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Abstract

Individual brains vary in both anatomy and functional organization, even within a
given species. Inter-individual variability is a major impediment when trying to
draw generalizable conclusions from neuroimaging data collected on groups of
subjects. Current co-registration procedures rely on limited data, and thus lead to
very coarse inter-subject alignments. In this work, we present a novel method for
inter-subject alignment based on Optimal Transport, denoted as Fused Unbalanced
Gromov Wasserstein (FUGW). The method aligns cortical surfaces based on
the similarity of their functional signatures in response to a variety of stimulation
settings, while penalizing large deformations of individual topographic organization.
We demonstrate that FUGW is well-suited for whole-brain landmark-free alignment.
The unbalanced feature allows to deal with the fact that functional areas vary in
size across subjects. Our results show that FUGW alignment significantly increases
between-subject correlation of activity for independent functional data, and leads
to more precise mapping at the group level.

1 Introduction

The availability of millimeter or sub-millimeter anatomical or functional brain images has opened
new horizons to neuroscience, namely that of mapping cognition in the human brain and detecting
markers of diseases. Yet this endeavour has stumbled on the roadblock of inter-individual variability:
while the overall organization of the human brain is largely invariant, two different brains (even
from monozygotic twins [33]) may differ at the scale of centimeters in shape, folding pattern, and
functional responses. The problem is further complicated by the fact that functional images are
noisy, due to imaging limitations and behavioral differences across individuals that cannot be easily
overcome. The status quo of the field is thus to rely on anatomy-based inter-individual alignment
that approximately matches the outline of the brain [4] as well as its large-scale cortical folding
patterns [12, 15]. Existing algorithms thus coarsely match anatomical features with diffeomorphic
transformations, by warping individual data to a simplified template brain. Such methods lose much
of the original individual detail and blur the functional information that can be measured in brain
regions (see Figure 1).
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Figure 1: High variability in human anatomies and functional MRI responses across subjects
In this experiment contrasting areas of the brain which respond to mathematical tasks against other
that don’t, we observe great variability in locations and strength of brain activations across subjects
(row 1). The classical approach consists in wrapping this data to a common surface template (row 2),
where they can be averaged, often resulting in loss of individual details and detection power. These
images were generated using Nilearn software [1].

In order to improve upon the current situation, a number of challenges have to be addressed: (i) There
exists no template brain with functional information, which by construction renders any cortical
matching method blind to function. This is unfortunate, since functional information is arguably the
most accessible marker to identify cortical regions and their boundaries [18]. (ii) When comparing
two brains – coming from individuals or from a template – it is unclear what regularity should be
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imposed on the matching [42]. While it is traditional in medical imaging to impose diffeomorphicity
[4], such a constrain does not match the frequent observation that brain regions vary across individuals
in their fine-grained functional organization [18, 38]. (iii) Beyond the problem of aligning human
brains, it is an even greater challenge to systematically compare functional brain organization in two
different species, such as humans and macaques [26, 23, 46, 14]. Such inter-species comparisons
introduce a more extreme form of variability in the correspondence model.

Related work Several attempts have been made to constrain the brain alignment process by using
functional information. The first one consists in introducing functional maps into the diffeomorphic
framework and search for a smooth transformation that matches functional information [37, 47, 35],
the most popular framework being arguably Multimodal Surface Matching (MSM) [35, 18].

A second family of less constrained functional alignment approaches have been proposed, based
on heuristics, by matching information in small, possibly overlapping, cortical patches [21, 40, 6].
This popular framework has been called hyperalignment [21, 20], or shared response models [10].
Yet these approaches lack a principled framework and cannot be considered to solve the matching
problem at scale. Neither do they allow to estimate a group-level template properly [45].

An alternative functional alignment framework has followed another path [19], considering functional
signal as a three-dimensional distribution, and minimizing the transport cost. However, this framework
imposes unnatural constraints of non-negativity of the signal and only works for one-dimensional
contrasts, so that it cannot be used to learn multi-dimensional anatomo-functional structures. An
important limitation of the latter two families of methods is that they operate on a fixed spatial
context (mesh or voxel grid), and thus cannot be used on heterogeneous meshes such as between two
individual human anatomies or, worse, between a monkey brain and a human brain.

