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Appendix A Proofs & Derivations

A.1 Function-Space Variational Objective

This proof follows steps from Matthews et al. [2016]. Consider measures P̂ and P both of which
define distributions over some function f , indexed by an infinite index set X . Let D be a dataset
and let XD denote a set of inputs and yD a set of targets. Consider the measure-theoretic version of
Bayes’ Theorem [Schervish, 1995]:

dP̂

dP
(f) =

pX(Y | f)
p(Y )

, (A.1)

where pX(Y | f) is the likelihood and p(Y ) =
R
RX pX(Y | f)dP (f) is the marginal likelihood. We

assume that the likelihood function is evaluated at a finite subset of the index set X . Denote by
⇡C : RX ! RC a projection function that takes a function and returns the same function, evaluated
at a finite set of points C, so we can write

dP̂

dP
(f) =

dP̂XD

dPXD

(⇡XD (f)) =
p(yD |⇡XD (f))

p(yD)
, (A.2)

and similarly, the marginal likelihood becomes p(yD) =
R
py|fX(yD | fXD ) dPXD (fXD ). Now,

considering the measure-theoretic version of the KL divergence between an approximating stochastic
process Q and a posterior stochastic process P̂ , we can write

DKL(Q k P̂ ) =

Z
log

dQ

dP
(f) dQ(f) �

Z
log

dP̂

dP
(f) dQ(f), (A.3)

where P is some prior stochastic process. Now, we can apply the measure-theoretic Bayes’ Theorem
to obtain

DKL(Q k P̂ ) =

Z
log

dQ

dP
(f) dQ(f) �

Z
log

dP̂

dP
(f) dQ(f) (A.4)

=

Z
log

dQ⇡

dP⇡
(f) dQ⇡(f) �

Z
log

dP̂XD

dPXD

(fXD ) dQXD (fXD ) (A.5)

=

Z
log

dQ⇡

dP⇡
(f) dQ⇡(f) � EQXD

[log p (yD | fXD )] � log p(yD), (A.6)

where dQ⇡

dP⇡ (f) is marginally consistent given the projection ⇡. Rearranging, we can get

p(yD) = EQXD

⇥
log py|fX(yD | fXD )

⇤
�
Z

log
dQ⇡

dP⇡
(f) dQ⇡(f) + DKL(Q

⇡ k P̂ ) (A.7)

� EQXD

⇥
log py|fX(yD | fXD )

⇤
�
Z

log
dQ⇡

dP⇡
(f) dQ⇡(f) (A.8)

= EQXD

⇥
log py|fX(yD | fXD )

⇤
� DKL(Q

⇡ kP⇡). (A.9)

Finally, this lower bound can equivalently be expressed as

p(yD) � EQXD

⇥
log py|fX(yD | fXD )

⇤
� DKL(QXD,X\D kPXD,X\D ), (A.10)

where X\D is an infinite index set excluding the finite index set XD, that is, X\D \ XD = ?, or by
Theorem 1 in Sun et al. [2019], we can write

p(yD) � EQXD

⇥
log py|fX(yD | fXD )

⇤
� sup

X2XN
DKL(QX kPX), (A.11)

where XN =̇
S

n2N{X 2 Xn | Xn ✓ Rn⇥D} is the collection of all finite sets of evaluation points.
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A.2 Distribution under Linearized Function Mapping

Proposition 1 (Distribution under Linearized Mapping). For a stochastic function f(· ;⇥) defined in

terms of stochastic parameters ⇥ distributed according to distribution g⇥ with m =̇ Eg⇥ [⇥] and

S =̇Covg⇥ [⇥], denote the linearization of the stochastic function f(· ;⇥) about m by

f(· ;⇥) ⇡ f̃(· ;m,⇥) =̇ f(· ;m) + J (· ;m)(⇥ � m),

where J (· ;m) =̇ (@f(· ;⇥)/@⇥)|⇥=m is the Jacobian of f(· ;⇥) evaluated at ⇥ = m. Then the

mean and co-variance of the distribution over the linearized mapping f̃ at X,X0 2 X are given by

E[f̃(X;⇥)] = f(X;m)

Cov[f̃(X;⇥), f̃(X0;⇥)] = J (X;m)SJ (X0;m)>.

