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Abstract

Panchromatic (PAN) and multi-spectral (MS) image fusion, named Pan-sharpening,
refers to super-resolve the low-resolution (LR) multi-spectral (MS) images in the
spatial domain to generate the expected high-resolution (HR) MS images, condi-
tioning on the corresponding high-resolution PAN images. In this paper, we present
a simple yet effective alternating reverse filtering network for pan-sharpening.
Inspired by the classical reverse filtering that reverses images to the status before
filtering, we formulate pan-sharpening as an alternately iterative reverse filtering
process, which fuses LR MS and HR MS in an interpretable manner. Different from
existing model-driven methods that require well-designed priors and degradation
assumptions, the reverse filtering process avoids the dependency on pre-defined
exact priors. To guarantee the stability and convergence of the iterative process
via contraction mapping on a metric space, we develop the learnable multi-scale
Gaussian kernel module, instead of using specific filters. We demonstrate the theo-
retical feasibility of such formulations. Extensive experiments on diverse scenes to
thoroughly verify the performance of our method, significantly outperforming the
state of the arts.

1 Introduction

Multispectral images are widely used in various fields such as resource monitoring [1], environmen-
tal protection [2, 3] and ecological monitoring [4]. However, due to the hardware limitations of
multispectral sensors, multispectral images usually lack high spatial resolution [5, 6]. In contrast,
high-resolution panchromatic (PAN) images that contain rich spatial details of the same scene are
easy to obtain. Therefore, pan-sharpening, generating high-resolution multispectral images by fusing
panchromatic images with low-resolution multispectral images, has become an important issue in the
field of remote sensing [7, 8].

Many efforts have been made to solve the pan-sharpening problem, which can be generally divided
into two large groups: traditional pan-sharpening methods and deep learning-based methods [9,
10]. Traditional pan-sharpening methods usually require strict assumptions of multispectral image
degradation via prior knowledge. Otherwise, the inexact assumptions may cause system model error.
For example, both the assumptions established by component substitution methods [11, 12] and
multi-resolution analysis methods [13, 14] focus on the relationship between PAN and HR MS, which
is destined to make these methods prone to spectral distortion. Unlike the above-mentioned traditional
approaches, variational optimization approaches consider the relationship among HR MS, LR MS
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and PAN, and then construct the energy function based on well-designed priors [15, 16]. However,
the methods of this kind inflict high computational burden, restricting their practical applications.

Most recently, deep learning exhibited outstanding performance in the field of remote sensing images
[17, 18]. Undoubtedly, the deep learning-based (DL) methods become a newly developed category
to solve pan-sharpening [19–22]. Unfortunately, the pan-sharpening networks commonly lack the
interpretability in theirs designs, which limits their performance. To solve this issue, the model-
based deep learning methods build the network by unrolling the specific optimization algorithm
[23, 24]. However, the optimization algorithms of model-based deep learning methods still require
well-designed priors or assumptions. Additionally, the convergence of the optimization algorithms is
not taken into account in the design of the unrolling networks.

To address these problems, we propose a novel pan-sharpening approach called alternating reverse
filtering network, which combines classical reverse filtering [25] and deep learning. Unlike previous
methods, we formulate pan-sharpening as a reverse filtering process, thus avoiding the dependency on
pre-defined priors or assumption. In addition, we tailor the classical reverse filtering in an alternating
iteration manner for the pan-sharpening problem. The process of alternating iterations is unrolled
into a network. We demonstrate such formulations is theoretical feasibility. To guarantee the stability
and convergence of the iterative process on the basis of contraction mapping in a metric space, we
introduce the learnable multi-scale Gaussian kernel module in the network. Such a key issue is
commonly neglected in previous unrolling-based deep learning methods.