Contributions Following [5], we use the Wasserstein distance between source and target functional
signals – consisting of contrast maps acquired with fMRI – to compute brain alignments. We
contribute two notable extensions of this framework: (i) a Gromov-Wasserstein (GW) term to
preserve global anatomical structure – this term introduces an anatomical penalization against
improbably distant anatomical matches, yet without imposing diffeomorphic regularity – as well as
(ii) an unbalanced correspondence that allows mappings from one brain to another to be incomplete,
for instance because some functional areas are larger in some individuals than in others, or may
simply be absent. We show that this approach successfully addresses the challenging case of different
cortical meshes, and that derived brain activity templates are sharper than those obtained with standard
anatomical alignment approaches.

2 Methods

Optimal Transport yields a natural framework to address the alignment problem, as it seeks to derive
a plan – a coupling – that can be seen as a soft assignment matrix between cortical areas of a source
and target individual. As discussed previously, there is a need for a functional alignment method that
respects the rich geometric structure of the anatomical features, hence the Wasserstein distance alone
is not sufficient. By construction, the GW distance [24, 25] can help preserve the global geometry
underlying the signal. The more recent fused GW distance [44] goes one step further by making it
possible to integrate functional data simultaneously with anatomical information.

2.1 Fused Unbalanced Gromov-Wasserstein

We leverage [44, 39] to present a new objective function which interpolates between a loss preserving
the global geometry of the underlying mesh structure and a loss aligning source and target features,
while simultaneously allowing not to transport some parts of the source and target distributions. We
provide an open-source solver that minimizes this loss1.

Formulation We denote F s ∈ Rn,c the matrix of features per vertex for the source subject. In the
proposed application, they correspond to c functional activation maps, sampled on a mesh with n
vertices representing the source subject’s cortical surface. Let Ds ∈ Rn,n

+ be the matrix of pairwise

1https://github.com/alexisthual/fugw provides a PyTorch [28] solver with a scikit-learn [29] compatible API
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geodesic distances2 between vertices of the source mesh. Moreover, we assign the distribution
ws ∈ Rn

+ on the source vertices. Comparably, we define F t ∈ Rp,c, Dt ∈ Rp,p
+ and wt ∈ Rp

+ for the
target subject, whose individual anatomy is represented by a mesh comprising p vertices. Eventually,
ws and wt set the transportable mass per vertex, which, without prior knowledge, we choose to be
uniform for the source and target vertices respectively: ws ≜ ( 1n , ...,

1
n ), w

t ≜ ( 1p , ...,
1
p ).

Given a tuple of hyper-parameters θ ≜ (ρ, α, ε), where ρ, ε ∈ R+ and α ∈ [0, 1], for any coupling
P ∈ Rn,p, we define the fused unbalanced Gromov-Wasserstein loss as

Lθ(P ) ≜ (1− α)
∑

0≤i<n
0≤j<p

||F s
i − F t

j ||22Pi,j + α
∑

0≤i,k<n
0≤j,l<p

|Ds
i,k −Dt

j,l|2Pi,jPk,l

+ ρ
(

KL(P#1 ⊗ P#1|ws ⊗ws) + KL(P#2 ⊗ P#2|wt ⊗wt)
)
+ ε E(P )

(1)

Wasserstein loss LW(P ) Gromov-Wasserstein loss LGW(P )

Marginal constraints LU(P ) Entropy

where LW(P ) matches vertices with similar features, LGW(P ) penalizes changes in geometry and
LU(P ) fosters matching all parts of the source and target distributions. Throughout this paper,
we refer to relaxing the hard marginal constraints of the underlying OT problem into soft ones
as unbalancing. Here, P#1 ≜ (

∑
j Pi,j)0≤i<n denotes the first marginal distribution of P , and

P#2 ≜ (
∑

i Pi,j)0≤j<p the second marginal distribution of P . The notation ⊗ represents the
Kronecker product between two vectors or two matrices. KL(·|·) denotes the Kullback Leibler
divergence, which is a typical choice to measure the discrepancy between two measures in the context
of unbalanced optimal transport [22]. The last term E(P ) ≜ KL

(
P ⊗P |(ws ⊗wt)⊗ (ws ⊗wt)

)
is mainly introduced for computational purposes, as it helps accelerate the approximation scheme of
the optimisation problem. Typically, it is used in combination with a small value of ε, so that the
impact of other terms is not diluted. On the other hand, the parameters α and ρ offer control over two
other aspects of the problem: while α realizes a trade-off between the impact of different features
and different geometries in the resulting alignment, ρ controls the amount of mass transported by
penalizing configurations such that the marginal distributions of the transportation plan P are far
from the prior weights ws and wt. This potentially helps adapting the size of areas where either the
signal or the geometry differs too much between source and target.

