
A Additional Ablation Studies

In this section, we provide three additional ablation studies and discussions to further analyze our
proposed method. These ablation studies are conducted on the iWildCam dataset.

A.1 Aggregator Methods

In Table 9, we include several hand-designed aggregation operators: max-pooling, average-pooling,
and two MLP-based learnable architectures. The two MLP-based learnable architectures work as
follows.

MLP weighted sum (MLP-WS) takes the output features from the MoE models as input and produces
the score for each expert. Then, we weigh those output features using the scores and sum them to
obtain the final output for knowledge distillation.

For the MLP projector (MLP-P), the output features from the MoE are flattened at first (N ×D →
ND×1) and then fed into an MLP architecture (ND×D,D×D) to obtain the final output (D×1)
for knowledge distillation.

A.2 Excluding Overlapping Expert

As discussed in Section 4.1, we simulate the test-time out-of-distribution by excluding the correspond-
ing expert model in each episode since the training domains overlap for the MoE and meta-training. If
the corresponding expert model is not excluded during meta-training, the aggregator output might be
dominated by the corresponding expert output, or even collapse into a domain classification problem
from the perspective of the aggregator. This might hinder the generalization on OOD domains. The
experiments in Table 11 also validate the benefits of using such an operation.

A.3 Expert Architecture

In this section, we analyze the effects of using a different expert architecture. Table 12 validates
the benefits of using the knowledge aggregator and our proposed training algorithm. Our proposed
method could perform robustly across different expert architectures.

Table 11: Comparison using ID test split in iWildCam. The ID test split contains images from the
same domains as the training set but on different days from the training images. The model trained
without masks performs better than the model trained with masks under the ID test split but has lower
accuracy and a comparable Macro-F1 than the model trained with masks in the OOD test split.

MoE Mask ID Acc ID Macro-F1 OOD Acc OOD Macro-F1

Mask all except overlap 75.5 46.8 —- —-
Without mask 76.4 48.0 74.1 35.1
With mask 72.9 44.4 77.2 34.0

Table 12: Comparison with different expert architectures. Our proposed method is robust to different
expert architectures with different capacities.

Expert architecture Student architecture Acc Macro-F1

MobileNet V2 MobileNet V2 59.5 19.7
ResNet-50 MobileNet V2 58.8 21.0

A.4 Number of Images Used for Test-Time Adaptation

During deployment, our method uses a small number of unlabelled images to adapt the student
prediction network to the target domain. Increasing the number of images used for adaptation might
give a better approximation of the marginal of the target domain. Thus, the performance in the target
domains is also enhanced. The experiments in Table 13 validate the benefits of using more images
for adaptation.
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Table 13: Results on the number of images for adaptation. Adaptation using more images leads to
better approximations of the marginal and improves generalization.

# of images for adaptation 2 4 8 16 24

Accuracy 76.5 76.9 77.0 77.2 77.2
Macro-F1 31.5 31.2 31.7 33.0 34.0
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Figure 3: Left: Standard methods require sampling mini-batched data across domains and thus cannot
utilize the locally-stored private data within each private domain. Right: Privacy-related algorithms
can improve the adaptation results by transferring knowledge from the private data without access to
the raw data.

B Details on Privacy Constrained Setting

B.1 Problem Definition

In this section, we discuss a problem setting where data privacy regulation is imposed. To achieve
data diversity, large-scale labeled training data are normally collected from public venues (internet
or among institutes) and stored in a server where i.i.d conditions can be satisfied to train a generic
model by sampling mini-batches. However, in real-world applications, due to privacy-related
regulations, some datasets cannot be shared among users or distributed edges. Such data can
only be processed locally. Thus, they cannot be directly used for training a generalized model in most
existing approaches [24, 51]. In this work, we consider a more realistic deployment problem with
privacy constraints imposed.

We illustrate the privacy-regulated test-time adaptation setting in Fig. 3. To simulate the privacy-
regulated scenario, we explicitly separate the distributed training source domains into two non-
overlapping sets of domains: DSpri for private domains and DSpub for public domains. Each domain
within DSpri contains private data that can only be shared and accessed within that domain. Therefore,
the data within DSpri can only be accessed locally in a distributed manner during training, and cannot
be seen at test time. DSpub contains domains with only public data that has fewer restrictions and can
be accessed from a centralized platform. Such splitting allows the use of DSpub to simulate DT at
training to learn the interaction with DSpri. It is also possible for some algorithms to mix all DSpub
and store them in a server to draw a mini-batch for every training iterations [67, 3], but such operation
is not allowed for private data.