The main contributions of this paper can be summarized as follows: 1) We introduce a new perspective
for pan-sharpening by formulating it as a reverse filtering process. To the best of our knowledge, this
is the first effort to solve multispectral image fusion problem using the method of this kind. 2) In
contrast to existing model-driven methods, our iterative network can obtain HR MS without the need
for pre-defined exact priors or assumptions. 3) Instead of using specific filters in reverse filtering, we
constrain their formulation in a more compact learnable multi-scale Gaussian kernel module, which
guarantees the stability and convergence of the iterative process. In addition, extensive experimental
results on simulated and real-world scenes show that the proposed network significantly outperforms
the state of the arts.

2 Related Work

Pan-sharpening. Traditional pan-sharpening methods are classified into three types: component
substitution (CS)-, multi-resolution analysis (MRA)-, and variational optimization (VO)-based
methods [26, 16, 27–29]. The main idea of CS-based methods is to separate spatial and spectral
information of the MS image in a suitable space and further fuse them with the PAN image. The
representative CS-based methods include intensity hue-saturation (IHS) fusion [30], the principal
component analysis (PCA) methods [11, 31], Brovey transforms [32], and Gram-Schmidt (GS)
orthogonalization method [33]. MRA-based methods decompose MS and PAN images into multi-
scale space via decimated wavelet transform (DWT) [34], high-pass filter fusion (HPF) [35], indusion
method [13] and atrous wavelet transform (ATWT) [36]. Then, the decomposed version PAN images
are injected into the corresponding MS images for information fusion. VO-based methods regard
the pan-sharpening tasks as an ill-posed problem by minimizing a loss function, including dynamic
gradient sparsity property (SIRF) [37], local gradient constraint (LGC) [15], group low-rank constraint
for texture similarity (ADMM) [16]. However, the performance of these methods is limited due to
the shallow non-linear expression in these models. Since then, deep learning-based pan-sharpening
algorithms have dominated this field [9, 38, 39]. Masi et al. [9] are the first to use CNN to deal
with the issue of pan-sharpening. Although the structure is simple, the effect is much better than the
traditional methods. Then, Yang et al. [38] designed a deeper CNN by relying on resblock in [40].
Meanwhile, Yuan et al. [41] introduced multi-scale module into the basic CNN architecture.

Unrolling-based deep learning method. In recent years, many researchers [42–47] attempt to
combine domain knowledge with deep neural networks to propose deep unrolling networks which take
advantages of the model-based methods’ interpretability and learning-based methods’ strong mapping
ability. Specifically, the deep unrolling network firstly unrolls certain optimization algorithms [48–
50, 23, 51–57] and utilizes deep neural network to parameterize the unrolling model, then minimizes
the loss function and optimizes the parameters in an end-to-end manner. For example, Xu et al.
[24] developed two separate priors of PAN and MS modality to design the unrolling structure for
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Figure 1: The overall architecture of alternating reverse filtering network.

pan-sharpening. The model-driven methods have better interpretability and clearer physical meaning.
Cao et al. [46] unrolled an alternate optimization algorithm into CNN. However, the optimization of
model-based deep methods also require well-designed priors and exact degradation assumptions.

3 Proposed Method

In this section, we provide a detailed introduction to our proposed alternating reverse filtering network
for pan-sharpening. For convenience, we first define some notations. Concretely, L ∈ Rw×h×B

denotes the low-resolution (LR) multispectral image, H ∈ RW×H×B represents the corresponding
high-resolution (HR) multispectral image, and P ∈ RW×H×b is the PAN image.

3.1 Problem Formulation

For multispectral image restoration, the degradation model is commonly formulated as

L = (H ∗ k) ↓s +ϵ, (1)

where ∗, k, ↓s and ϵ denote the convolution operation, blurring kernel, down-sampling operator and
the measurement noise, respectively. To restore high quality H from L, high-resolution PAN image
P is introduced to help enhance structural detail. In CS-based models, the intensity component I,
a generalized IHS concept [58], is usually replaced by P but the discrepancy between P and I can
cause spectral distortion in the fused image. The VO-based models solve the problem by explicitly
constructing many well-designed priors among H, L and P. However, hand-crafted priors don’t
work well in practical complex situations. Inspired by classical reverse filtering [25], we propose
alternating reverse filtering method to estimate H by the more general multispectral image priors:

L = f(H), (2)
P = g(HI), (3)

where f(·) and g(·) denote the degradation processes, and HI is the intensity component of H.

