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Abstract

Humans learn from visual inputs at multiple timescales, both rapidly and flexibly
acquiring visual knowledge over short periods, and robustly accumulating online
learning progress over longer periods. Modeling these powerful learning capabili-
ties is an important problem for computational visual cognitive science, and models
that could replicate them would be of substantial utility in real-world computer
vision settings. In this work, we establish benchmarks for both real-time and
life-long continual visual learning. Our real-time learning benchmark measures a
model’s ability to match the rapid visual behavior changes of real humans over the
course of minutes and hours, given a stream of visual inputs. Our life-long learning
benchmark evaluates the performance of models in a purely online learning cur-
riculum obtained directly from child visual experience over the course of years of
development. We evaluate a spectrum of recent deep self-supervised visual learning
algorithms on both benchmarks, finding that none of them perfectly match human
performance, though some algorithms perform substantially better than others.
Interestingly, algorithms embodying recent trends in self-supervised learning – in-
cluding BYOL, SwAV and MAE – are substantially worse on our benchmarks than
an earlier generation of self-supervised algorithms such as SimCLR and MoCo-v2.
We present analysis indicating that the failure of these newer algorithms is primarily
due to their inability to handle the kind of sparse low-diversity datastreams that
naturally arise in the real world, and that actively leveraging memory through nega-
tive sampling – a mechanism eschewed by these newer algorithms – appears useful
for facilitating learning in such low-diversity environments. We also illustrate a
complementarity between the short and long timescales in the two benchmarks,
showing how requiring a single learning algorithm to be locally context-sensitive
enough to match real-time learning changes while stable enough to avoid catas-
trophic forgetting over the long term induces a trade-off that human-like algorithms
may have to straddle. Taken together, our benchmarks establish a quantitative way
to directly compare learning between neural networks models and human learners,
show how choices in the mechanism by which such algorithms handle sample
comparison and memory strongly impact their ability to match human learning
abilities, and expose an open problem space for identifying more flexible and robust
visual self-supervision algorithms.
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1 Introduction

Deep neural networks (DNNs) optimized to perform visual recognition tasks using a large-scale
human labeled dataset – ImageNet [15] – have produced state-of-the-art visual models [39, 50, 26].
Moreover, they have also been the most quantitatively accurate predictive models of neuronal
responses in different sensory areas in the primate brain [57, 31, 5]. Their behavioral error patterns
are also more consistent with those of non-human primates and humans than alternative models [49].
However, these models are biologically implausible due to the requirement for substantial human-
annotated labels during training, which are extremely costly, if not impossible, for real organisms
to obtain. Recently, unsupervised learning models have made significant progress in closing the
gap to supervised models in performance on visual recognition tasks without the need for labeled
data [56, 62, 52, 27, 12, 10, 22, 11, 58, 7, 9, 28]. Comparisons of these models to neuronal data
in Zhuang et al. [64] and Konkle and Alvarez [38] show that they achieve high neural predictivity
in early, middle, and higher cortical areas of the ventral visual stream (VVS). Even when these
algorithms are trained on noisy and limited first-person videos collected from head-mounted cameras
on three infants [51], these algorithms still yield competitive neural predictivity [64] and reasonable
performance on small-scale categorization tasks [46].

However, these new powerful unsupervised algorithms have the potential to go beyond just the
ability to achieve high performance or, post-training, match the static adult human representation –
which supervised models already do reasonably well. Indeed, because these models can leverage
the unlabelled stimuli used by biological organisms during visual learning, it is plausible that they
might describe the learning dynamics of human behaviors under all time-scales. A model that had
this capacity would be of great value both for understanding the biological mechanisms underlying
visual development [33, 2, 41], as well as solving continual learning challenges in computer vision
and robotics [42, 14, 25, 45].

In this work, we propose benchmarks for both real-time and life-long visual learning. Our real-time
learning benchmark is constructed through quantifying the error in matching the visual categorization
behavior changes in human adults reported by Jia et al. [30] (MIT License) during hour-long sessions.
Our life-long learning benchmark is built using SAYCam [51] (License CC-BY 4.0) to create a
training curriculum based on the visual diet experienced by human children over several years, with
data presented in the same order and roughly the same duration as how the children experienced them.
We then train DNNs using this naturalistic curriculum. Critically, this use of SAYCam differs from
recent work such as Orhan et al. [46] and Zhuang et al. [64], where the video clips are simply used
with a standard offline training protocol involving randomization and batching, which fails to capture
the temporal structure of how experiences accrete over time in children. These two benchmarks are
naturally complementary, because requiring a single learning algorithm to be locally context sensitive
enough to match real-time learning changes while stable enough to avoid catastrophic forgetting over
the long term is a very strong constraint.