The ultimate goal under this privacy-regulated setting is to train a recognition model on domains
DSpri and DSpub with the above privacy regulations applied. The model should perform well in the
target domains DT without accessing either DSpri or DSpub.

B.2 Applying Meta-DMoE to Privacy Constrained Setting

Our proposed Meta-DMoE method is a natural solution to this setting. Concretely, for each private
domain DS i,pri, we train an expert model Mi

e using only data from DS i,pri. After obtaining the
domain-specific experts {Mi

e}, we perform the subsequent meta-training on DSpub to simulation
OOD test-time adaptation. The training algorithm is identical to Alg. 1, except we don’t mask any
experts’ output since the training domains for the MoEs and meta-training do not overlap. In this
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way, we can leverage the knowledge residing in DSpri without accessing the raw data but only the
trained model on each domain during centralized meta-training. We also include the details of the
experiments under this setting in Appendix D.1.

C Details on Knowledge Aggregator

In this section, we discuss the detailed architecture and computation of the knowledge aggregator. We
use a naive single-layer transformer encoder [73, 22] to implement the aggregator. The transformer
encoder consists of multi-head self-attention blocks (MSA) and multi-layer perceptron blocks (MLP)
with layernorm (LN) [4] applied before each block, and residual connection applied after each block.
Formally, given the concatenated output features from the MoE models,

z0 = Concat[M1
e(x),M2

e(x), ...,MN
e (x)] ∈ RN×d, (4)

z′0 = MSAk(LN(z0)) + z0, (5)

zout = MLP (LN(z′0)) + z′0, (6)

where MSAk(·) is the MSA block with k heads and a head dimension of dk (typically set to d/k),

[q,k, v] = zWqkv Wqkv ∈ Rd×3·dk , (7)

SA(z) = Softmax(
qkT

√
dk

)v, (8)

MSAk(z) = Concat[SA1(z), ..., SAk(z)]Wo Wo ∈ Rk·Dk×D . (9)

We finally average-pool the transformer encoder output zout ∈ RN×d along the first dimension to
obtain the final output. In the case when the dimensions of the features outputted by the aggregator
and the student are different, we apply an additional MLP layer with layernorm on zout to reduce the
dimensionality as desired.

D Additional Experimental Details

We run all the experiments using a single NVIDIA V100 GPU. The official WILDS dataset contains
training, validation, and testing domains which we use as source, validation target, and test target
domains. The validation set in WILDS [39] contains held-out domains with labeled data that are
non-overlapping with training and testing domains. To be specific, we first use the training domains to
pre-train expert models and meta-train the aggregator and the student prediction model and then use
the validation set to tune the hyperparameters of meta-learning. At last, we evaluate our method with
the test set. We include the official train/val/test domain split in the following subsections. We run
each experiment and report the average as well as the unbiased standard deviation across three random
seeds unless otherwise noted. In the following subsections, we provide the hyperparameters and
training details for each dataset below. For all experiments, we select the hyperparameters settings
using the validation split on the default evaluation metrics from WILDS. For both meta-training and
testing, we perform one gradient update for adaptation on the unseen target domain.

D.1 Details for Privacy Constrained Evaluation

We mainly perform experiments under privacy constrained setting on two subsets of WILDS for
image recognition tasks, iWildCam and FMoW. To simulate the privacy constrained scenarios, we
randomly select 100 domains from iWildCam training split as DSpri to train {Mi

e}Mi=1 and the rest
as DSpub to meta-train the knowledge aggregator and student network. As for FMoW, we randomly
select data from 6 years as DSpri and the rest as DSpub. The domains are merged into 10 and 3
super-domains, respectively, as discussed in Section 5.1. Since ARM and other methods only utilize
the data as input, we train them on only DSpub.
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D.2 IWildCam Details

IWildCam is a multi-class species classification dataset, where the input x is an RGB photo taken
by a camera trap, the label y indicates one of 182 animal species, and the domain z is the ID of the
camera trap. During training and testing, the input x is resized to 448 × 448. The train/val/test set
contains 243/32/48 domains, respectively.