3.2 Model Optimization

Definition 3.2 Suppose (H, d) is a metric space and T : H → H is a mapping function. For all
x, y ∈ H, if there exists a constant c ∈ [0, 1) that makes the following formula

d(T (x), T (y)) ≤ cd(x, y), (4)

mapping T : H → H is called Contraction Mapping[59].

In the image space, the metric space (H, d) can be expressed as

H = Rw×h, d(x, y) = ∥x− y∥, (5)

where w × h is the number of image pixels and d(x, y) is the Euclidean distance.
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Theorem 3.2 A variable x∗ is a fixed point for a given function Φ if Φ(x∗) = x∗. When mapping
Φ : H → H is a contraction mapping, Φ admits a unique fixed-point x∗ in H. Further, x∗ can be
found in the following way. Let the initial guess be x0 and define a sequence {xn} as xn = Φ(xn−1).
When the iterative process converges, limn→∞ xn = x∗.

Reverse Filtering Without loss of generality, the degenerate processes f(·) and g(·) can be consid-
ered as broadly defined filters F (·) that smooth images, texture removal or other properties. Filtering
process can be described as

y = F (x), (6)
where x and y are the input image and the filtering result. When F (·) is unknown, it’s difficult to
apply well-designed image priors to obtain the x. However, reverse filtering can estimate x without
needing to compute F−1(·) and update restored images according to the filtering effect as

xk+1 = xk + y − F (xk), (7)

where xk is the current estimate of x in the k-th iteration. The iteration starts from x0 = y and xk

gets closer and closer to x with the increasing k. We make auxiliary function φ(·) as

φ(x) = x+ y − F (x). (8)

Therefore, the above iterative process can be regarded as a fixed point iteration

xk+1 = φ(xk). (9)

With the above analysis, we take the filtering function F (·) in Equation 8 as f(·) and g(·) in Equation
2 to obtain two reverse filtering:{

φ1(H) = H+ L̂− f(H)
φ2(HI) = HI +P− g(HI),

(10)

and hence our alternating reverse filtering method can be written by following
Hk+ 1

2 = Hk + L̂− f(Hk)

H̃k
I = H

k+ 1
2

I

H̃k+1
I = H̃k

I +P− g(H̃k
I )

Hk+1 ⇐ (H
k+ 1

2

I ← H̃k+1
I ),

(11)

where L̂ is the upsampled LR multispectral image L and H̃k
I is an approximate estimate of HI .

Equation 11 starts with initial state H0 = L̂. Note that the calculated Hk+ 1
2 is used as input in the next

iteration, the intensity component Hk+ 1
2

I is then sent into another iteration H̃k+1
I = H̃k

I +P−g(H̃k
I )

to enhance the structural details with the help of P image. After that, the enhanced intensity
component replaces the original component Hk+ 1

2

I ← H̃k+1
I and the new Hk+1 is used as input in

the next iteration.

