≥ 0 and β ̸= 1,

• pn < 1 + ln(n) if β = 1

Lemma C.2 (Lemma 1 of [3]). For all t, 0 < δ < 1, with probability 1− δ
t2 , we have

∀i : |xT
i,tθ̂t − xT

i,tθ
∗| ≤ βtsi,t,

where βt = R
√
dln( t3δ ) + 1, and si,t =

√
xT
i,tX(t)−1xi,t.

Lemma C.3 (Lemma 3 of [14]). For T ≥ 2, we have
T∑

i=1

sa(t),t ≤ 5
√

dT ln(T ).

We note that except that Lemma C.2 and Lemma C.3 are used from the analysis of LinTS and
LinUCB, the following results are different from those of LinUCB and LinTS.

To derive the regret for our LinEI algorithm, we will need a lower bound and a upper bound of EI for
each arm i ∈ [K] as follows.

Lemma C.4. Pick 0 < δ < 1. Set Ii,t = max{0, xT
i,tθ

∗ − r+t }. Then with probability 1− δ
t2 we have

Ii,t − βtsi,t ≤ αEI
i,t ≤ Ii,t + (βt + vt)si,t.

Proof. If si(t) = 0 then αEI
i,t = Ii,t, which makes the result trivial. We now assume that si,t > 0.

Set q =
xT
i,tθ

∗−r+t
si,t

and u =
xT
i,tθ̂t−r+t

si,t
. Set τ(z) = zΦ(z) + ϕ(z). Then we have that

αEI
i,t = vtsi,tτ(

u

vt
).

By Lemma C.2, we have that |u − q| ≤ βt with probability 1 − δ. As τ ′(z) = Φ(z) ∈ [0, 1], τ is
non-decreasing and τ(z) ≤ 1 + z for z > 0. Hence,

αEI
i,t ≤ vtsi,tτ(

max{0, q}+ βt

vt
)

≤ vtsi,t(
max{0, q}+ βt

vt
+ 1)

= Ii,t + (βt + vt)si,t
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If Ii,t = 0 then the lower bound is trivial as αEI
i,t is non-negative. Thus suppose Ii,t > 0. Since

αEI
i,t ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,

αEI
i,t ≥ vtsi,tτ(

q − βt

vt
)

≥ vtsi,t(
q − βt

vt
)

= Ii,t − βtsi,t

C.2 Proof for Theorem 3.2

We now derive an upper bound for the cumulative regret R(T ). To do this, we upper bound
rt = xT

a∗(t),tθ
∗ − xT

a(t),tθ
∗ for every t ∈ [T ]. We break down rt into two terms as follows:

rt = xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗

= xT
a∗(t),tθ

∗ − r+t︸ ︷︷ ︸
Term 1

+ r+t − xT
a(t),tθ

∗︸ ︷︷ ︸
Term 2

,

where r+t = maxi∈[K]{xT
i,tθ̂t}. We will upper bound Term 1 and Term 2 according to two different

cases of a(t), either at = argmaxi∈Kα
EI
i,t , or at = argmaxi∈K{x⊤

i,tθ̂t}

C.3 Considering the case at = argmaxi∈Kα
EI
i,t

We note that this case happens when αEI
a(t),t ≥

C0

tβ
.

Bounding Term 1
Lemma C.5. Pick δ ∈ (0, 1). Then with probability at least 1− δ

t2 we have

xT
a∗(t),tθ

∗ − r+t ≤
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t.

Proof. First, we consider sa∗(t),t > 0. If xT
a∗(t),tθ

∗ < r+t then the lemma will be trivial. We
now consider xT

a∗(t),tθ
∗ ≥ r+t . Following the derivation of the acquisition function αEI , we have

αEI
a∗(t),t = vtsa∗(t),tτ(

xT
a∗(t),tθ̂t−r+t
vtsa∗(t),t

). Further, we also have
xT
a∗(t),tθ̂t−r+t
vtsa∗(t),t

≥ −βt

vt
with probability

1 − δ
t2 . It is because xT

a∗(t),tθ̂t − xT
a∗(t),tθ

∗ ≥ −βtsa∗(t),t with probability 1 − δ
t2 and we are

considering the case when xT
a∗(t),tθ

∗ ≥ r+t . Therefore, αEI
a∗(t),t ≥ vtτ(

−βt

vt
)sa∗(t),t with probability

1− δ
t2 .

Now, we combine inequalities αEI
a∗(t),t ≥ vtτ(

−βt

vt
)sa∗(t),t and αEI

a∗(t),t ≥ Ia∗(t),t − βtsa∗(t),t which
is proven in Lemma C.4, we obtain the following inequality:

Ia∗(t),t ≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a∗(t),t (6)

Here we use the fact τ(z) = z+ τ(−z) for z = βt

vt
. Thus, with probability at least 1− δ

t2 we achieve

xT
a∗(t),tθ

∗ − r+t ≤ Ia∗(t),t

≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a∗(t),t
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≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a(t),t

≤
τ(βt

vt
)

τ(−βt

vt
)
(max{0, xT

a(t),tθ̂t − r+t }+ (βt + vt)sa(t),t)

≤
τ(βt

vt
)

τ(−βt

vt
)
(max{0, xT

a(t),tθ̂t + βtsa(t),t − r+t }+ (βt + vt)sa(t),t)

≤
τ(βt

vt
)

τ(−βt

vt
)
(max{0, βtsa(t),t}+ (βt + vt)sa(t),t)

=
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t,

where the first inequality holds by the definition of the function It. The second one comes from
Eq(9). The third one holds by the property of the chosen point a(t) = argmaxi∈[K]α

EI
i,t . The fourth

inequality holds due to Lemma C.2. The sixth inequality holds due to the fact that xT
a(t),tθ̂t ≤ r+t .