Evaluation. Models are evaluated on the Macro-F1 score, which is the F1 score across all classes.
According to [39], Macro-F1 score might better describe the performance on this dataset as the
classes are highly imbalanced. We also report the average accuracy across all test images.

Training domain-specific model. For this dataset, we train 10 expert models where each expert is
trained on a super-domain formed by 24-25 domains. The expert model is trained using a ResNet-50
model pretrained on ImageNet. We train the expert models for 12 epochs with a batch size of 16. We
use Adam optimizer with a learning rate of 3e-5.

Meta-training and testing. We train the knowledge aggregator using a single-layer transformer
encoder with 16 heads. The transformer encoder has an input and output dimension of 2048, and
the inner layer has a dimension of 4096. We use ResNet-50 [32] model for producing the results in
Table 1. We first train the aggregator and student network with ERM until convergence for faster
convergence speed during meta-training. After that, the models are meta-trained using Alg. 1 with a
learning rate of 3e-4 for α, 3e-5 for βs, 1e-6 for βa using Adam optimizer, and decay of 0.98 per
epoch. Note that we use a different meta learning rate, βa and βs respectively, for the knowledge
aggregator and the student network as we found it more stable during meta training. In each episode,
we first uniformly sample a domain, and then use 24 images in this domain for adaptation and use 16
images to query the loss for meta-update. We train the models for 15 epochs with early stopping on
validation Macro-F1. During testing, we use 24 images to adapt the student model to each domain.

D.3 Camelyon Details

This dataset contains 450,000 lymph node scan patches extracted from 50 whole-slide images (WSIs)
with 10 WSIs from each of 5 hospitals. The task is to perform binary classification to predict whether
a region of tissue contains tumor tissue. Under this task specification, the input x is a 96 by 96
scan patch, the label y indicates whether the central region of a patch contains tumor tissue, and the
domain z identifies the hospital. The train/val/test set contains 30/10/10 WSIs, respectively.

Evaluation. Models are evaluated on the average accuracy across all test images.

Training domain-specific model. For this dataset, we train 5 expert models where each expert is
trained on a super-domain formed by 6 WSIs since there are only 3 hospitals in the training split. The
expert model is trained using a DenseNet-121 model from scratch. We train the expert models for 5
epochs with a batch size of 32. We use an Adam optimizer with a learning rate of 1e-3 and an L2
regularization of 1e-2.

Meta-training and testing. We train the knowledge aggregator using a single-layer transformer
encoder with 16 heads. The knowledge aggregator has an input and output dimension of 1024, and
the inner layer has a dimension of 2048. We use DenseNet-121 [36] model for producing the results
in Table 1. We first train the aggregator until convergence, and the student network is trained from
ImageNet pretrained. After that, the models are meta-trained using Alg. 1 with a learning rate of 1e-3
for α, 1e-4 for βs, 1e-3 for βa using Adam optimizer and a decay of 0.98 per epoch for 10 epochs. In
each episode, we first uniformly sample a WSI, and then use 64 images in this WSI for adaptation
and use 32 images to query the loss for meta-update. The model is trained for 10 epochs with early
stopping. During testing, we use 64 images to adapt the student model to each WSI.

D.4 RxRx1 Details

The task is to predict 1 of 1,139 genetic treatments that cells received using fluorescent microscopy
images of human cells. The input x is a 3-channel fluorescent microscopy image, the label y indicates
which of the treatments the cells received, and the domain z identifies the experimental batch of the
image. The train/val/test set contains 33/4/14 domains, respectively.

Evaluation. Models are evaluated on the average accuracy across all test images.
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Training domain-specific model. For this dataset, we train 3 expert models where each expert is
trained on a super-domain formed by 11 experiments. The expert model is trained using a ResNet-50
model pretrained from ImageNet. We train the expert models for 90 epochs with a batch size of 75.
We use an Adam optimizer with a learning rate of 1e-4 and an L2 regularization of 1e-5. We follow
[39] to linearly increase the learning rate for the first 10 epochs and then decrease it using a cosine
learning rate scheduler.