3.3 Alternating Reverse Filtering Network

The end-to-end model we construct for GMIR, named as ARFNet (Alternating Reverse Filtering
Network), is based on two fixed point iterations in Equation 11 with multi-scale Gaussian convolution
module acting as filters. See Figure 1 for the overview of the proposed method. If reverse filtering
satisfies the sufficient condition for definition 3.2, ARFNet will converge limk→∞ Hk = H∗ and
finally reaches f (H∗) ≈ L̂. Take the φ1(·) for instance, the sufficient condition that theorem 3.2
holds is that φ1(H) forms a contraction mapping

∥φ1 (Ha)− φ1 (Hb)∥ =
∥∥∥[Ha + L̂− f (Ha)

]
−

[
Hb + L̂− f (Hb)

]∥∥∥
= ∥[Ha − f (Ha)]− [Hb − f (Hb)]∥ ≤ c · ∥Ha −Hb∥ , c ∈ [0, 1)

(12)

For linear filters, the condition is further simplified as

∥H− f(H)∥ ≤ c · ∥H∥. c ∈ [0, 1) (13)

In our case, the degenerate processes f(·) and g(·) are implemented by multi-scale Gaussian convolu-
tion modules.
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Multi-scale Gaussian Convolution Module Given an input image x, the output y of Gaussian
convolution [60] can be expressed as

y = g(σk) ∗ x, (14)
where σk denotes the variance of 2D Gaussian kernels. In particular, we define σ1 = 0 and g(σ1) = δ
which is Dirac delta. Therefore,

∥H ∗ (g(σ1)− g(σ))∥ = ∥Ĥ⊙ (1− ĝ(σ))∥ ≤ c · ∥Ĥ∥ = c · ∥H∥, (15)

where Ĥ denotes Fourier transform, ⊙ denotes point-wised product and 1 denotes all-one matrix.
Thus, the inequality holds true when g(σk) is a normalized Gaussian kernel that means these filters
can be strictly reversed using fixed-point iteration. In our model, normalized Gaussian kernel is used
for initialization and its parameters can be further learned from the data in an end-to-end manner.
Although the learned convolution kernels may not completely satisfy the condition, fixed point
iteration can be split into two independent sequences:

Hk+1 = Hk+1
c +Hk+1

o = φ1

(
Hk

c

)
+ φ1

(
Hk

o

)
, (16)

where {Hk
c} is guaranteed to converge to the unique solution and {Hk

o} could oscillate. Fortunately,
after the first few epochs, the learned convolution kernels are close to the kernels we initialize, which
makes {Hk

c} the majority and dominates the convergence of the whole process. In the implementation
of the algorithm, we adopt multi-scale Gaussian convolution module to obtain better filtering effect.
Compared to Gaussian convolution, the multi-scale Gaussian convolution module integrates Gaussian
kernels with different kernel sizes, expressed as

y =
∑
k∈K

γk ⊙ (g(σk) ∗ x),K = {1, 3, 5, · · ·,M}, (17)

where γk is the learnable mixing coefficient and k denotes different kernel sizes 1× 1, 3× 3, 5×
5, · · ·,M ×M . The multi-scale Gaussian convolution is a series simple group convolutional layers
defined by initialized 2D Gaussian kernels. Clearly, the form of weighted summation still conforms
to the above analysis about sufficient condition.

Taken together, the forward process of alternating reverse filtering network can be described as
Algorithm 1.

Algorithm 1 Proposed algorithm.

Input: The upsampled low-resolution multispectral image L̂, panchromatic image P and maximum
iteration number K.
initial H0 = L̂;
for k = 0, 1, 2, 3, · · ·,K do

compute Hk+ 1
2 = Hk + L̂− f(Hk);

fetch the intensity component H̃k
I = H

k+ 1
2

I ;
compute H̃k+1

I = H̃k
I +P− g(H̃k

I );

replace the intensity component Hk+ 1
2

I ← H̃k+1
I to get Hk+1;

end for
Output: fused high-resolution multispectral image HK and estimated intensity component H̃K

I .