If sa∗(t),t = 0 then by definition of αEI
a∗(t),t, we have αEI

a∗(t),t = Ia∗(t),t. We have Ia∗(t),t =

αEI
a∗(t),t ≤ αEI

a(t),t, where we use the definition αEI
a(t),t = maxi∈[K]α

EI
i,t . Similar to the above proof,

we obtain xT
a∗(t),tθ

∗−r+t ≤ (2βt+vt)sa(t),t ≤
τ(

βt
vt

)

τ(− βt
vt

)
(2βt+vt)sa(t),t because

τ(
βt
vt

)

τ(− βt
vt

)
≥ τ(0)

τ(0) = 1.

Thus, the lemma holds.

Bounding Term 2

Lemma C.6. Pick a δ ∈ (0, 1). If vt = R
√
3dln( tδ ) + 1, then with probability 1− δ

t2 we have

r+t − xT
a(t),tθ

∗ ≤

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)vtsa(t),t + βtsa(t),t.

Proof. We have

αEI
a(t),t = (xT

a(t),tθ̂t − r+t )Φ(
xT
a(t),tθ̂t − r+t

vtsa(t),t
) + vtsa(t),tϕ(

xT
a(t),tθ̂t − r+t

vtsa(t),t
)

≤ vtsa(t)(t)ϕ(
xT
a(t),tθ̂t − r+t

vtsa(t),t
)

= vtsa(t),t
1

2
√
π

exp(−1

2
(
xT
a(t),tθ̂t − r+t

vtsa(t),t
)2),

where the first inequality holds due to the definition of action a(t). The second equality holds due to
the definition of αEI

a(t),t. The second inequality comes from the fact that xT
a(t),tθ̂t ≤ r+t . The third

equality holds due to the definition of function ϕ(.).

From the last inequality, we obtain

|xT
a(t),tθ̂t − r+t | ≤

√
2ln(

vtsa(t),t

αEI
a(t),t

)vtsa(t),t.

By applying the facts αEI
a(t),t ≥

C0

tβ
, sa(t),t ≤ 1, and vt = R

√
3dln( tδ ) + 1 to the above inequality,

we have

|xT
a(t),tθ̂t−r+t | ≤

√√√√
2ln(

(R
√
3dln( tδ ) + 1)tβ

C0
)vtsa(t),t =

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)vtsa(t),t.
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Finally, we have

r+t − xT
a(t),tθ

∗ = (r+t − xT
a(t),tθ̂t) + (xT

a(t),tθ̂t − xT
a(t),tθ

∗)

≤

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)vtsa(t),t + βtsa(t),t,

where the inequality holds by using Lemma C.2.

C.4 Considering the case a(t) = argmaxi∈[K]{xT
i,tθ̂t}

Bounding Term 1
Lemma C.7. Pick δ ∈ (0, 1). Then with probability at least 1− δ

t2 we have

xT
a∗(t),tθ

∗ − r+t ≤
τ(βt

vt
)

τ(−βt

vt
)

C0

tβ
.

Proof. If sa∗(t),t = 0 then by definition of αEI
a∗(t),t, α

EI
a∗(t),t = Ia∗(t),t. We have Ia∗(t),t = αEI

a∗(t),t ≤
αEI
a(t),t ≤

C0

tβ
.

We now consider sa∗(t),t > 0. If xT
a∗(t),tθ

∗ < r+t then the lemma will be trivial. We now consider
xT
a∗(t),tθ

∗ ≥ r+t . Following the derivation of the acquisition function αEI , we have αEI
a∗(t),t =

vtsa∗(t),tτ(
xT
a∗(t),tθ̂t−r+t
vtsa∗(t),t

). Further, we also have
xT
a∗(t),tθ̂t−r+t
vtsa∗(t),t

≥ −βt

vt
with probability 1− δ

t2 . It is

because xT
a∗(t),tθ̂t − xT

a∗(t),tθ
∗ ≥ −βtsa∗(t),t with probability 1 − δ

t2 and we are considering the

case when xT
a∗(t),tθ

∗ ≥ r+t . Therefore, αEI
a∗(t),t ≥ vtτ(

−βt

vt
)sa∗(t),t with probability 1− δ

t2 .