Within this framework, we evaluate multiple high-performing unsupervised learning algorithms.
Surprisingly, we find that several of the more recently proposed self-supervised algorithms, including
BYOL [22], SimSiam [11], SwAV [7] and MAE [28], largely fail to match human learning in the
real-time benchmark and show lower performance in the life-long benchmark, compared to an earlier
generation of algorithms like SimCLR [10] and MoCo v2 [27, 12]. We find that the best-performing
algorithms on both benchmarks share a key algorithmic design feature: actively contrasting one
example with another, a way of leveraging memory called negative sampling that has been actively
avoided in more recent algorithmic approaches. To test whether this design indeed facilitates learning
in a low-diversity environment, we create an algorithm variant of BYOL through adding negative
sampling and show that this variant greatly outperforms vanilla BYOL on both our short and long-
term learning metrics. We also add this design to DINO [9], a high-performing ViT-based contrastive
learning algorithm, and find that it consistently improves performance in the life-long benchmark.

Additionally, we systematically investigate how key parameters of the continual learning process
influence performance for the two benchmarks and identify an underlying trade-off between them that
acts as a strong constraint on human-like learning models. Finally, we perform an analysis indicating
that one major mechanism underlying poor performance on our real-time learning benchmark is an
algorithm’s inability to capture the sparse learning signals in low-diversity (but natural) environments.
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In the following sections, we first review relevant literature in Sec. 2. Then, we describe methods
including how the benchmarks are constructed and how the continual learning process is constructed
in Sec. 3. Following the method section, we show the results and the analyses in Sec. 4. Finally, we
discuss limitations and future directions in Sec. 5.

2 Literature Review

Unsupervised Learning Algorithms. Recent progress in contrastive learning models has significantly
improved performance on standard ImageNet benchmark, closing the gap between unsupervised and
supervised models [22, 56, 10, 27, 12, 11, 58, 8, 62, 52] and neural predictivity [64, 38]. A subset
of these models explicitly sample negative embeddings from different places including a memory
bank [56], a memory queue [27, 12], and other input images from current batch [10]. Recent efforts
removing negative samples have produced state-of-the-art performance [11, 22, 58, 8]. However,
even without negative samples, these algorithms may rely on batch normalization to implicitly
contrast embeddings of positive pairs with embeddings of other pairs in the same batch [53]. More
recently, contrastive learning algorithms have also been used to train ViTs [16] and shown good
performance [9, 13]. Additionally, a masked autoencoding objective has been proposed and proven
efficient in training large-scale ViTs [28], which opens space for an entirely different route for
unsupervised DNN training than contrastive learning algorithms. It is therefore interesting to evaluate
whether models trained by this different algorithm perform in a human-like fashion.

Real-time and Continual Visual Learning in Real Organisms. Jia et al. [30] reported human visual
categorization performance changes after unsupervised visual experience. Conceptually similar
effects have also been found in individual primate IT neurons [43]. These effects are also potentially
the neuronal basis for the behavioral changes of human subjects [30]. As for continual learning at a
longer scale, early cortical organization is considerably mature at birth [55, 18], but the development
of higher cortical areas and their processes underlying global form perception is a matter of ongoing
debate [34, 35]. Although monkeys and humans can perceive elementary contours and discriminate
textures quite early [1, 17], the ability to perceive composite patterns built from contours and texture
takes much longer (2-3 years), reminiscent of that for global motion perception [17, 36].

Unsupervised Deep Neural Network Models for the Visual System. DNNs trained with contrastive
learning algorithms on ImageNet have been shown to accurately predict the neural responses from
multiple cortical areas of VVS [64, 38]. Apart from contrastive learning algorithms, Higgins et al.
[29] show β−VAE, optimized to reconstruct the input image and simultaneously encode semantically
meaningful hidden variables, can discover important factors for faces in a similar way as macaque
IT neurons. However, it is unclear whether β−VAE produces quantitatively similar responses
towards general stimuli as the neural responses from the VVS. Although these unsupervised learning
algorithms yield accurate models of the visual system, they have not been used to model the specific
patterns of learning dynamics in the visual system. Moreover, the training curriculum in prior
work repeatedly presents the whole training dataset in a standard offline batched fashion, breaking
the temporal structure of natural experience. In this work, we address both issues by testing the
unsupervised DNNs on both the real-time and the life-long learning benchmark.