Loss Function We utilize two loss functions, there are the reconstruction loss Lr and the structure
loss Ls, as following

Lsum = Lr + λLs, (18)
where λ is the hyperparameter which determines the balance between the overall performance and
the structure texture details. Specifically, reconstruction loss Lr is a common pixel-wise L2 loss and
structure loss Ls is based on structural similarity (SSIM). Thus, the corresponding losses are defined
as follows:

Lr = ∥HK −H∥2, (19)

Ls = 1− SSIM(H̃K
I ,HI), (20)

where H, HI , HK and H̃K
I are the ground truth, intensity component of H, the output of alternating

reverse filtering network φ1(·) and φ2(·) respectively.
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Table 1: Quantitative comparison with the state-of-the-art methods. The best results are highlighted
by bold. The ↑ or ↓ indicates higher or lower values correspond to better results.

Method
WordView II GaoFen2 WordView III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730

Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.3720 22.506 0.5466 0.1159 8.2331

GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433

IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964

PNN 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206

PANNet 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.684 0.9072 0.0851 3.4263

MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884

SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553

GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2596

Ours 41.7587 0.9691 0.0229 0.9540 47.2238 0.9892 0.0102 0.5495 30.5425 0.9216 0.0768 3.1049

4 Experiments

In this section, the datasets and experimental settings are firstly described. Then, we evaluate the
effectiveness of our proposed alternating reverse filtering network (ARFNet) on simulated and real-
world full-resolution scenes. Additionally, we conduct an ablation study to gain insight into the
respective effect of different parameter configurations. More experimental results are included in the
supplemental material.

4.1 Datasets and Experimental Settings

In order to verify the effectiveness of our models for GMIR, multispectral and panchromatic images
obtained on three commercial satellites that widely are used, including WorldViewII (WV2), World-
ViewIII (WV3), and GaoFen2 (GF2). Each database contains thousands of image pairs, and they are
divided into training, validation and testing sets that follow the prior works to generate the training
set by employing the Wald protocol tool [61]. In the training set, each training pair contains one
guided PAN image with the size of 128× 128, one LR MS patch with the size of 32× 32, and one
ground truth HR MS patch with the size of 128× 128.

Models are implemented via PyTorch and one NVIDIA GTX 3090 GPU is used for training. In the
experiments, the SGD algorithm with a momentum equals to 0.9 is adopted to train the models and
the minibatch size is set to 4. The initial learning rate is set to 1× 10−2. When reaching 1000 and
1500 epochs, the learning rate is decayed by multiplying 0.5, and training ends after 2000 epochs.
Through all experiments, We set the hyperparameter λ in loss function 18 to 0.1, the number K
of alternate iteration to 5 and the maximum size M of Gaussian kernels to 17. The sigma of the
Gaussian function is set to one fourth of the kernel size.

4.2 Comparison with SOTAs

We conduct several experiments on the benchmark datasets compared with several representative
guided multispectral image restoration methods: five promising traditional methods, including
smoothing filter-based intensity modulation ((SFIM) [62], Brovey [32], GS [33], intensity hue-
saturation fusion (IHS) [63], and PCA guided filter (GFPCA) [64]; five commonly-recognized
state-of-the-art deep-learning based methods, including PNN [9], PANNET [38], multiscale and
multidepth network (MSDCNN) [41], super-resolution-guided progressive network (SRPPNN) [65],
and deep gradient projection network (GPPNN) [66].

In our experiments, we select the widely-used image quality assessment (IQA) metrics for evaluation
such as the peak signal-to-noise ratio (PSNR), the structural similarity (SSIM), the relative dimension-
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PAN GFPCA GS SFIMMS PNN

GFPCA GS SFIM PNN GPPNN OursSRPPNNMSDCNNPANNet

Figure 2: Qualitative visualization comparison of our method with other representative counterparts
on a typical satellite image pair from the WordView-III dataset. Images in the last row visualizes the
MSE between the fused images and the ground truth.

Table 2: The average quantitative results on the GaoFen2 datasets on the real-world full-resolution
scene. The best results are highlighted by bold.