Proof. We wish to find E[f̃(X;m,⇥)] and

Cov(f̃(X;m,⇥), f̃(X0;m,✓))

= E[(f̃(X;m,✓) � E[f̃(X;m,✓)]) (f̃(X0;m,✓) � E[f̃(X0;m,✓)])>].
(A.12)

To see that E[f̃(X;m,✓)] = f(X;m), note that, by linearity of expectation, we have
E[f̃(X;m,✓)] = E[f(X;m) + J (X;m)(⇥ � m)]

= f(X;m) + J (X;m)(E[⇥] � m) = f(X;m).
(A.13)

To see that Cov(f̃(X;m,✓), f̃(X0;m,✓)) = J (X;m)SJ (X0;m)>, note that in general, for a
multivariate random variable Z, Cov(Z,Z) = E[ZZ>] + E[Z]E[Z]>, and hence,

Cov(f̃(X;m,⇥), f̃(X0;m,⇥))

= E[f̃(X;m,⇥)f̃(X0;m,⇥)>] � E[f̃(X;m,⇥)]E[f̃(X0;m,⇥)]>.
(A.14)

We already know that E[f̃(X;⇥)] = f(X;m), so we only need to find E[f̃(X;⇥)f̃(X0;⇥)>]:

Eg⇥ [f̃(X;m,⇥)f̃(X0;m,⇥)>]

=Eg⇥ [(f(X;m) + J (X;m)(⇥ � m))(f(X0;m) + J (X0;m)(⇥ � m))>]
(A.15)

=Eg⇥ [f(X;m)f(X0;m)> + (J (X;m)(⇥ � m))(J (X0;m)(⇥ � m))>

+ f(X;m)(J (X0;m)(⇥ � m))> + J (X;m)(⇥ � m)f(X0;m)>]
(A.16)

=Eg⇥ [f(X;m)f(X0;m)> + J (X;m)(⇥ � m)(⇥ � m)>J (X0;m)>

+ f(X;m)(J (X0;m)(⇥ � m))> + J (X;m)(⇥ � m)f(X0;m)>]
(A.17)

=f(X;m)f(X0;m)> + J (X;m)Eg⇥ [(⇥ � m)(⇥ � m)>]J (X0;m)>

+ f(X;m)(J (X0;m)(Eg⇥ [⇥] � m)
| {z }

=0

)> + J (X;m)(Eg⇥ [⇥] � m
| {z }

=0

)f(X0;m)>,

(A.18)
where the last line follows from the definition of g⇥. By definition of the covariance, we then obtain

Eg⇥ [f̃(X;m,⇥)f̃(X0;m,⇥)>]

= f(X;m)f(X0;m)> + J (X;m)Eg⇥ [(⇥ � m)(⇥ � m)>]J (X0;m)>
(A.19)

= f(X;m)f(X;m)> + J (X;m)Cov(⇥)J (X0;m)>. (A.20)
With this result, we obtain the covariance function

Cov(f̃(X;m,⇥), f̃(X0;m,⇥))

= E[f̃(X;m,⇥)f̃(X0;m,⇥)>] � E[f̃(X;m,⇥)]E[f̃(X0;m,⇥)]>
(A.21)

= E[f̃(X;m,⇥)f̃(X0;m,⇥)>] � f(X;m)f(X;m)> + J (X;m)Cov(⇥)J (X0;m)> (A.22)

= f(X;⇥)f(X0;⇥)> � f(X;m)f(X;m)> + J (X;m)Cov⇥)J (X0;m)> (A.23)

= J (X;m)V[⇥]J (X0;m)>. (A.24)