Curriculum and Life-long Learning for Neural Networks. Research in curriculum learning aims to
develop specific curricula to improve training efficiency [61, 3, 32, 21, 24, 60]. In contrast, here
curriculum structure is not a free variable: we work with (as natural as possible an approximation
of) the actual curriculum of child learning to evaluate and improve algorithms. Networks trained on
our realistic learning curriculum perform worse than networks using the offline curriculum, possibly
due to catastrophic forgetting. Solving this issue is a major focus in life-long learning for neural
networks [47]. Although this issue can be resolved through accumulating the learning experiences
in a “memory” storage and jointly learning from memory and the current context, maintaining this
continually-growing storage will be undesirable in many real-world applications. Therefore, methods
like Elastic Weight Consolidation [37] and Generative Replay [54] have been proposed to address this
issue without the need to maintain the storage, though these methods still underperform the storage
solution. However, these methods are typically developed for training curriculum with drastic task or
domain shifts, which is different from the life-long curriculum where no explicit tasks are defined and
the domain shifts more smoothly. So in this work, we adapt the memory-storage solution and further
explore how mixing it with the current-context learning with different ratios influences performance.
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Figure 1: Real-time and life-long visual learning benchmarks. A. In the real-time benchmark, test
and exposure phases are iterated for both humans and DNNs to correspondingly measure the object
discrimination performance and present pairs of objects selected based on the experiment condition
(“Swapped” or “Non-Swapped”). The schema for humans is provided in this panel as an example.
For the Swapped condition, exposure phases show subjects or DNNs different-sized images from
different objects, while for the Non-Swapped condition, the images are from the same object but with
different sizes. B. Models learn from the whole datastream including both test and exposure phases,
each of which takes 10 minutes. Learning is done in batches, where each batch consists of two parts:
one part sampled from memory and the other part sampled from a sliding time window containing
the recent visual experience in the current context, whose length is called the current-context replay
window. The ratio between these two parts is called the current-memory mix ratio. Each item in one
batch aggregates two temporally nearby images randomly sampled from a short time window called
the aggregation time. C. In the life-long benchmark, models sequentially learn from the first-person
infant videos in the SAYCam dataset grouped in segments and sorted by the age of the infant when
these videos were recorded. D. Similar to B, models evaluated in the life-long benchmark jointly
learn from memory (previous segments) and the current segment.

3 Methods

Real-time Learning Benchmark. This benchmark tests the models on five test phases separated by
four exposure phases, following how humans were tested in Jia et al. [30] (Fig 1 A). To test the
models, we first constructed a visual stimuli stream through simulating what humans were perceiving
during their experiments. For example, the corresponding part of this stream for one exposure phase
was built through concatenating the approximated visual stimulus of 400 exposure trials. Each trial
contained 200ms presentation of the two object images followed by the gray background images
for 1300ms (see SI Fig 5 A for examples). The gray background images serve as a proxy for the
visual inputs of human subjects during inter-trial intervals. All stimulus are grayscale images, as Jia
et al. [30] tested human subjects with grayscale images. The stimuli stream for one test phase was
constructed through simulating 200 test trials. In the test trial for human subjects, one test image
that was created by placing a big or small sized object in front of a randomly selected background
was first presented after the 500ms fixation time. This test image was only presented for 100ms
and followed by the image of the two middle sized objects put together. The human subjects would
then be required to make a choice between the two objects before moving on to the next trial. To
approximate the visual stimulus humans perceive during one test trial, we built the stream for the
test trial through starting from the gray background image for 500ms. It was then followed by the
test image for 100ms. We further hypothesized that human subjects made saccades between the two
objects after the test image and simulated four saccades across the two presented middle sized objects,
of which the interval was 600ms. Specifically, the test image was immediately followed by four
blocks of single object images, each of which contained 600ms presentation of one of the two object
images. We provide a more detailed pseudo-code description of this stream construction process in
the Supplementary Information (SI, see Alg 1 and Sec. 1.1.2 in SI). Although this process involves
several key parameters which were conveniently set as constants, such as the number of saccades and
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the interval of two saccades, we have verified that reasonably varying these constants or changing
them to be stochastic does not change our conclusions.