Eventually, we define X s ≜ (F s,Ds,ws) and X t ≜ (F t,Dt,wt), and seek to derive an optimal
coupling P ∈ Rn,p minimizing

FUGW(X s,X t) ≜ inf
P≥0

Lθ(P ) (2)

This can be seen as a natural combination of the fused GW [44] and the unbalanced GW [39] distances.
To the best of our knowledge, it has never been considered in the literature. Following [39], we
approximate FUGW via a lower bound. It involves solving a minimization problem with respect to
two independent couplings: Using a Block-Coordinate Descent (BCD) scheme, we fix a coupling and
minimize with respect to the other. This allows us to always be dealing with linear problems instead
of a quadratic one. Eventually, each BCD iteration consists in alternatively solving two entropic
unbalanced OT problems, whose solutions can be approximated using the scaling algorithm [11].
Details concerning the lower bound as well as the corresponding BCD iteration can be found in the
Appendix (see Alg. S1).

Toy example illustrating the unbalancing property As exemplified in Figure 1, brain responses
elicited by the same stimulus vary greatly between individuals. Figure 2 illustrates a similar yet
simplified version of this problem, where the goal is to align two different signals supported on the
same spherical meshes. In this example, for each of the n = p = 3200 vertices, the feature is simply
a scalar. On the source mesh, the signal is constituted of two von Mises density functions that differ
by their concentration (large and small), while on the target mesh, only the large one is present, but
at a different location. We use the optimal coupling matrix P obtained from Eq. 2 to transport the
source signal on the target mesh. As shown in Figure 2.B, the parameter ρ allows to control the mass

2We compute geodesic distances using https://github.com/the-virtual-brain/tvb-gdist
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Figure 2: Unbalancing helps accounting for idiosyncrasies of the source and target signals
When trying to align the source and target signals (Panel A), the classical balanced setup (Panel B,
top row) transports all parts of the source signal even if they have no counterpart in the target signal.
In the unbalanced setup (Panel B, bottom row), less source-only signal is transported: in particular,
less mass is transported from the source’s small blob onto the target (Panel B, middle column).

transferred from source to target. When ρ = 100, we approach the solution of the fused GW problem.
Consequently, we observe the second mode on the target when transporting the source signal. When
the mass control is weaker (ρ = 1), the smaller blob is partly removed because it has no counterpart
in the target configuration, making the transport ill-posed.

Barycenters Barycenters represent common patterns across samples. Their role is instrumental in
identifying a unique target for aligning a given group of individuals. As seen in Fig. 1, the vertex-wise
group average does not usually provide well-contrasted maps. Inspired by the success of the GW
distance when estimating the barycenter of structured objects [30, 44], we use FUGW to find the
barycenter (FB,DB) ∈ Rk,c × Rk,k of all subjects s ∈ S, as well as the corresponding couplings
P s,B from each subject to the barycenter. More precisely, we solve

XB = (FB,DB,wB) ∈ argmin
X

∑
s∈S

FUGW(X s,X ), (3)

where we set the weights wB to be the uniform distribution. By construction, the resulting barycenter
benefits from the advantages of FUGW, i.e. equilibrium between geometry-preserving and feature-
matching properties, while not forcing hard marginal constraints. The FUGW barycenter is estimated
using a Block-Coordinate Descent (BCD) algorithm that consists in alternatively (i) minimizing the
OT plans P s,B for each FUGW computation in (3) with fixed XB and (ii) updating the barycenter
XB through a closed form with fixed P s,B . See Alg. S4 for more details.

3 Numerical experiments

We design three experiments to assess the performance of FUGW. In Experiments 1 and 2, we are
interested in assessing if aligning pairs of individuals with FUGW increases correlation between
subjects compared to a baseline correlation. We also compare the ensuing gains with those obtained
when using the competing method MSM [35, 36] to align subjects. In Experiment 3, we derive a
barycenter of individuals and assess its ability to capture fine-grained details compared to classical
methods.