Finally, Cov(⇥) = S yields Cov(f̃(X;m,⇥), f̃(X0;m,⇥)) = J (X;m)SJ (X0;m)>. This
concludes the proof.
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Proposition 2 (Approximate Distribution under Linearized Mapping). For a stochastic func-

tion f(· ;⇥) defined in terms of stochastic parameters ⇥ distributed according to distribution

g⇥ = N (m,S), denote the linearization of the stochastic function f(· ;⇥) about m by

f(· ;⇥) ⇡ f̃(· ;m,⇥) =̇ f(· ;m) + J (· ;m)(⇥ � m),
where J (· ;m) =̇ (@f(· ;⇥)/@⇥)|⇥=m is the Jacobian of f(· ;⇥) evaluated at ⇥ = m. Then, for

a partition of the set of parameters into sets ↵ and �, a distribution g⇥ = N (m,S) with ⇥↵ ? ⇥� ,

the distribution g̃f̃(X;⇥) can be approximated via the Monte Carlo estimator

ˆ̃gf̃(X;m,⇥) =
1

R

XR

j=1
N
⇣
f(X;m) + f̃↵(X;m,⇥↵)

(j),J�(X;m)S�J (X0;m)�
>
⌘
, (A.25)

where g⇥↵ = N (m↵,S↵), g⇥� = N (m� ,S�), and

f̃↵(· ;m,⇥↵) =̇J↵(· ;m)(⇥↵ � m↵), (A.26)
with J↵(· ;m) denoting the columns of the Jacobian matrix corresponding to the sets of parameters

↵ and f̃↵(X;m,⇥↵)(j) for j = 1, ..., R obtained by sampling parameters from the distribution

g⇥↵ = N (m↵,S↵).

Proof. Consider a partition of the set of parameters into sets ↵ and � and express the linearized
mapping as

f̃(· ;m,⇥) = f̃↵(· ;m,⇥↵) + f̃�(· ;m,⇥�), (A.27)
with

f̃↵(· ;m,⇥↵) =̇J↵(· ;m)(⇥↵ � m↵), (A.28)
and

f̃�(· ;m,⇥�) =̇ f(· ;m) + J�(· ;m)(⇥� � m�), (A.29)
where J↵(· ;m) and J�(· ;m) are the columns of the Jacobian matrix corresponding to the sets of
parameters ↵ and �, respectively, and ⇥↵ and ⇥� are the corresponding random parameter vectors.

Noting that Equation (A.27) expresses f̃ as a sum of (affine transformations of) random variables,
we can use the fact that for independent Gaussian random variables X and Y, the distribution hZ of
Z = X+Y is equal to the convolution of the distributions hX and hY to obtain an approximation to
f̃ . In particular, for Z = X+Y,

fZ(z) =

Z 1

�1
fY(z � x)fX(x) dx. (A.30)

Letting X = f̃↵(X;m,⇥↵), Y = f̃�(X;m,⇥�), and X = f̃(X;⇥), we can write
g̃f̃(X;m,⇥)(f̃(X;m,✓))

=

Z 1

�1
g̃f̃�(X;m,⇥�)(f̃(X;m,✓) � f̃↵(X;m,✓↵))g̃f̃↵(X;m,⇥↵)(f̃↵(X;m,✓↵)) dX,

(A.31)

=

Z 1

�1
N (f̃(X;m,✓) ;µ(X,m,✓↵, f̃↵),⌃(X,m,✓� ,S�))g̃f̃↵(X;m,⇥↵)(f̃↵(X;m,✓↵)) dX,

(A.32)
with

µ(X;m,✓↵, f̃↵) = f(X;m) + f̃↵(X;m,✓↵) (A.33)
and

⌃(X;m,S� ,J�) = J�(X;m)S�J�(X;m)>, (A.34)
where we have used the fact that for a Gaussian distribution with mean m and covariance S,
N (z � y;m,S) = N (z;m+ y, S). We can then approximate the probability density function
g̃f̃(X;m,⇥)(f̃(X;✓)) via the Monte Carlo estimator

ˆ̃gf̃(X;m,⇥)(f̃(X;m,✓))