Now, we combine inequalities αEI
a∗(t),t ≥ vtτ(

−βt

vt
)sa∗(t),t and αEI

a∗(t),t ≥ Ia∗(t),t − βtsa∗(t),t which
is proven in Lemma C.4, we obtain the following inequality:

Ia∗(t),t ≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a∗(t),t (7)

Here we use the fact τ(z) = z + τ(−z). Finally, with probability at least 1− δ
t2 we achieve

xT
a∗(t),tθ

∗ − r+t ≤ Ia∗(t),t

≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a∗(t),t

≤
τ(βt

vt
)

τ(−βt

vt
)
αEI
a(t),t

≤
τ(βt

vt
)

τ(−βt

vt
)

C0

tβ

where the first inequality holds by the definition of the function It. The second one comes from Eq(7).
The third one holds by the definition of a(t). The fourth one holds because αEI

a(t),t ≤
C0

tβ
.

Bounding Term 2
Lemma C.8. Pick a δ ∈ (0, 1). Then with probability 1− δ

t2 we have

r+t − xT
a(t),tθ

∗ ≤ βtsa(t),t.
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Proof. By definition a(t) = argmaxi∈[K]{xT
i,tθ̂t}, we have r+t = xT

a(t),tθ̂t. By Lemma C.2, we have
r+t − xT

a(t),tθ
∗ ≤ βtsa(t),t. The lemma holds.

We now are ready to bound xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ for both cases of a(t).

Lemma C.9. For every 1 ≤ t ≤ T , with probability 1− δ
t2 we always have

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ ≤
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t +

√
2ln(Rtβ) + 6

√
C−2

0 dln(
t+ 1

δ
)vtsa(t),t +

+βtsa(t),t +
τ(βt

vt
)

τ(−βt

vt
)

C0

tβ

Proof. Following Algorithm 1, we consider two cases of a(t).

• if a(t) = argmaxi∈Kα
EI
i,t , then by combining Lemma C.5 and C.6 we have

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ = (xT
a∗(t),tθ

∗ − r+t ) + (r+t − xT
a(t),tθ

∗)

≤
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t

+

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)vtsa(t),t + βtsa(t),t

• if a(t) = argmaxi∈[K]{xT
i,tθ̂t}, the by combining Lemma C.7 and C.8 we have

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ = (xT
a∗(t),tθ

∗ − r+t ) + (r+t − xT
a(t),tθ)

≤
τ(βt

vt
)

τ(−βt

vt
)

C0

tβ
+ βtsa(t),t

For both cases of at, we always obtain the following upper bound for xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ as

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ ≤
τ(βt

vt
)

τ(−βt

vt
)
(2βt + vt)sa(t),t +

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)vtsa(t),t +

+βtsa(t),t +
τ(βt

vt
)

τ(−βt

vt
)

C0

tβ

Using vt = βt = R
√

dln( t3δ ) + 1, we obtain

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ ≤ 3
τ(1)

τ(−1)
βtsa(t),t +

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)βtsa(t),t +

+βtsa(t),t +
τ(1)

τ(−1)

C0

tβ

We now are ready to prove the correctness of Theorem 3.2.

Theorem C.10. Given any δ ∈ (0, 1). If
√
d ≤ C0 ≤ d and 0.5 ≤ β ≤ 3 then with probability 1− δ,

the cumulative regret of the Expected Improvement algorithm is bounded as

R(T ) = O(d

√
T ln2(T )ln

T

δ
).
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Proof. Using Lemma, for every 1 ≤ t ≤ T , we have

xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗ ≤ 3
τ(1)

τ(−1)
βtsa(t),t +

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)βtsa(t),t +

+βtsa(t),t +
τ(1)

τ(−1)

C0

tβ

Thus,

R(T ) =

T∑
t=1

(xT
a∗(t),tθ

∗ − xT
a(t),tθ

∗)

≤
T∑

t=1

[3
τ(1)

τ(−1)
βtsa(t),t +

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1)βtsa(t),t +

+βtsa(t),t +
τ(1)

τ(−1)

C0

tβ
]

=

T∑
t=1

[3
τ(1)

τ(−1)
+

√
2ln(Rtβ) + 2ln(

√
3C−2

0 dln(
t

δ
) + C−1

0 R−1) + 1]βtsa(t),t +

T∑
t=1

τ(1)

τ(−1)

C0

tβ

≤ [3
τ(1)

τ(−1)
+

√
2ln(RT β) + 2ln(

√
3C−2

0 dln(
T

δ
) + C−1

0 R−1) + 1]βT

T∑
t=1

sa(t),t +

T∑
t=1

τ(1)

τ(−1)

C0

tβ

≤ 5[3
τ(1)

τ(−1)
+

√
2ln(RT β) + 2ln(

√
3C−2

0 dln(
T

δ
) + C−1

0 R−1) + 1]βT

√
dT ln(T ) +

τ(1)

τ(−1)

T∑
t=1

C0

tβ
,

where in the second inequality, we use the facts that βt ≤ βT , vt ≤ vT as t ≤ T . In the third
inequality, we use Lemma C.3. We consider two cases:

• if β = 1 then by Lemma C.1,
∑T

t=1
1
tβ

≤ 1 + lnT . Hence, using the assumption that√
d ≤ C0 ≤ d, we get that C−2

0 d ≤ 1 and C0

∑T
t=1

1
tβ

≤ d(1 + lnT ). We recall that

βT = R
√
dln(T 3

δ ) + 1, and τ(1), τ(−1) are constant. Thus, R(T ) = O(d
√
T ln2(T )lnT

δ ).