Metrics SFIM GS Brovey IHS GFPCA PNN PANNET MSDCNN SRPPNN GPPNN Ours

Dλ ↓ 0.0822 0.0696 0.1378 0.0770 0.0914 0.0746 0.0737 0.0734 0.0767 0.0782 0.0635

Ds ↓ 0.1087 0.2456 0.2605 0.2985 0.1635 0.1164 0.1224 0.1151 0.1162 0.1253 0.1156

QNR ↑ 0.8214 0.7025 0.6390 0.6485 0.7615 0.8191 0.8143 0.8215 0.8173 0.8073 0.8237

less global error in synthesis (ERGAS) [67], the correlation coefficient (SCC), the four-band extension
of Q, the spectral angle mapper (SAM) [68], the spectral distortion index Dλ, the spatial distortion
index DS , the quality without reference (QNR) [69]. The last three indicators are non-reference
metrics.

Results on Simulated Scene To quantitatively compare the fused multispectral images with
the paired reference ground truth images offered on the simulated datasets, we conduct repeated
experiments on three datasets. The average performance of representative GMIR methods is tabled in
Table 1. The higher values of PSNR and SSIM, the more similar structure between fused multispectral
images and ground truth images. ERGAS takes into account the relative errors of all channels. SAM,
Q and SCC focus on measuring spectral distortion. More experimental metric results are included in
the supplemental material. The qualitative comparison of the visual results over the representative
sample from the WorldView-III dataset is in Figure 2. To highlight the differences in detail, we show
the error map between fused image and ground truth image in the last row. Similarly, more qualitative
comparisons are shown in the supplemental material.

Results on Real-world Full-resolution Scene To assess the generalization performance of models
in real-world scene, we apply models trained on the GF2 dataset to additional 200 paired GaoFen2
satellite images which are constructed using the full-resolution setting as the real scene. Lacking
available ground-truth at full-resolution scene, we employ three widely-used non-reference metrics for
assessing the performance: Dλ, DS and QNR. The quantitative and qualitative results are summarized
in Table 2 and Figure 3 that clearly demonstrate the higher generalization capacity of the proposed
alternating reverse filtering network.
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Figure 3: Qualitative visualization comparison of our method with other representative methods over
real-world full-resolution scenes.

Table 3: The effect of hyperparameter λ in loss function Lsum.

λ 0 0.001 0.01 0.1 0.5 1 2

PSNR↑ 40.1274 40.8279 41.3267 41.7587 41.6932 41.2736 41.0746

SSIM↑ 0.9598 0.9630 0.9673 0.9691 0.9694 0.9664 0.9653

SAM↓ 0.0264 0.0256 0.0242 0.0229 0.0232 0.247 0.0260

ERGAS↓ 1.0677 1.0561 0.9943 0.9540 0.9564 1.0037 1.0491

Table 4: Quantitative comparison of different initialization methods on the WorldView-II dataset.

Methods PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q↑ Dλ ↓ DS ↓ QNR↑

(I) 40.3297 0.9601 0.0262 1.0672 0.9663 0.7310 0.0698 0.1277 0.8097

(II) 41.7587 0.9691 0.0229 0.9540 0.9749 0.7731 0.0631 0.1184 0.8285
(III) 40.4161 0.9612 0.0261 1.0668 0.9667 0.7316 0.0684 0.1275 0.8123

4.3 Ablation Study

Ablation studies are implemented on the WordView-II dataset to explore the effect of different
parameters and components on the performance of models. We use the ARFNet in subsection 4.1 as
the baseline for comparison by changing parameters and components, and all comparison models are
trained in the same way. Firstly, to balance the overall performance and the structure details, we fix
the other components and change only the value of the hyperparameter λ. The results in Table 3 show
that the larger the value of λ is within a certain range, the higher the structure similarity between
the fused image and ground truth will be. Note that if the reverse filtering network φ2(·) lack the
supervision Ls that the performance of the entire network will be a significant decrease.