After constructing the visual stimuli stream, we then sampled from this stream to get batches of
images that were fed to the DNNs to train them. This sampling procedure is described later in this
section as the continual learning process. The DNNs homogeneously learn from their perceived
visual input, regardless of whether it was from test or exposure phases. DNN outputs during test
phases were extracted to compute the categorization performance (measured using d′) and then to
compute the learning effects through subtracting the changes of d′ on the exposed objects by the
changes of d′ on the non-exposed objects (see SI Sec. 1.1.3 for details). These learning effects are
then compared to the human data collected for all the three experiment conditions (Non-Swapped,
Swapped, and Switch conditions). The Non-Swapped and the Swapped conditions correspondingly
keep or change the object identities in the two images (Fig 1 A), in which humans show increasingly
better or worse categorization performance. The Switch condition combines the first two exposure
phases of the Non-Swapped condition and the later two exposure phases of the Swapped condition,
which therefore leads to first increasing and then decreasing human learning effects. For one test
phase of one condition, the absolute difference between the model effects and human effects is
computed and then averaged across all bootstrapping samples. This difference is then normalized by
the same measure from the mean of human effects, making its minimal value 1 (see SI Sec. 1.1.4).
Because the result from the first test phase, which is before the exposure phase, is used as a baseline
in the learning effect computation (see SI Sec. 1.1.3), only the learning effects from the later four
test phases are meaningful. As there are three conditions, the difference across all these 12 phases is
averaged to get the final mismatch score to human. In addition to this aggregated mismatch score
across all test phases, all of the bootstrapped values of the per-test difference score are also compared
to 1 to measure the statistical significance of this individual score being different from 1. Also,
we find that the initial d′ on these tested objects (faces in particular) is important for matching the
human learning effects (see SI Sec. 1.1.6). Therefore, we pre-train the models on both ImageNet
and VGGFace2 [6] * with a gray-filled random-central-positioned data augmentation added to the
original data augmentation pipeline (see Fig 1 B for examples and SI Sec. 1.1.1). We fix the number
of total updates for the models (150 steps each phase) but allow a freely-moving learning rate to get
the minimal mismatch score (see SI Sec. 1.1.5 for more discussion of this).

Life-Long Learning Benchmark. We first create a subset of SAYCam by taking all videos from child
Sam, yielding 200 hours of videos, called SamCam. These videos are then sorted by the age they
were taken and then grouped into 100 segments, which are sequentially presented to the models
(Fig 1 C). The models trained on these segments are evaluated every 10 segments through extracting
their features on a subsampled ImageNet (MiniImageNet) and testing the performance using SVM
(see SI Sec. 1.2.2). All 10 performance numbers are averaged to get the final measure, which is called
the "trajectory-averaged Mini-ImageNet performance".

Continual Learning Process. Intuitively, three factors characterize continual visual learning: how
learning from memory and the current context are mixed, how much of the recent visual experience
in the current context is replayed, and how temporally close two visual stimulus need to be to get
aggregated. For example, more learning from memory means better long-term learning performance
but potentially less flexible in real time as that leads to less focus on the current context. Similarly,
sampling from a longer replay time window in the current context with a fixed budget enables the
simultaneous learning or contrasting of more diverse visual experiences but also risks in missing the
very recent learning signals as less of them are sampled.

We formalize these factors in both benchmarks via parameterizing a standardized continual learning
process, in which models learn from batches constructed through mixing samples from memory
and a recent time window in the current context. The memory in the real-time benchmark is the
pre-training dataset (ImageNet and VGGFace2), whereas the memory in the life-long benchmark is
the previous segments. To get the part from the current context, a time point corresponding to each
batch is first computed depending on its relative position in the whole segment. For example, the
time point for the last batch in the real-time benchmark is 90 minutes, while that in the life-long
benchmark is the end of the current segment (Fig 1 B, D). This time point is then the end point of the
replay window whose length is controlled by the current-context replay window (W ), from which the

*Although this dataset has been taken offline, this pretraining process should also work with other large-scale
face datasets such as CelebA dataset [44], since the face test images are quite general and independent of
VGGFace2 (see Fig 1 A).
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visual experience is sampled to form the current context. To get the samples, a short time window of
length aggregation time (T) is first sampled within the replay window. Two images are then randomly
sampled within this short window as the inputs to the models (Fig 1 B, D). Finally, the ratio between
the samples from memory and the current context is controlled by the current-memory mix ratio (R).
See SI Alg. 2 and Alg. 3 for pseudo-code descriptions of this process in the real-time and life-long
learning benchmarks.