=
1

R

XR

j=1
N (f̃(X;m,✓) ;µ(X,m, f̃↵(X;m,✓↵)

(j)),⌃(X;m,S� ,J�))
(A.35)

with f̃↵(X;m,✓↵)(j) ⇠ g̃f̃↵(X;m,⇥↵). Finally, we can express the distribution ˆ̃gf̃(X;m,⇥) as

ˆ̃gf̃(X;m,⇥) =
1

R

XR

j=1
N
⇣
f(X;m) + f̃↵(X;m,⇥↵)

(j),J�(X;m)S�J�(X;m)>
⌘
, (A.36)

where g⇥� = N (m� ,S�) and samples f̃↵(X;m,⇥↵)(j) are obtained by sampling parameters from
the distribution g⇥↵ = N (m↵,S↵). This concludes the proof.
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Appendix B Further Empirical Results

B.1 Tabular Results for Diabetic Retinopathy Diagnosis Tasks

The results below were reproduced from Band et al. [2021] using the RETINA benchmark.

Table 3: Country Shift. Prediction and uncertainty quality of baseline methods in terms of the area under the
receiver operating characteristic curve (AUC) and classification accuracy, as a function of the proportion of data
referred to a medical expert. All methods are tuned on in-domain validation AUC, and ensembles have K = 3
constituent models (true for all subsequent tables unless specified otherwise). On in-domain data, MC DROPOUT
performs best across all thresholds. On distributionally shifted data, no method consistently performs best.

No Referral 50% Data Referred 70% Data Referred

Method AUC (%) " Accuracy (%) " AUC (%) " Accuracy (%) " AUC (%) " Accuracy "
EyePACS Dataset (In-Domain)

MAP (Deterministic) 87.4±1.3 88.6±0.7 91.1±1.8 95.9±0.4 94.9±1.1 96.5±0.3

MFVI 83.3±0.2 85.7±0.1 85.5±0.7 94.5±0.1 88.2±0.7 95.9±0.1

RADIAL-MFVI 83.2±0.5 74.2±5.0 88.9±0.9 81.8±6.0 91.2±1.3 83.8±5.5

FSVI 88.5±0.1 89.8±0.0 91.0±0.4 96.4±0.0 94.3±0.3 97.2±0.1

MC DROPOUT 91.4±0.2 90.9±0.1 95.3±0.2 97.4±0.1 97.4±0.1 98.1±0.0

RANK-1 85.6±1.4 87.7±0.8 87.1±2.3 95.3±0.5 90.9±2.0 96.4±0.4

DEEP ENSEMBLE 90.3±0.2 90.3±0.3 91.7±0.6 97.2±0.0 95.0±0.5 97.9±0.0

MFVI ENSEMBLE 85.4±0.0 87.8±0.0 86.3±0.4 95.4±0.0 89.2±0.4 96.7±0.1

RADIAL-MFVI ENSEMBLE 84.9±0.1 74.2±1.5 91.4±0.2 83.4±1.7 93.3±0.3 85.9±1.6

FSVI ENSEMBLE 90.3±0.1 90.6±0.0 92.1±0.2 97.1±0.0 95.2±0.2 97.8±0.1

MC DROPOUT ENSEMBLE 92.5±0.0 91.6±0.0 95.8±0.1 97.8±0.0 97.7±0.1 98.4±0.0

RANK-1 ENSEMBLE 89.5±0.8 89.3±0.4 88.5±1.3 96.9±0.3 91.6±1.2 97.6±0.3

APTOS 2019 Dataset (Population Shift)