Dataset In all three experiments, we leverage data from the Individual Brain Charting dataset [31].
It is a longitudinal study on 12 human subjects, comprising 400 fMRI maps per subject collected on
a wide variety of stimuli (motor, visual, auditory, theory of mind, language, mathematics, emotions,
and more), movie-watching data, T1-weighted maps, as well as other features such as retinotopy
which we don’t use in this work. We leverage these 400 fMRI maps. The training, validation and test
sets respectively comprise 326, 43 and 30 contrast maps acquired for each individual of the dataset.
Tasks and MRI sessions differ between each of the sets. More details, including preprocessing, are
provided in Supplementary Materials.
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Baseline alignment correlation For each pair of individuals (s, t) under study, and for each fMRI
contrast c in the test set, we compute the Pearson correlation corr(F s

·,c,F
t
·,c) after these maps have

been projected onto a common surface anatomy (in this case, fsaverage5 mesh). Throughout this
work, such computations are made for each hemisphere separately.

Experiment 1 - Aligning pairs of humans with the same anatomy For each pair (s, t) under study,
we derive an alignment P s,t ∈ Rn×p using FUGW on a set of training features. In this experiment,
source and target data lie on the same anatomical mesh (fsaverage5), and n = p = 10 240 for each
hemisphere. Since each hemisphere’s mesh is connected, we align one hemisphere at a time.

Computed couplings are used to align contrast maps of a the validation set from the source subject
onto the target subject. Indeed, one can define ϕs→t : X ∈ Rn×q 7→

(
(P s,t)TX

)
⊘ P s,t

#2 ∈ Rp×q

where⊘ represents the element-wise division. ϕs→t transports any matrix of features from the source
mesh to the target mesh. We measure the Pearson correlation corr

(
ϕs→t(F

s),F t
)

between each
aligned source and target maps.

We run a similar experiment for MSM and compute the correlation gain induced on a test set by
FUGW and MSM respectively. For both models, we selected the hyper-parameters maximizing
correlation gain on a validation set. In the case of FUGW, in addition to gains in correlation,
hyper-parameter selection was influenced by three other metrics that help us assess the relevance of
computed couplings:

Transported mass For each vertex i of the source subject, we compute
∑

0≤j<p

P s,t
i,j

Vertex displacement Taking advantage of the fact that the source and target anatomies are the same,
we define D = Ds = Dt and compute for each vertex i of the source subject the quantity∑

j P
s,t
i,j ·Di,j/

∑
j P

s,t
i,j , which measures the average geodesic distance on the cortical

sheet between vertex i and the vertices of the target it has been matched with

Vertex spread Large values of ε increase the entropy of derived couplings. To quantify this effect,
and because we don’t want the matching to be too blurry, we assess how much a vertex was
spread. Considering P̃i = P s,t

i /
∑

j P
s,t
i,j ∈ Rp as a probability measure on target vertices,

we estimate the anatomical variance of this measure by sampling q pairs (jq, kq) of P̃i and
computing their average geodesic distance 1

q

∑
jq,kq

Djq,kq

Experiment 2 - Aligning pairs of humans with individual anatomies We perform a second align-
ment experiment, this time using individual meshes instead of an anatomical template. Importantly,
in this case, there is no possibility to compare FUGW with baseline methods, since those cannot
handle this case.

However, individual meshes are significantly larger than the common anatomical template used in
Experiment 1 (n ≈ m ≈ 160k vs. 10k previously), resulting in couplings too large to fit on GPUs
– for reference, a coupling of size 10k × 10k already weights 400Mo on disk. We thus reduce the
size of the source and target data by clustering them into 10k small connected clusters using Ward’s
algorithm [41]. More details are given in supplementary section A.4.

Experiment 3 - Comparing FUGW barycenters with usual group analysis Since it is very
difficult to estimate the barycentric mesh, we force it to be equal to the fsaverage5 template. Empiri-
cally, this we force the distance matrix DB to be equal to that of fsaverage5, and only estimate the
functional barycenter FB . We initialize it with the mean of (F s)s∈S and derive FB and (P s,B)s∈S

from problem 3.

Then, for a given stimulus c, we compute its projection onto the barycenter for each subject. We use
these projections to compute two maps of interest: (i) MB,c the mean of projected contrast maps
across subjects and (ii) TB,c the t-statistic (for each vertex) of projected maps. We compare these
two maps with their unaligned counterparts M0,c and T0,c respectively.