Unsupervised Learning Algorithms. In general, contrastive learning algorithms use DNNs to project
high-dimensional raw pixel inputs into a lower-dimensional compact space and optimize the DNNs
to make embeddings “robust” to data augmentation. Specifically, let f represent the DNN being
optimized and x represents an arbitrary input image, contrastive learning algorithms first sample two
data augmentations (v0 and v1) and then optimize f to have two resulting embeddings (e0 = f(v0(x))
and e1 = f(v1(x)) in dimension D) be predictive of each other. Since both the real-time and the
life-long benchmarks require the models to learn from the temporal statistics in videos, we follow
the practice introduced in Zhuang et al. [63] to aggregate the embeddings of two images (x0 and x1)
sampled from a short time window, meaning that e0 = f(v0(x0)) and e1 = f(v1(x1)). This work
benchmarks the following algorithms: SimCLR [10], MoCo v2 [12], BYOL [22], SimSiam [11],
Barlow-Twins [58], SwAV [8], DINO [9], and MAE [28]. Because they are all previously published
algorithms, we only briefly describe them here. SimCLR treats a batch of input images as a group
and uses other images in the same group as negative samples to be separated from both e0 and
e1. MoCo v2 also uses negative samples, but it samples them from a maintained queue of recent
embeddings. Another difference between SimCLR and MoCo v2 is that MoCo v2 maintains a
running average of the optimized DNN as the target network, also called “momentum encoder” (f̂ ).
So e1 is replaced with f̂(v1(x1)). BYOL also uses f̂ , but it does not use negative samples. Instead,
it only tries to predict e1 from e0 using a Multi-Layer-Perceptron (MLP). SimSiam is like BYOL
without momentum encoder and with stop gradient operation on the target embeddings. SwAV
maintains trainable prototypes and optimizes f to achieve identical assignments of e0 and e1 to these
prototypes. Barlow-Twins is like “transposed” SimCLR. SimCLR maximizes the diagonal elements
and minimizes the off-diagonal elements of the matrix E0E1T , where E0 and E1 are batched e0

and e1 in the shape of (bs, D) (bs is batch size). Barlow-Twins does the same thing, but to E0TE1.
DINO is similar to BYOL on ViTs, but with additional practices including softmaxing e0 and e1 and
centering e1. MAE randomly masks out patches of v0(x0) and then uses ViTs to reconstruct the
masked patches. In our benchmarks, the target of MAE is changed to the masked patches of v0(x1).
We additionally create two variants through introducing SimCLR-style negative sample choice and
loss definition to BYOL and DINO, called BYOLNeg and DINONeg (see SI Sec. 1.2.3).

Our implementations are based on OpenSelfSup [59]. For most of the algorithms, we use ResNet-18.
For algorithms using ViTs, we use ViT-S. We additionally test SimCLR-ResNet-50 as Resnet-50 has
a similar number of trainable parameters as ViT-S. The code used for our paper and the trained model
checkpoints are in SI and https://github.com/neuroailab/VisualLearningBenchmarks.
More details are in SI Sec. 1.2.1.

4 Results

Life-Long Learning Results. We first systematically vary the current-context replay window and
the current-memory mix ratio to show how these two parameters influence the results on the life-
long benchmark (Fig 2). Although these two parameters only control within-batch diversity, they
significantly influence the life-long results. Specifically, for the given algorithm, its performance
consistently improves whenever the change of the parameters increases within-batch diversity (also
see SI Fig 1). Although all algorithms show this consistent change with respect to the within-batch
diversity, the magnitude of this change greatly differs across algorithms. In fact, the performance of
algorithms without negative sampling, including SwAV, BYOL, and SimSiam, is much worse than
SimCLR, MoCo v2, Barlow-Twins, and BYOLNeg in the medium-diversity condition (short replay
window with balanced mix ratio), and catastrophically fails in the low-diversity condition (short
replay window with more current learning). Even in the high diversity condition, BYOL and SwAV
perform worse compared to SimCLR, unlike the result on ImageNet, where both previous reports and
our reimplementation find that SwAV and BYOL significantly outperform SimCLR (see SI Fig 4).
This inconsistency can actually be explained by the higher sensitivity of SwAV and BYOL to the
within-batch diversity compared to SimCLR, as SamCam is in general less diverse compared to
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Figure 2: Life-Long Learning results. Life-long benchmark performance measured by the trajectory-
averaged Mini-ImageNet performance. Three evaluated continual learning conditions are shown
here with different current-context replay windows and current-memory mix ratios. Long replay
window means W = 20m and short window means W = 0.5m. More current-context learning
means R = 3 : 1, balanced means R = 1 : 1, and less means R = 1 : 3. In all conditions, T = 0.2s.
Results in the other three conditions can be found in SI Fig 1. The error bars here are typically
too small to see, so any visible differences here are likely highly significant (see the right panel of
Fig 4 A). The performance numbers are provided in SI Table 1.