MAP (Deterministic) 92.2±0.2 86.2±0.6 80.1±3.6 87.6±1.5 55.4±4.3 85.4±1.2

MFVI 91.4±0.2 84.1±0.3 93.8±0.4 92.1±0.5 93.0±0.6 92.7±0.5

RADIAL-MFVI 90.7±0.7 71.8±4.6 82.0±2.5 81.5±2.7 66.4±2.1 85.9±1.0

FSVI 94.1±0.1 87.6±0.5 90.6±0.9 90.7±0.7 77.2±4.6 89.8±0.3

MC DROPOUT 94.0±0.2 86.8±0.2 87.4±0.3 88.1±0.2 65.3±1.7 88.2±0.4

RANK-1 92.5±0.3 86.2±0.5 90.1±2.5 91.4±1.1 75.1±7.8 89.5±1.5

DEEP ENSEMBLE 94.2±0.2 87.5±0.1 91.2±1.9 92.4±0.9 67.4±7.3 90.1±1.2

MFVI ENSEMBLE 93.2±0.1 87.0±0.2 94.9±0.3 93.7±0.3 94.2±0.3 94.0±0.3

RADIAL-MFVI ENSEMBLE 91.8±0.2 69.0±1.9 78.6±0.6 79.8±0.9 60.9±0.3 86.7±0.2

FSVI ENSEMBLE 94.6±0.1 88.9±0.2 90.7±0.5 91.1±0.6 74.1±3.4 89.8±0.2

MC DROPOUT ENSEMBLE 94.1±0.1 87.6±0.1 86.8±0.2 88.0±0.2 62.3±0.4 87.7±0.2

RANK-1 ENSEMBLE 94.1±0.2 88.3±0.2 94.9±0.4 93.5±0.3 92.4±1.5 93.8±0.3

B.2 UCI Regression

Table 4: This table compares the predictive performance between the method proposed in this paper and the
method proposed by Sun et al. [2019] on six datasets from the UCI database. We followed the same training
protocol as Sun et al. [2019] and used the code provided by the authors to load and process the data. The same
network architecture was used (one hidden layer with 50 hidden units). We report the results for the best set of
hyperparameters, computed over ten random seeds. Lower RMSE and higher log-likelihood are better. Best
results are shaded in gray. The first five rows are small-scale UCI experiments, and the sixth row (“Protein”) is a
larger-scale experiment (45,740 data points).

RMSE Log-Likelihood
Sun et al. [2019] Ours Sun et al. [2019] Ours

Boston 2.378± 0.104 3.632± 0.515 �2.301± 0.038 �3.150± 0.495
Concrete 4.935± 0.180 4.177± 0.443 �3.096± 0.016 �2.855± 0.116
Energy 0.412± 0.017 0.409± 0.060 �0.684± 0.020 �0.539± 0.138
Wine 0.673± 0.014 0.615± 0.033 �1.040± 0.013 �0.959± 0.034
Yacht 0.607± 0.068 0.514± 0.242 �1.033± 0.033 �0.888± 0.334
Protein 4.326± 0.019 4.248± 0.043 �2.892± 0.004 �2.866± 0.009
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Appendix C Illustrative Examples

C.1 Two Moons Classification Task
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(a) FSVI: Posterior Predictive Mean
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(b) FSVI: Posterior Predictive Variance
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(c) MFVI: Posterior Predictive Mean
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(d) MFVI: Posterior Predictive Variance
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(e) MAP Ensemble: Predictive Mean
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(f) MAP Ensemble: Predictive Variance

Figure 5: Binary classification on the Two Moons dataset. The plots show the posterior predictive mean
and variance of a BNN trained via FSVI (Figure 5a and Figure 5b), of a BNN trained via MFVI (Figure 5c
and Figure 5d), and an ensemble of MAP models (Figure 5e and Figure 5f). The predictive means represent
the expected class probabilities and the predictive variance the model’s epistemic uncertainty over the class
probabilities. With FSVI, the predictive distribution is able to faithfully capture the geometry of the data manifold
and exhibits high uncertainty over the class probabilities in areas of the data space of which the data is not
informative. In contrast, neither MFVI, nor MAP ensembles are unable to accurately capture the geometry of the
data manifold only exhibit high uncertainty around the decision boundary.
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C.2 Synthetic 1D Regression Datasets
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(a) “Snelson” Dataset (Snelson and Ghahramani [2006])
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(b) “OAT-1D” Dataset (van Amersfoort et al. [2021])
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(c) “Subspace Inference” Dataset (Izmailov et al. [2020])