• if β ̸= 1 then by Lemma C.1,
∑T

t=1
1
tβ

≤ 1 + T 1−β−1
1−β . Combining with the assumption

that 1/2 ≤ β ≤ 3, we consider two cases:

– if 1/2 ≤ β < 1, we have
∑T

t=1
1
tβ

≤ 1 + T 1−β−1
1−β ≤ 1 + 2(

√
T − 1). Hence,

C0

∑T
t=1

1
tβ

≤ d(1 + 2(
√
T − 1)). Thus, R(T ) = O(d

√
T ln2(T )lnT

δ ).

– if 1 < β ≤ 3, then
∑T

t=1
1
tβ

≤ 1 + T 1−β−1
1−β ≤ 1 and T β ≤ T 3. Thus, R(T ) =

O(d
√
T ln2(T )lnT

δ ).

Remark. We choose C0 ∈ [
√
d, d] to eliminate the term d in the expression

√
C−2

0 dln(Tδ ) and to

ensure that the term
∑T

i=1
C0

tβ
= O(d

√
T ). We choose β ≤ 3 to ensure that the order of R(T ) is the

same as the case when 1/2 ≤ β < 1. For β > 3, the higher β, the larger the cumulative regret is.

D Regret Analysis for NeuralEI Algorithm

In this section, we provide the regret analysis for the NeuralEI algorithm. We start with the definition
of the filtration Ft−1 as the union of history until time t− 1, and the contexts at time t. For any t, we
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define an event Eσ
t as follows:

Eσ
t = {ω ∈ Ft : ∀i ∈ [K], |f̃i,t − f(xi,t; θt−1)| ≤ ctνσi,t},

where ct =
√
4logt+ 2logK.

For any t, we define an event Eµ
t as follows:

Eµ
t = {ω ∈ Ft : ∀i ∈ [K], |f(xi,t; θt−1)− h(xt,k)| ≤ νσi,t + ϵ(m)},

where ϵ(m) is defined as in [42]:

ϵ(m) = C̄1T
2/3m−1/6λ−2/3L3

√
logm+ C̄2(1− η mλ)J

√
TL/λ

+ C̄3m
−1/6

√
logmL4T 5/3λ−5/3(1 +

√
T/λ)

Based on these notations, we state the following results from the previous works.

D.1 Auxiliary Lemmas

Lemma D.1 (Lemma 4.2 of [42]). For any t ∈ [T ], P(Eσ
t ) ≥ 1− t−2.

Lemma D.2 (Lemma 4.3 of [42]). Set η = C(mλ+mLT )−1, then we have P(Eµ
t ) ≥ 1− δ.

Lemma D.3 (Lemma B.9 of [42]). For any time t ∈ [T ], i ∈ [K] and any δ ∈ (0, 1), if the network
width m satisfies Condition 1, we have with probability at least 1− δ, that σi,t ≤ C4

√
L, where C4

is a positive constant.
Lemma D.4 (Lemma 4.4 of [42]). For any t ∈ [T ], i ∈ [K], we have P[r̃i,t + ϵ(m) > h(xi,t)|Ft] ≥
(4e

√
π)−1.

Lemma D.5 (Lemma 4.8 of [42]). Assume that the width of the neural network m satisfies

m ≥ Cmax{
√
λL−3/2[log(TKL2/δ)]3/2, T 6K6L6log(TKL/δ)max{λ−4

0 , 1}}
and

m[log(m)]−3 ≥ CTL12λ−1 +CT 7λ−8L18(λ+ LT )6 +CL21T 7λ−7(1 +
√

T/λ)6, where C is a
positive absolute constant.

Then η = C5(mλ+mLT )−1. With high probability 1− δ, for every i ∈ [K] we have

T∑
i=1

min{σat,t, 1} ≤
√
2λT (d̃log(1 + TK) + 1) + C6T 13/6

√
logmm−1/6λ−2/3L9/2,

where C5, C6 are absolute constants.

D.2 Proof for Theorem 4.2

We now are ready to derive the regret bound for NeuralEI algorithm. First, we need the following
results to lower bound and upper bound the EI acquisition function in the setting of neural contextual
bandits. We remark that the following Lemma D.6 is an adaptation of Lemma C.4 (in linear bandits)
to neural contextual bandits. The following Lemma D.7 is our novel result. Both Lemma D.6 and
Lemma D.7 provide the lower bounds and the upper bounds for the EI acquisition function, but follow
the different ways.

Lemma D.6. Assume that the event Eσ
t holds. Set Ii,t = max{0, f̃i,t − f+

t }. Then for every i ∈ [K],
we have

Ii,t − ctνσi,t ≤ αEI
i,t ≤ Ii,t + ν(ct + 1)σi,t.