ImageNet. To confirm that this result is robust to hyperparameter changes in these algorithms, we
tested BYOL with different key hyperparameters and found that it still fails in the lower-diversity
conditions across all tested configurations (see SI Fig 7).

DINO is an interesting model as it is like BYOL with ViT with additional practices like centering
and softmaxing, yet its drop in low-diversity condition is much smaller. However, as the centering
operation is very similar to contrasting the current teacher embedding to previous embeddings, the
result of DINO is actually consistent with the hypothesis that negative sampling is useful.

Unlike the contrastive learning algorithms, MAE is insensitive to the change of the within-batch
diversity, as its performance barely changes with respect to the continual learning conditions. As the
performance of DINO with the same ViT architecture is significantly influenced by the diversity, this
insensitivity of MAE cannot be due to the ViT architecture it uses. Instead, it is likely due to the
fact that its loss formulation focusing more on within-image cross-patch relations, while the general
contrastive learning loss formulations focus more on the cross-image relations.

Finally, although the life-long benchmark uses one specific source of developmental egocentric video
(SamCam), we find that the results above are highly robust to the specific choice of data source,
remaining consistent when evaluated on egocentric videos either from other child subjects, or from
adults in the Ego4D [20] (MIT License) dataset (see SI Fig 3). However, the child developmental
dataset more starkly exposes the gaps between the distinct algorithm classes across all data diversity
parameter conditions, which underlies our choice to use it as the benchmark.

Real-Time Learning Results. We find that the algorithms that fail in the low-diversity conditions also
tend to fail in the real-time benchmark even after aggregating their performance across all tested
continual learning conditions (Fig 3 A, results of separate conditions are in SI Fig 2). Interestingly,
MAE completely fails to match human performance changes on the real-time learning benchmark
(Fig 3 B), which is analyzed later. We further hypothesize that the algorithms explicitly leveraging
negative samples in the loss formulations also perform well on low-diversity conditions. This is
validated by the results of BYOLNeg and DINONeg, as BYOLNeg outperforms BYOL on both
real-time and life-long benchmarks and DINONeg outperforms DINO on the life-long benchmark
and performs similarly as DINO on the real-time benchmark.

Tradeoff between real-time flexibility and the life-long stability. Although higher within-batch diversity
generally leads to better life-long benchmark performance, achieving this through lowering the mix
ratio implies less learning from the current context, which intuitively could hurt the real-time learning
performance. To evaluate this intuition, we systematically test the corresponding performance on
both benchmarks using one of the best-performing models on the real-time benchmark (SimCLR-
More-MLPs) under the continual learning conditions with more extreme parameter settings. The
per-condition learning effect results for these tests are shown in SI Fig 8.
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of datapoints that are significantly different from human data (α = 0.05), out of 12 data points. B.
Learning effects of humans in dashed lines and the unsupervised DNNs under their best conditions in
solid lines. In addition to one of the well matching model (SimCLR-More-MLPs), the worse models
are shown here. The effects of other models are in SI Fig 2. The mismatch numbers are provided
in SI Table 2.