The first map helps us to qualitatively evaluate the precision of FUGW alignments and barycenter.
The second one is classically used to infer the existence of areas of the brain that respond to specific
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MB,c ≜
1

|S|
∑
s∈S

ϕs→t(F
s
·,c) TB,c ≜ t-statistic

((
ϕs→t(F

s
·,c)
)
s∈S

)
M0,c ≜

1

|S|
∑
s∈S

F s
·,c T0,c ≜ t-statistic

(
(F s

·,c)s∈S

)

stimuli. We assess whether FUGW helps find the same clusters of vertices. Eventually, we quantify
the number of vertices significantly activated or deactivated with and without alignment respectively.

4 Results

4.1 Experiment 1 - Template anatomy

Aligning subjects on a fixed mesh We set α = 0.5, ρ = 1 and ε = 10−3. Pearson correlation
between source and target contrast maps is systematically and significantly increased when aligned
using FUGW, as illustrated in Figure 3 where correlation grows by almost 40% from 0.258 to 0.356.

Figure 3: Comparison of gains in correlation after inter-subject alignment For each pair of
source and target subjects of the dataset, we compute the average Pearson correlation between 30
test contrasts, leading to the (baseline) correspondence score, and compare it with that of the same
contrast maps aligned with either MSM (left) or FUGW (right). Correlation gains are much better for
FUGW.

We also varied training sets by selecting subsets of training contrasts and find that similar performance
on the test set can be achieved regardless of the training data (see Supplementary section A.5 and in
particular Supplementary Table S1).

Hyper-parameters selection Hyper-parameters used to obtain these results were chosen after
running a grid search on α, ε and ρ and evaluating it on the validation dataset. Computation took
about 100 hours using 4 Tesla V100-DGXS-32GB GPUs. More precisely, it takes about 4 minutes to
compute one coupling between a source and target 10k-vertex hemisphere on a single GPU, when
the solver was set to run 10 BCD and 400 Sinkhorn iterations. In comparison, MSM takes about the
same time on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPUs. Results are reported in Figure 4
and provide multiple insights concerning FUGW.

Firstly, without anatomical constraint (α = 0), source vertices can be matched with target vertices that
are arbitrarily far on the cortical sheet. Even though this can significantly increase correlation, it also
results in very high vertex displacement values (up to 100mm). Such couplings are not anatomically
plausible. Secondly, without functional information (α = 1), couplings recover a nearly flawless
matching between source and target meshes, so that, when ε = 10−5 (ie when we force couplings
to find single-vertex-to-single-vertex matches), vertex displacement and spread are close to 0 and
correlation is unchanged. Fusing both constraints (0 < α < 1) yields the largest gains in correlation
while allowing to compute anatomically plausible reorganizations the cortical sheet between subjects.

The impact of ρ (controlling marginal penalizations) on correlation seems modest, with a slight
tendency of increased correlation in unbalanced problems (low ρ).

Finally, it is worth noting that a relatively wide range of α and ρ yield comparable gains. The fact that
FUGW performance is weakly sensitive to hyper-parameters makes it a good off-the-shelf tool for
neuroscientists who wish to derive inter-individual alignments. However, ε is of dramatic importance
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in computed results and should be chosen carefully. Vertex spread is a useful metric to choose
sensible values of ε; for human data one might consider that it should not exceed 20mm.
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Figure 4: Exploring hyper-parameter space to find relevant couplings Given a transport plan
aligning a source and target subject, we evaluate how much this coupling (left) improves correlation
between unseen contrast maps of the two subjects, (center left) actually transports data, (center right)
moves vertices far from their original location on the cortical surface and (right) spreads vertices
on the cortical sheet. We seek plans that maximize correlation gain, while keeping spread and
displacement low enough.

Mass redistribution in unbalanced couplings Unbalanced couplings provide additional informa-
tion about how functional areas might differ in size between pairs of individuals. This is illustrated in
Figure 5, where we observe variation in size of the auditory area between a given pair of individuals.
This feature is indeed captured by the difference of mass between subjects (although the displayed
contrast was not part of the training set).

sub-07 (source) sub-09 (target)

A Bz-score %

fMRI contrast maps
transported mass (%)

source vs target

Figure 5: Transported mass indicates areas which have to be resized between subjects (Panel A)
We show a contrast map from the test set which displays areas showing stronger activation during
auditory tasks versus equivalent visual tasks. It shows much more anterior activations on the target
subject compared to the source subject. This is consistent with the observation that more mass is
present in anterior auditory areas of the source subject than in the target subject (Panel B).
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Figure 6: Correlation between pairs of subjects is significantly better after alignment on
individual anatomies than after projecting subjects onto a common anatomical template