Proof. If σi,t = 0 then αEI
i,t = Ii,t, which makes the result trivial. We now assume that σi,t > 0. Set

q =
f̃i,t−f+

t

σi,t
and u =

f(xi,t;θt−1)−f+
t

σi,t
. Set τ(z) = zΦ(z) + ϕ(z). Then we have that

αEI
i,t = νσi,tτ(

u

ν
).
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By Lemma D.1, we have that |u− q| ≤ ctν with probability 1− t−2. As τ ′(z) = Φ(z) ∈ [0, 1], τ is
non-decreasing and τ(z) ≤ 1 + z for z > 0. Hence,

αEI
i,t ≤ νσi,tτ(

max{0, q}+ ctν

ν
)

≤ νσi,t(
max{0, q}+ ctν

ν
+ 1)

= Ii,t + (ctν + ν)σi,t

If Ii,t = 0 then the lower bound is trivial as αEI
i,t is non-negative. Thus suppose Ii,t > 0. Since

αEI
i,t ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,

αEI
i,t ≥ νσi,tτ(

q − ctν

ν
)

≥ νσi,t(
q − ctν

ν
)

= Ii,t − ctνσi,t

Lemma D.7. Assume that the event Eµ
t holds. Set Ji,t = max{0, h(xi,t) − f+

t }. Then for every
i ∈ [K], we have

Ji,t − νσi,t − ϵ(m) ≤ αEI
i,t ≤ Ji,t + νσi,t + ϵ(m).

Proof. If σi,t = 0 then αEI
i,t = Ii,t, which makes the result trivial. We now assume that σi,t > 0. Set

q =
h(xi,t)−f+

t

σi,t
and u =

f(xi,t;θt−1)−f+
t

σi,t
. Set τ(z) = zΦ(z) + ϕ(z). Then we have that

αEI
i,t = νσi,tτ(

u

ν
).

By Lemma D.2, we have that |u − q| ≤ ν + ϵ(m)
σi,t

. As τ ′(z) = Φ(z) ∈ [0, 1], τ is non-decreasing
and τ(z) ≤ 1 + z for z > 0. Hence,

αEI
i,t ≤ νσi,tτ(

max{0, q}+ ν + ϵ(m)
σi,t

ν
)

≤ νσi,t(
max{0, q}+ ν + ϵ(m)

σi,t

ν
+ 1)

= Ji,t + νσi,t + ϵ(m)

If Ii,t = 0 then the lower bound is trivial as αEI
i,t is non-negative. Thus suppose Ii,t > 0. Since

αEI
i,t ≥ 0 and τ(z) ≥ 0 for all z, and τ(z) = z + τ(−z) ≥ z. Therefore,

αEI
i,t ≥ νσi,tτ(

q − ν − ϵ(m)
σi,t

ν
)

≥ νσi,t(
q − ν − ϵ(m)

σi,t

ν
)

= Ji,t − νσi,t − ϵ(m)

Next, we will use above results to bound h(xa∗(t),t)− h(xa(t),t). By NeuralEI algorithm, we will
need to bound h(xa∗(t),t)− h(xa(t),t) thought different ways depending on the definition of a(t).
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D.2.1 Considering the case a(t) = a(t)

Lemma D.8. Assume that the event Eσ
t holds. Then for every i ∈ [K], we have

f̃i,t − f+
t ≤ τ(ct)

τ(−ct)
(2ct + 1)νσa(t),t.

Proof. We provide the proof in Section E

Lemma D.9. Assume that the event Eµ
t holds. Then for every i ∈ [K] : νσi,t > ϵ(m), we have

h(xi,t)− f+
t ≤ (

τ(2)

τ(−2)
+ 1)(νσa(t),t + ϵ(m)).

Proof. We provide the proof in Section E

Lemma D.10. Assume that the event Eµ
t holds. Pick a δ ∈ (0, 1). Then with probability 1− δ we

have

f+
t − h(xa(t),t) ≤ (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ϵ(m).

Proof. We have

αEI
a(t),t = (f(xa(t),t; θt−1)− f+

t )Φ(
f(xa(t),t; θt−1)− f+

t

νσa(t),t
) + νσa(t),tϕ(

f(xa(t),t; θt−1)− f+
t

νσa(t),t
)

≤ νσa(t),tϕ(
f(xa(t),t; θt−1)− f+

t

νσa(t),t
)

= νσa(t),t
1

2
√
π

exp(−1

2
(
f(xa(t),t; θt−1)− f+

t

νσa(t),t
)2)

where the first inequality holds due to the definition of action a(t). The second equality holds due to
the definition of αEI

a(t),t. The second inequality comes from the fact that f(xa(t),t; θt−1) ≤ f+
t . The

third equality holds due to the definition of function ϕ(.).

From the last inequality, we obtain

|f(xa(t),t; θt−1)− f+
t | ≤

√
2log(

νσa(t),t

αEI
a(t),t

)νσa(t),t.

By using the condition that αEI
a(t),t ≥

C0

tβ
and the fact that σa(t),t ≤ C1

√
L with probability 1 − δ,

we have

|f(xa(t),t; θt−1)− f+
t | ≤

√
2log(C1C

−1
0

√
Lνtβ)νσa(t),t (8)

with probability 1− δ.