Furthermore, we compare the results of different initialization methods. In Table 4, (I) represents
the kernels that are randomly initialized by Kaiming [70], (II) and (III) represents the kernels that
are initialized by Gaussian kernels, but the kernels in (III) are fixed. From Table 4 and Figure 4, one
could see that: 1) The kernels learned by the randomly initialized network cannot satisfy the sufficient
condition, which leads to poor performance. 2) The learned kernels initialized by Gaussian kernels
are close to the kernels we initialize, that makes {Hk

c} the majority and dominates the convergence
of the whole process. 3) Although the learned kernels are close to the initialized Gaussian kernels, a
large number of multi-scale Gaussian kernels can still bring performance improvements.

As can be seen from Table 5, the ablation studies about maximum kernel size M show that the
multi-scale Gaussian convolution module can bring better performance improvement. To explore the
impact of the number of iterations K on the performance, we experiment with varying numbers of
K. Table 6 shows the results of different K from 1 to 7. It can be seen that the PSNR performance
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Initialized random kernels Learned kernels (initialized by random kernels)

3× 3 7× 7 13× 13 17× 17 3× 3 7× 7 13× 13 17× 17
Initialized Gaussian kernels Learned kernels (initialized by Gaussian kernels)

3× 3 7× 7 13× 13 17× 17 3× 3 7× 7 13× 13 17× 17

Figure 4: Visualization of initialized kernels and learned kernels.

increases as the number of stages increases. We choose K = 5 in our implementation to balance the
performance and computational complexity.

Table 5: The comparison results of ablation study about maximum kernel size M .

M 1 3 5 7 9 11 13 15 17 19 21

PSNR↑ 39.7820 40.6804 41.0634 41.4371 41.5297 41.6445 41.6910 41.7252 41.7587 41.7126 41.6982

SSIM↑ 0.9584 0.9603 0.9657 0.9665 0.9679 0.9684 0.9688 0.9690 0.9691 0.9689 0.9683

4.4 Limitations and Discussions

First, we evaluate the effectiveness of the proposed framework over panchromatic and multispectral
image fusion and we will extend the framework to other multispectral fusion tasks, such as RGB and
multispectral image fusion. Second, although we develop the multi-scale Gaussian kernel module
to ensure the convergence of the alternating reverse filtering, there is still a large room to explore a
learnable filter function that can strictly satisfy sufficient conditions.

5 Conclusion

In this paper, we presented a simple yet effective alternating reverse filtering network for pan-
sharpening. The proposed approach formulates pan-sharpening as a reverse filtering process and
combines classical reverse filtering and deep learning. The classical reverse filtering is unrolled to
a network without pre-defined exact priors in an alternating iteration manner. Besides, multi-scale
Gaussian kernel module is developed to ensure the convergence of the iterative process. Furthermore,
the ablation studies verified the effectiveness of the multi-scale Gaussian kernel module. Extensive
experimental results on simulated and real-world scenes show that the proposed network significantly
outperforms the state of the arts. In the future, we will study the extension to other image fusion
problems such as RGB and multispectral image fusion.

Broader Impact

This research aims to address the problem of panchromatic and multispectral image fusion, which is
a key pre-processing technology overcoming the constraints of hardware before using high-resolution
multispectral image. The fused multispectral images are needed as a reference in the field of resource
monitoring, such as land use planning, ocean development, and urban management, and in the field
of ecological and environmental protection areas, such as pollution monitoring, vegetation biology
and precision agriculture research. Despite the many benefits of fused multispectral images, negative
consequences can still occur in several special environments. When there is a case of algorithm
failure, artifacts generated on the fusion image may affect subsequent use and lead to misjudgments.
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Table 6: The comparison results of ablation study about the number of iterations K.

K 1 2 3 4 5 6 7

PSNR↑ 40.7130 41.056 41.3927 41.6869 41.7587 41.7614 41.7603
SSIM↑ 0.9611 0.9654 0.9667 0.9684 0.9691 0.9690 0.9688
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