A

mean
of all subjects

mean
of all subjects

aligned to barycenter

group analysis
on all subjects

group analysis
on all subjects

aligned to barycenter

B Ct-statisticz-score

0.5

1.0

1.5

2.0

Figure 7: FUGW barycenter yields much finer-grained maps than group averages We study
the same statistical map as in Figure 1, which contrasts areas of the brain involved in mathematical
reasoning. A. These complex maps projected onto the barycenter and averaged show more specific
activation patterns than simple group averages, especially in cortical areas exhibiting more variability,
such as the prefrontal cortex. B. Deriving a t-test on aligned maps captures the same clusters as the
classical approach (plain green circles), but also new clusters in areas where inter-subject variability
is high (dotted black circles). Peak t-statistics are also higher with FUGW. C. Ratio of number of
activated vertices (|t-statistic| ≥ 4) with versus without alignment for each map of the test set. Our
method finds significantly more of such vertices (p-value = 3 · 10−4).

4.2 Experiment 2 - Individual anatomies

As shown in Figure 6, we obtain correlation gains which are comparable to that of Experiment 1
(about 35% gain) while working on individual meshes. This tends to show that FUGW can compute
meaningful alignments between pairs of individuals without the use of an anatomical template, which
helps bridge most conceptual impediments listed in Section 1.

Moreover, this opens the way for computation of simple statistics in cohorts of individuals in the
absence of a template. Indeed, one can pick an individual of the cohort and use it as a reference
subject on which to transport all other individuals. We give an example in Figure S4, showing that
FUGW correctly preserved idiosyncrasies of each subject while transporting their functional signal
in an anatomically sound way.

4.3 Experiment 3 - Barycenter

In the absence of a proper metric to quantify the correctness of a barycenter, we first qualitatively
compare the functional templates obtained with and without alignment. In Figure 7.A, we do so
using brain maps taken from the test set. We can see that the barycenter obtained with FUGW yields
sharper contrasts and more fine-grained details than the barycenter obtained by per-vertex averaging.
We also display in Figure 7.B the result of a one-sample test for the same contrast, which can readily
be used for inference. The one-sample test map obtained after alignment to the FUGW template
exhibits the same supra-threshold clusters as the original approach, but also some additional spots
which were likely lost due to inter-subject variability in the fsaverage5 space. This approach is thus
very useful to increase power in group inference. We quantify this result by counting the number
of supra-threshold vertices with and without alignment for each contrast map of the test set. Our
alignment method significantly finds more such vertices of interest, as shown in Figure 7.C.
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5 Discussion

FUGW can derive meaningful couplings between pairs of subjects without the need of a pre-existing
anatomical template. It is well-suited to computing barycenters of individuals, even for small cohorts.

In addition, we have shown clear evidence that FUGW yields gains that cannot be achieved by
traditional diffeomorphic registration methods. These methods impose very strong constraints to
the displacement field, that may prevent reaching optimal configurations. More deeply, this finding
suggests that brain comparison ultimately requires lifting hard regularity constraints on the alignment
models, and that two human brains differ by more than a simple continuous surface deformation.
However, current results have not shown a strong correlation gain of unbalanced OT compared to
balanced OT, likely because the cohort under study is too small. Leveraging datasets such as HCP
[43] with a larger number of subjects will help lower the standard error on correlation gain estimates.
In this work, we decided to rely on a predefined anatomical template (fsaverage5) to derive functional
barycenters. It would be interesting to investigate whether more representative anatomical templates
can be learned during the process. This would in particular help to customize templates to different
populations or species. Additionally, using an entropic solver introduces a new hyper-parameter ε
that has a strong effect, but is hard to interpret. Future work may replace the scaling algorithm [11]
used here by the majorization-minimization one [9], which does not require entropic smoothing. This
solution can yield sparse couplings while being orders of magnitude faster, which will prove useful
when computing barycenters on large cohorts.

Finally, we plan to make use of FUGW to derive alignments between human and non-human
primates without anatomical priors. Indeed, the understanding of given brain mechanisms will benefit
from more detailed invasive measurements made on other species only if brains can be matched
across species; moreover, this raises the question of features that make the human brain unique, by
identifying patterns that have no counterpart in other species. By maximizing the functional alignment
between areas, but also allowing for some regions to be massively shrunk or downright absent in one
species relative to the other, the present tool could shed an objective light on the important issue of
whether and how the language-related areas of the human cortical sheet map onto the architecture of
non-human primate brains.
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