Finally, with probability 1− δ, we have

f+
t − h(xa(t),t) = f+

t − f(xa(t),t; θt−1) + f(xa(t),t; θt−1)− h(xa(t),t)

≤
√
2log(C1C

−1
0

√
Lνtβ)νσa(t),t + νσa(t),t + ϵ(m)

= (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ϵ(m),

where in the first inequality, we use the inequality Eq(8) and Lemma D.2

Lemma D.11. We assume that both Eσ
t and Eµ

t hold. Then,
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• if σa∗(t),t > ϵ(m), then

h(xa∗(t),t)−h(xa(t),t) ≤ (
τ(2)

τ(−2)
+1)(νσa(t),t+ϵ(m))+(

√
2log(C1C

−1
0

√
Lνtβ)+1)νσa(t),t+ϵ(m)

• if σa∗(t),t ≤ ϵ(m), then

h(xa∗(t),t)−h(xa(t),t) ≤
τ(ct)

τ(−ct)
ν(2ct+1)σa(t),t+(

√
2log(C1C

−1
0

√
Lνtβ)+1)νσa(t),t+(ν+ctν+1)ϵ(m)

Proof. We consider two cases:

• if σa∗(t),t > ϵ(m). Then, by Lemma D.9, we have

h(xa∗(t),t)− f+
t ≤ (

τ(2)

τ(−2)
+ 1)(νσa(t),t + ϵ(m)).

Thus,

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f+
t ] + [f+

t − h(xa(t),t)]

≤ (
τ(2)

τ(−2)
+ 1)(νσa(t),t + ϵ(m)) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ϵ(m)

• if σa∗(t),t ≤ ϵ(m). We have that |h(xa∗(t),t)− f̃a∗(t),t| ≤ |h(xa∗(t),t)− f(xa∗(t),t; θt)|+
|f(xa∗(t),t; θt) − f̃a∗(t),t| ≤ ϵ(m) + (1 + ct)νσa∗(t),t ≤ (ν + ctν + 1)ϵ(m). Combining
this result with Lemma D.8 and D.9, we have

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f̃a∗(t),t] + [f̃a∗(t),t − f+
t ] + [f+

t − h(xa(t),t)]

≤ (ν + ctν + 1)ϵ(m) +
τ(ct)

τ(−ct)
ν(2ct + 1)σa(t),t +

+(

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t + ϵ(m)

=
τ(ct)

τ(−ct)
ν(2ct + 1)σa(t),t + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)νσa(t),t +

(ν + ctν + 1)ϵ(m),

where in the above inequality, we apply Lemma D.8 for the arm i0.

D.2.2 Considering the case a(t) = argmaxi∈[K]{f(xi,t; θt−1)}

Lemma D.12. We assume that both Eσ
t holds. Then for i ∈ [K] we have

f̃i,t − f+
t ≤ τ(ct)

τ(−ct)

C0

tβ
.

Proof. The proof is similar to that of Lemma D.8 with a notice that αEI
a(t),t ≤

C0

tβ

Lemma D.13. Assume that the event Eµ
t holds. Then for every i ∈ [K] : νσi,t > ϵ(m), we have

h(xi,t)− f+
t ≤ (

τ(2)

τ(−2)
+ 1)

C0

tβ
.

Proof. The proof is similar to that of Lemma D.9 with a notice that αEI
a(t),t ≤

C0

tβ
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Lemma D.14. We assume that Eµ
t holds. Then we have

f+
t − h(xa(t),t) ≤ νσa(t),t + ϵ(m).

Proof. By definition, a(t) = argmaxi∈[K]{f(xi,t; θt−1)}. Hence f+
t = f(xa(t),t; θt−1). By Lemma

D.2, we have f+
t − h(xa(t),t) = f(xa(t),t; θt−1) − h(xa(t),t) ≤ νσa(t),t + ϵ(m). The lemma

holds.

By combining the bounds of h(xa∗(t),t)−h(xa(t),t) for two cases of a(t), we obtain an unique bound
for h(xa∗(t),t)− h(xa(t),t) as follows:

Lemma D.15. We assume that both Eσ
t and Eµ

t hold. Then,

• if σa∗(t),t > ϵ(m), then,

h(xa∗(t),t)− h(xa(t),t) ≤ (
τ(2)

τ(−2)
+ 1)

C0

tβ
+ νσa(t),t + ϵ(m).

• if σa∗(t),t ≤ ϵ(m), then

h(xa∗(t),t)− h(xa(t),t) ≤ (ν + ctν + 2)ϵ(m) +
τ(ct)

τ(−ct)

C0

tβ
+ νσa(t),t.

Proof. There are two cases:

• if σa∗(t),t > ϵ(m), then, by Lemma D.13 for action a∗(t), we have

h(xa∗(t),t)− f+
t ≤ (

τ(2)

τ(−2)
+ 1)

C0

tβ
.

Combining with Lemma D.14, we have

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f+
t ] + [f+

t − h(xa(t),t)]

≤ (
τ(2)

τ(−2)
+ 1)

C0

tβ
+ νσa(t),t + ϵ(m),

• if σa∗(t),t ≤ ϵ(m), then |h(xa∗(t),t) − f̃a∗(t),t| ≤ |h(xa∗(t),t) − f(xa∗(t),t; θt)| +
|f(xa∗(t),t; θt)− f̃a∗(t),t| ≤ ϵ(m)+ (1+ ct)νσa∗(t),t ≤ (ν+ ctν+1)ϵ(m). Thus, we have
Combining with Lemma D.12 and Lemma D.14, we have

h(xa∗(t),t)− h(xa(t),t) = [h(xa∗(t),t)− f̃a∗(t),t] + [f̃a∗(t),t − f+
t ] + [f+

t − h(xa(t),t)]

≤ (ν + ctν + 2)ϵ(m) +
τ(ct)

τ(−ct)

C0

tβ
+ νσa(t),t

.