Figure 6: 1D Regression with FSVI on a selection of datasets used to demonstrate desirable predictive uncertainty
estimates in prior works. The left column is zoomed in.
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Appendix D Implementation, Training, and Evaluation Details

D.1 Hyperparameter Selection Protocol

For FSVI, we used a holdout validation set (10% of the training set) to conduct a hyperparameter
search over the prior variance, the number of context points used to evaluate the KL divergence,
the context distribution, and the number of Monte Carlo samples used to evaluate the expected log-
likelihood. We selected the set of hyperparameters that yielded the highest validation log-likelihood
for all experiments. We state the hyperparameters selected for the different datasets below.

For other methods, we used a holdout validation set of the same size and selected the best-performing
hyperparameters. We used implementations provided by the authors of MFVI (radial) and SWAG. All
other methods were implemented from scratch unless stated otherwise.

D.2 FashionMNIST vs. MNIST/NotMNIST

We train all model on the FashionMNIST dataset and evaluate the models’ predictive uncertainty
performance on out-of-distribution data on the MNIST dataset. Both datasets consist of images of
size 28 ⇥ 28 pixels. The FashionMNIST dataset is normalized to have zero mean and a standard
deviation of one. The MNIST dataset is normalized with the same transformation, that is, using the
same mean and standard deviation used for the in-distribution data. We chose FashionMNIST/MNIST
instead of MNIST/NotMNIST because the latter is notably easier than the former.

In this experiment, a network architecture with two convolutional layers of 32 and 64 3 ⇥ 3 filters
and a fully-connected final layer of 128 hidden units is used. A max pooling operation is placed after
each convolutional layer and ReLU activations are used. We do not use batch normalization. All
models are trained for 30 epochs with a mini-batch size of 128 using SGD with a learning rate of
5 ⇥ 10�3, momentum (with momentum parameter 0.9), and a cosine learning rate schedule with
parameter 0.05.

For FSVI with pXC =random monochrome, we sampled 50% of the context points for each gradient
step from the mini-batch and the other 50% according to the method described in Appendix D.8. For
FSVI with pXC= KNIST, we used the KMNIST dataset.

D.3 CIFAR-10 vs. SVHN

We train all model on the CIFAR-10 dataset and evaluate the models’ predictive uncertainty per-
formance on out-of-distribution data on the SVHN dataset. Both datasets consist of images of size
32 ⇥ 32 ⇥ 3, with RBG channels. The CIFAR-10 dataset is normalized to have zero mean and a
standard deviation of one. The SVHN dataset is normalized with the same transformation, that is,
using the same mean and standard deviation used for the in-distribution data. The training data is
augmented with random horizontal flips (with a probability of 0.5) and random crops (4 zero pixels
on all sides).

In this experiment, a standard ResNet-18 network architecture was used. All models are trained for
200 epochs with a mini-batch size of 128 using SGD with a learning rate of 5 ⇥ 10�3, momentum
(with momentum parameter 0.9), and a cosine learning rate schedule with parameter 0.05.

For FSVI with pXC =random monochrome, we sampled 100% of the context points for each gradient
step from the mini-batch and the other 50% according to the method described in Appendix D.8. For
FSVI with pXC= CIFAR-100, we used the CIFAR-100 dataset.

D.4 Diabetic Retinopathy Diagnosis

Prediction and Expert Referral. In real-world settings where the evaluation data may be sampled
from a shifted distribution, incorrect predictions may become increasingly likely. To account for that
possibility, predictive uncertainty estimates can be used to identify datapoints where the likelihood
of an incorrect prediction is particularly high and refer them for further review. We consider a
corresponding selective prediction task, where the predictive performance of a given model is
evaluated for varying expert referral rates. That is, for a given referral rate of � 2 [0, 1], a model’s
predictive uncertainty is used to identify the � proportion of images in the evaluation set for which the
model’s predictions are most uncertain. Those images are referred to a medical professional for further
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review, and the model is assessed on its predictions on the remaining (1��) proportion of images. By
repeating this process for all possible referral rates and assessing the model’s predictive performance
on the retained images, we estimate how reliable it would be in a safety-critical downstream task,
where predictive uncertainty estimates are used in conjunction with human expertise to avoid harmful
predictions. Importantly, selective prediction tolerates out-of-distribution examples. For example,
even if unfamiliar features appear in certain images, a model with reliable uncertainty estimates
will perform better in selective prediction by assigning these images high epistemic (and predictive)
uncertainty, therefore referring them to an expert at a lower �.