Meta-training and testing. We train the knowledge aggregator using a single-layer transformer
encoder with 16 heads. The knowledge aggregator has an input and output dimension of 2048, and
the inner layer has a dimension of 4096. We use the ResNet-50 model to produce the results in
Table 1. We first train the aggregator and student network with ERM until convergence. After that,
the models are meta-trained using Alg. 1 with a learning rate of 1e-4 for α, 1e-6 for βs, 3e-6 for
βa using Adam optimizer and following the cosine learning rate schedule for 10 epochs. In each
episode, we use 75 images from the same domain for adaptation and use 48 images to query the loss
for meta-update. During testing, we use 75 images to adapt the student model to each domain.

D.5 FMoW Details

FMoW is comprised of high-definition satellite images from over 200 countries based on the func-
tional purpose of land in the image. The task is to predict the functional purpose of the land captured
in the image out of 62 categories. The input x is an RBD satellite image resized to 224 × 224, the
label y indicates which of the categories that the land belongs to, and the domain z identifies both the
continent and the year that the image was taken. The train/val/test set contains 55/15/15 domains,
respectively.

Evaluation. Models are evaluated by the average accuracy and worst-case (WC) accuracy based on
geographical regions.

Training domain-specific model. For this dataset, we train 4 expert models where each expert is
trained on a super-domain formed by all the images in 2-3 years. The expert model is trained using
a DenseNet-121 model pretrained from ImageNet. We train the expert models for 20 epochs with
a batch size of 64. We use an Adam optimizer with a learning rate of 1e-4 and a decay of 0.96 per
epoch.

Meta-training and testing. We train the knowledge aggregator using a single-layer transformer
encoder with 16 heads. The knowledge aggregator has an input and output dimension of 1024, and
the inner layer has a dimension of 2048. We use the DenseNet-121 model to produce the results in
Table 1. We first train the aggregator and student network with ERM until convergence. After that,
the models are meta-trained using Alg. 1 with a learning rate of 1e-4 for α, 1e-5 for βs, 1e-6 for βa

using Adam optimizer and a decay of 0.96 per epoch. In each episode, we first uniformly sample a
domain from {continent × year}, and then use 64 images from this domain for adaptation and use
48 images to query the loss for meta-update. We train the models for 30 epochs with early stopping
on validation WC accuracy. During testing, we use 64 images to adapt the student model to each
domain.

D.6 Poverty Details

The task is to predict the real-valued asset wealth index using a multispectral satellite image. The
input x is an 8-channel satellite image resized to 224 × 224, the label y is a real-valued asset wealth
index of the captured location, and the domain z identifies both the country that the image was
taken and whether the area is urban or rural. For this dataset, we use MSE Loss for training the
domain-specific experts and meta-training. The train/val/test set contains 26-28/8-10/8-10 domains,
respectively. The number of domains varies slightly from the fold to the fold for Poverty.

Evaluation. Models are evaluated by the Pearson correlation (r) and worst-case (WC) r based on
urban/rural sub-populations. This dataset is split into 5 folds where each fold defines a different set
of Out-of-Distribution (OOD) countries. The results are aggregated over 5 folds.

Training domain-specific model. For this dataset, we train 3 expert models where each expert is
trained on a super-domain formed by 4-5 countries. The expert model is trained using a ResNet-18
model from scratch. We train the expert models for 70 epochs with a batch size of 64. We use an
Adam optimizer with a learning rate of 1e-3 and a decay of 0.96 per epoch.
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Meta-training and testing. We train the knowledge aggregator using a single-layer transformer
encoder with 16 heads. The knowledge aggregator has an input and output dimension of 512, and the
inner layer has a dimension of 1024. We use the ResNet-18 model to produce the results in Table
1. We first train the aggregator and student network with ERM until convergence. After that, the
models are meta-trained using Alg. 1 with a learning rate of 1e-3 for α, 1e-4 for βs, 1e-4 for βa using
Adam optimizer and a decay of 0.96 per epoch. In each episode, we first uniformly sample a domain
from {country × urban/rural}, and then use 64 images from this domain for adaptation and use 64
images to query the loss for meta-update. We train the models for 100 epochs with early stopping on
validation Pearson r. During testing, we use 64 images to adapt the student model to each domain.
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