For the current-memory mix ratio parameter, more learning on the current context (higher ratio)
reduces the within-batch diversity, yielding worse life-long learning performance (Fig 4 A, left panel).
But until R reaches the extremely high value (1:0, meaning only learning from the current context),
the real-time learning performance only shows slight increase compared to the base 1:1 value. The
significantly larger mismatch when R = 1 : 0 is mainly due to catastrophic forgetting, which is
further analyzed in SI Sec. 1.1.6. When less learning comes from the current context (R lower than
1), the life-long learning performance increases as the within-batch diversity is higher. However, this
also means the learning signals needed to match the real-time human learning effects are sparser,
which leads to an increase in the mismatch score (Fig 4 A, left panel, R = 1 : 7 or 1 : 15). If all
learning is from the memory (R = 0 : 1), the models are then unresponsive to any changes in the
current context, therefore greatly mismatch human learning effects.

Similarly for the current-context replay window parameter, longer replay window increases the
within-batch diversity, but also lower the focus on very recent experience. Reflected in the real-time
learning benchmark, longer replay window length like 40m or 80m makes the learning slower at
the beginning but faster later as well as less human-like in the Switch condition, since the learning
signals to the models cannot immediately “switch”. Therefore, these longer replay windows lead to
worse real-time mismatch scores (Fig 4 A, middle panel).

The influence of the aggregation time on the two benchmarks is markedly different. As shown in the
right panel of Fig 4 A, the life-long learning performance barely changes with respect to T , while the
mismatch score to human real-time learning effects greatly increases from T = 0.2s to T = 1.0s.
The change seems even clear for T = 0.4s compared to T = 0.2s. The reason for this extremely
high sensitivity is that with a longer aggregation window, the chance of sampling the aggregation
pairs that represent the wanted learning signal is consequently much reduced.

The tradeoff between real-time and life-long benchmark performance clearly suggests that both
benchmarks should be jointly tested to complement each other. Algorithms without negative samples
therefore perform even worse compared to other algorithms in this joint testing, as the condition with
the lowest real-time mismatch score leads to much lower life-long performance and condition with
better life-long performance also typically leads to higher real-time mismatch score (Fig 4 B).

Analysis of learning failures. To further diagnose the failure of models on the real-time learning
benchmark, we construct a purified and conceptually simpler (but unnatural) real-time learning stream
by manually selecting aggregation pairs for the models to learn from. Specifically, we subselected
pairs of consecutive frames in which there are two different images of isolated objects, dropping all
pairs of frames which contain the same image in both frames or one blank frame during the exposure
phase. In other words, this manually-selected pair stream has been highly de-sparsified to contain
precisely the events in which a non-trivial learning signals are expected to be present. Compared to
the naturally-emerging aggregation pairs sampled from the actual video stream, the manually selected
aggregation pairs make the learning signal denser and also less noisy (see SI Fig 5 for examples).
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After evaluating all the algorithms in this de-sparsified learning stream under the highest-diversity
learning condition tested (R = 1 : 3 and W = 20m), which has the least focus on the current
context, we find that MAE still shows substantial mismatch, and is in fact now the only tested
algorithm to do so (Fig 5 A, B). Most surprisingly, its learning effects in the Swap condition show
increasing discriminative performance, unlike all other models as well as human subjects (Fig 5 A).
We considered the possibility that this was due to the fact that the (default) high mask ratio MAE
used (0.75) could be obscuring important details differentiating the two objects. However, even
after reducing it to 0.1, MAE still fails to show a decreasing performance in the Swapped condition
(Fig 5 A, left and middle panels). The slight decreasing performance shown in Fig 3 B is possibly
due to learning from the pair containing the exposure and gray images. These results suggest that the
masked autoregressive loss formulation, with no mechanism to construct semantically meaningful
features that are invariant across augmentations, may be at a disadvantage in capturing the flexibility
of human real-time learning effects.

In contrast to MAE, almost all the contrastive algorithms achieve noise-ceiling level performance on
the real-time learning benchmark in the manually de-sparsified learning stream (Fig 5 B). This result
shows both that these algorithms are capable of capturing the temporal statistics learned by humans
as long as key candidate learning events are identified post-hoc, and that the failure of those models
without negative sampling are specifically due to their inability to automatically identify the learning
signals in such events when they arise in the noisier and sparser natural learning stream.