Lemma D.16. We assume that both Eσ
t and Eµ

t hold. Then, there exist constants C1, C2, C3 such
that with probability 1− δ, we have

h(xa∗(t),t)−h(xa(t),t) ≤ C1(2ct+1)νσa(t),t+(

√
2log(C1C

−1
0

√
Lνtβ)+1))νσa(t),t+C2

C0

tβ
+(ν+ctν+C3)ϵ(m).

Proof. This upper bound is obtained by combining the upper bounds of h(xa∗(t),t)− h(xa(t),t) from
Lemma D.11 and Lemma D.15. We note τ(ct)

τ(−ct)
is bounded by a constant.

Set rt = h(xa∗(t),t)− h(xa(t),t). We can re-write the above lemma as follows:
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Lemma D.17. With probability 1− δ, we have

E[rt|Ft, Eµ
t ] ≤ (C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1)C1

√
L)νE[min{σa(t),t, 1}|Ft, Eµ

t ]

+C2
C0

tβ
+ (ν + ctν + C3)ϵ(m)

Proof. We have

E[rt|Ft, Eµ
t ] = E[h(xa∗(t),t)− h(xa(t),t)|Ft, Eµ

t , Eσ
t ]P(Eσ

t ) +

+E[h(xa∗(t),t)− h(xa(t),t)|Ft, Eµ
t , E

σ

t ]P(E
σ

t )

≤ (C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1))νE[σa(t),t|Ft, Eµ

t ] +

+C2
C0

tβ
+ (ν + ctν + C3)ϵ(m) +

2

t2
,

where the first term is bounded by Lemma D.17 and the second term is bounded due to the facts that
h(xa∗(t),t)− h(xa(t),t) ≤ |h(xa∗(t),t)|+ |h(xa(t),t)| ≤ 2 and P(Eσ

t ) ≤ 1
t2 .

Further, due to |h(x)| ≤ 1, we obtain an upper bound for E[rt|Ft, Eµ
t ] as

E[rt|Ft, Eµ
t ] ≤ min{((C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1))ν)E[σa(t),t|Ft, Eµ

t ], 2}

+C2
C0

tβ
+ (ν + ctν + C3)ϵ(m) +

2

t2

On the other hand, we have ν ≥ 1 by definition, 2ct + 1 = 2
√
4logt+ 2logK + 1 ≥ 2 with t ≥ 2.

The constant C1 is chosen to be greater than 1. Hence,

E[rt|Ft, Eµ
t ] ≤ ((C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1))ν)min{E[σa(t),t|Ft, Eµ

t ], 1}

+C2
C0

tβ
+ (ν + ctν + C3)ϵ(m) +

2

t2

≤ ((C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1))ν)C4

√
L)E[min{σa(t),t, 1}|Ft, Eµ

t ]

+C2
C0

tβ
+ (ν + ctν + C3)ϵ(m) +

2

t2
,

where we use Lemma D.3 with probability 1− δ.

We now are ready to prove Theorem 4.2.
Theorem D.18. If the network width m satisfies:

m ≥ poly(γ, T,K,L, log(1/δ)),

then with probability at least 1− δ, the regret of Algorithm 2 is bounded as

RT ≤ C2(1 + cT )ν

√
2λL(d̃log(1 + TK) + 1)T + (4 + C3(1 + cT )νL)

√
2log(3/δ)T + 5.

Proof. By Lemma D.2, the event Eµ
t holds for all 1 ≤ t ≤ T with probability at least 1− δ. Hence,

with probability 1− δ we have

R(T ) =

T∑
i=1

h(xa∗(t),t)− h(xa(t),t)1(Eµ
t )

≤ ((C1(2ct + 1) + (

√
2log(C1C

−1
0

√
Lνtβ) + 1))ν)C4

√
L

T∑
i=1

E[min{σa(t),t, 1}|Ft, Eµ
t ]

+

T∑
i=1

C2
C0

tβ
+ (ν + ctν + C3)ϵ(m) +

2

t2
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≤ MN + C2C0

T∑
i=1

1

tβ
+ (ν + ctν + C3)ϵ(m)T +

π2

3
,

where we set M = ((C1(2ct + 1) + (
√
2log(C1C

−1
0

√
Lνtβ) + 1))ν)C4

√
L and N =

(

√
2λT (d̃log(1 + TK) + 1) + C2T 13/6

√
logmm−1/6λ−2/3L9/2) which is obtained by Lemma

D.5.

With β ≥ 2,
∑T

i=1
1
tβ

< π2

6 . We choose C0 ∈ [
√
d̃, d̃] to eliminate the term d̃ in√

2log(C1C
−1
0

√
LνT β).