For all methods, experiments are performed using a ResNet-50 network architecture. Training and
evaluation scripts as well as model checkpoints can be found at

github.com/google/uncertainty-baselines/.../diabetic_retinopathy_detection.

D.5 Two Moons

In this experiment, we use a multi-layer perceptron (MLP) consisting of two fully-connected layers
with 30 hidden units each and tanh activations. We train all models with a learning rate of 10�3.

For FSVI, we sampled context points uniformly from [�10, 10] ⇥ [�10, 10].

D.6 1D Regression

In this experiment, we use a multi-layer perceptron (MLP) consisting of two fully-connected layers
with 100 hidden units each and ReLU activations.

For FSVI, we sampled context points uniformly from [�10, 10].

D.7 Further Implementation Details

We use the Adam optimizer with default settings of �1 = 0.9, �2 = 0.99 and ✏ = 10�8 for all
experiments. The deterministic neural networks that were used for the ensemble were trained with a
weight decay of � = 1e-1. MFVI (tempered) was trained with a KL scaling factor of 0.1 to obtain a
cold posterior.

D.8 Selection of Context Distribution

We estimate the supremum at every gradient step by sampling a set of context points XC from a
distribution pXC at every gradient step. For tasks with image inputs, we construct a distribution pXC ,
defined as a uniform distribution over images with monochromatic channels. To generate a sample
from this “monochrome images” distribution, we first take all images in the training data, flatten each
channel, and stack the flattened image channels into a single vector each. We then draw a random
element (i.e., a pixel) from each channel vector and then use these pixels to generate a monochrome
image of a given resolution by setting every channel equal to the value of the pixel that was drawn.
For regression tasks with a D-dimensional input space, pXC is defined as a uniform distribution
with lower and upper bounds set to the empirical lower and upper bounds of the training data. For
further details on the effect of different sampling schemes on the posterior predictive distribution’s
performance, see Appendix B.

D.9 Compute Resources

All experiments were carried out on an Nvidia V-100 GPU with 32GB of memory.

22

https://github.com/google/uncertainty-baselines/tree/main/baselines/diabetic_retinopathy_detection

	Introduction
	Preliminaries
	A Function-Space Perspective on Variational Inference in Bayesian Neural Networks

	Deriving a Tractable Function-Space Variational Objective
	Approximating Distributions over Functions via Local Linearization
	Approximating the Function-Space Kullback-Leibler Divergence
	Stochastic Estimation of the Approximnate Function-Space Variational Objective

	Related Work
	Empirical Evaluation
	Predictive Performance, Uncertainty Estimation, and Distribution Shift Detection
	Generalization and Reliability of Predictive Uncertainty under Distribution Shift
	Safety-Critical Uncertainty-Aware Selective Prediction: Diabetic Retinopathy Diagnosis

	Conclusion
	Proofs & Derivations
	Function-Space Variational Objective
	Distribution under Linearized Function Mapping

	Further Empirical Results
	Tabular Results for Diabetic Retinopathy Diagnosis Tasks
	UCI Regression

	Illustrative Examples
	Two Moons Classification Task
	Synthetic 1D Regression Datasets

	Implementation, Training, and Evaluation Details
	Hyperparameter Selection Protocol
	FashionMNIST vs. MNIST/NotMNIST
	CIFAR-10 vs. SVHN
	Diabetic Retinopathy Diagnosis
	Two Moons
	1D Regression
	Further Implementation Details
	Selection of Context Distribution
	Compute Resources