5 Discussion

We introduce a real-time human learning benchmark measuring how well unsupervised models
predict human visual learning effects and a life-long learning benchmark measuring how efficient
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these models learn under a human-generated continual learning curriculum. We further propose a
general continual learning process where models jointly learn from the visual experience sampled
from a recent time window in the current context as well as memory. Multiple high-performing
self-supervised learning models are evaluated and differentiated using the proposed benchmarks.
Our results show that the newly proposed algorithms like SwAV, BYOL and MAE underperform
earlier proposed algorithms like SimCLR and MoCo v2 on both the real-time human learning and the
conditions of the life-long learning benchmarks that lead to lower within-batch diversity, even though
these newer algorithms all have been reported to outperform earlier ones on the typical ImageNet
dataset. We further show that the algorithm design of explicitly leveraging the negative samples
indeed helps the performance on both benchmarks by showing that a variant of BYOL using negative
samples performs much better on both real-time and life-long metrics. Through more analysis on the
failure of these models, we identify that the failure of some of the learning algorithms is likely due to
their inability in learning from the sparse signals from the low-diversity environment.

Our formulation has a number of limitations. Although the current design of the continual learning
process uses joint training on memory and the current context to address catastrophic forgetting,
another potential solution for this issue is to apply general-purpose continual learning methods such
as EWC [37]. However, our preliminary results show that this method is unlikely to improve life-long
learning performance even compared to the pure continual learning setting (R = 1 : 0) (see SI
Sec. 1.2.6 and Fig 6). Designing improved learning algorithms that explicitly integrate memory
to prevent catastrophic forgetting may thus be helpful. In addition, the current random sampling
policy from the short aggregation time window, current-context replay window, and memory can
also be improved. Furthermore, humans actively interact with their surrounding environment and
effectively choose what they learn from through choosing what they attend to. This feature is not yet
captured in our benchmarks, as the real-time learning benchmark evaluates the learning dynamics
from the controlled visual stimulus and the life-long learning benchmark presents the models the
visual experience that was interactively generated by the children at the time of recording but is
fixed for the models. There have been works integrating such interactive curriculum learning into
the learning algorithms, especially in exploring how curiosity can help the agents explore or learn
in human-like fashion [23, 48, 19]. Enabling the evaluation of such feature in our benchmarks is
therefore another important future step.

It is well known that young children undergo a critical period in their visual development [2],
suggesting that the underlying learning algorithms or even architecture undergo substantial changes
at some point. However, in this work, we do not account for this directly. We simply use the potential
changes of learning rates to accommodate such a difference, where smaller learning rates are typically
used for the real-time learning benchmark. It is possible that our simple learning-rate schedule is a
reasonable null model of developmental changes to start with, but testing other more sophisticated
models (e.g., fixing lower layers earlier in training) will be part of future work. Moreover, our current
benchmarks seek to model only behavioral learning effects [30], but comparing models to learning
effects at the scale of individual neurons [43] will be a key future step.

As we train DNNs using standard backpropagation algorithm, it is unlikely that this optimization
procedure is implementable in real organisms [4]. Noticing recent progress in local learning rules that
are more biologically plausible and the closing gap between these algorithms and error feedback [40],
we also plan to combine these new rules with unsupervised learning objective functions to test
whether the combined models can explain the human learning effects better in future work.

Finally, the egocentric videos recorded from infants were from middle-class families living in the
United States and Australia, making the videos unrepresentative of communities with different
socioeconomic statuses or different cultures. Although we believe the conclusions from the life-long
learning benchmark will hold for visual experience from children with different background, which
is supported by the high consistency between results from SamCam and AliceCam (see SI Fig 3.B),
collecting recordings from children of more diverse backgrounds will still be an important future
step to enhance the inclusiveness of the benchmark. The SAYCam videos also contain personally
identifiable information as the faces of the parents and the infants can appear in the videos, which has
been consented to by the parents participating in that project [51].
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of GPUs, internal cluster, or cloud provider)? [Yes] See the Supplementary Information.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] For SAYCam, we

cited [51]. For ImageNet, we cited [15]. For the human learning effects, we cited [30].
For VGGFace2, we cited [6]. For Ego4D, we cited [20].

(b) Did you mention the license of the assets? [Yes] ImageNet or VGGFace2 does not
seem to have a license. For SAYCam, the license (License CC-BY 4.0) is added at
Section 1. For the human learning effects, the license (MIT license) is also added at
Section 1. Ego4D also uses MIT license, added at Section 4.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
We did not use any new assets in this work.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We do not feel this needs to be discussed in the paper, as the
datasets are publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We do not think the data we are using contain
offensive content. For personally identifiable information, we have discussed that in
Section 5. The human faces used in the real-time learning benchmark are from 3D
models of human faces instead of real humans.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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