By choosing m similar as in [42] such that C3(2cT + 1)C2T 13/6
√

logmm−1/6λ−2/3L5) ≤ 1
3 ,

(ν + ctν + C3)ϵ(m)T ≤ 1
3 , we obtain

R(T ) ≤ O(d̃
√

βlog(1 + TK)log(T )T )

E Additional Lemmas

E.0.1 Proof of Lemma D.8

Proof. If σi,t = 0 then by definition of αEI
i,t , we have αEI

i,t = Ii,t. We have

Ii,t = αEI
i,t

≤ αEI
a(t),t

≤ Ia(t),t + ν(ct + 1)σa(t),t,

where in the first inequality, we use the definition αEI
a(t),t = maxi∈[K]α

EI
i,t . In the second inequality,

we use Lemma D.1. Thus, the lemma holds with probability 1− t−2.

We now consider σi,t > 0. If f̃i,t < f+
t then the lemma will be trivial. We now consider f̃i,t > f+

t .

Following the derivation of the acquisition function αEI
i,t , we have αEI

i,t = νσi,tτ(
f(xi,t;θt−1)−f+

t

νσi,t
).

Further, we also have f(xi,t;θt−1)−f+
t

νσi,t
≥ −ctν

ν . It is because f(xi,t; θt−1)− f(xi,t) ≥ −ctνσi,t and

we are considering the case when f̃i,t > f+
t . Therefore, αEI

i,t ≥ ντ(−ct)σi,t.

Now, we combine the fact that αEI
i,t ≥ ντ(−ct)σi,t with the fact that αEI

i,t ≥ Ii,t − ctνσi,t which is
proven in Lemma D.6 to obtain the following inequality:

Ii,t ≤
τ(ct)

τ(−ct)
αEI
i,t (9)

This inequality Eq(9) holds. Finally, we achieve

f̃i,t − f+
t ≤ Ii,t

≤ τ(ct)

τ(−ct)
αEI
i,t

≤ τ(ct)

τ(−ct)
αEI
a(t),t

≤ τ(ct)

τ(−ct)
(max{0, f̃a(t),t − f+

t }+ ν(ct + 1)σa(t),t

≤ τ(ct)

τ(−ct)
(max{0, f(xa(t),t; θt−1) + ctνσa(t),t − f+

t }+ ν(ct + 1)σa(t),t

≤ τ(ct)

τ(−ct)
(max{0, ctνσa(t),t}+ ν(ct + 1)σa(t),t
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=
τ(ct)

τ(−ct)
(2ctν + ν)σa(t),t

where the first inequality holds by the definition of the function It. The second one comes from Eq(9).
The third one holds by the property of the chosen point a(t) = argmaxi∈[K]α

EI
i,t . The final inequality

hold due to Lemma D.6.

E.0.2 Proof of Lemma D.9

Proof. If σi,t = 0 then by definition of αEI
i,t , we have αEI

i,t = Ii,t. We have

Ii,t = αEI
i,t

≤ αEI
a(t),t

≤ Ia(t),t + ν(ct + 1)σa(t),t,

where in the first inequality, we use the definition αEI
a(t),t = maxi∈[K]α

EI
i,t . In the second inequality,

we use Lemma D.2. Thus, the lemma holds with probability 1− t−2.

We now consider σi,t > 0. If h(xi,t) < f+
t then the lemma will be trivial. We now

consider h(xi,t) > f+
t . Following the derivation of the acquisition function αEI

i,t , we have

αEI
i,t = νσi,tτ(

f(xi,t;θt−1)−f+
t

νσi,t
). Further, we also have f(xi,t;θt−1)−f+

t

νσi,t
≥ −1 − ϵ(m)

νσi,t
. It is be-

cause f(xi,t; θt−1)− h(xi,t) ≥ −νσi,t − ϵ(m) and we are considering the case when h(xi,t) > f+
t .

Therefore, αEI
i,t ≥ νσi,tτ(−1− ϵ(m)

νσi,t
).

Now, we combine the fact that αEI
i,t ≥ νσi,tτ(−1− ϵ(m)

νσi,t
) with the fact that αEI

i,t ≥ Ji,t−νσi,t−ϵ(m)

which is proven in Lemma D.6 to obtain the following inequality:

Ii,t ≤
τ(1 + ϵ(m)

νσi,t
)

τ(−1− ϵ(m)
νσi,t

)
αEI
i,t .

Using the assumption that νσi,t > ϵ(m), we get

Ii,t ≤
τ(2)

τ(−2)
αEI
i,t

This inequality Eq(10) holds. Finally, we achieve

f̃i,t − f+
t ≤ Ii,t

≤ τ(2)

τ(−2)
αEI
i,t

≤ τ(2)

τ(−2)
αEI
a(t),t

≤ τ(2)

τ(−2)
(max{0, h(xa(t),t)− f+

t }+ νσa(t),t + ϵ(m)

≤ τ(2)

τ(−2)
(max{0, f(xa(t),t; θt−1) + νσa(t),t + ϵ(m)− f+

t }+ νσa(t),t + ϵ(m)

≤ τ(2)

τ(−2)
(max{0, νσa(t),t + ϵ(m)}+ νσa(t),t + ϵ(m)

= (
τ(2)

τ(−2)
+ 1)(νσa(t),t + ϵ(m))

where the first inequality holds by the definition of the function It. The second one comes from
Eq(10). The third one holds by the property of the chosen point a(t) = argmaxi∈[K]α

EI
i,t . The final

inequality hold due to Lemma D.6.
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