
A Appendix

In appendix, we provide some additional results in Section A.1, more implementation details in
Section A.2 and some initial attempts on some possible future extensions of PaCo in Section A.3.

A.1 Additional Results

A.1.1 Analyze Stability of PaCo on MT10-rand from Training Curve

In Figure 5, we show the evaluated average success rate of the three variations (PaCo, PaCo-Maskout,
PaCo-Vanilla) in the MT10-rand experiments. To compare the stability of training, we didn’t early-
stop the training process even if the loss of some tasks already exploded. PaCo-Vanilla has a larger
variation and is less stable during training due to the exploding loss of some tasks. The variance is
very large compared to other methods since it can reach high performance (0.90 at 20M steps) for
some random seeds but can perform very poorly (0.28 at 20M steps) for some other seeds. PaCo-
Maskout variant is more stable compared to the vanilla version with masked-out extreme loss and
can mitigate the adverse effects of the exploding loss of some tasks to other tasks. However, it can
also compromise the performance because of the reduced opportunity of learning some tasks once
they are masked out. The complete PaCo improves both the average success rate and the stability of
MTRL training compared with both variants, demonstrating the effectiveness of the PaCo design. It
reaches at least a 0.8 average success rate for all the random seeds used in experiments.

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Su
cc

es
s R

at
e

PaCo_vanilla
PaCo_maskout
PaCo

Figure 5: Average success rate curve of PaCo using ablated variations of stabilization schemes.

A.1.2 Additional Details on Meta-World Benchmarks and Results

For baselines, we used the MTRL codebase [23]9 to produce the results on Meta-World-V2. We tuned
the methods on Meta-World V2 10. One major change we made is to remove the reward normalizer
which was used in [23], leading to better results.

As discussed in the main paper, fixed-goal setting is not practical in real-world usage of robots, it is
simpler compared to random-goal setting since we don’t need to find the goal-conditioned policy for
each skill. Nevertheless, PaCo is able to reach a success rate higher than baseline methods as shown
in Table 4.

9https://github.com/facebookresearch/mtrl MIT License
10https://github.com/rlworkgroup/metaworld/ MIT License

14

https://github.com/facebookresearch/mtrl
https://github.com/rlworkgroup/metaworld/


Methods Success Rate
Multi-Task SAC [36] 84.5 ± 12.4
SAC + FiLM [17] 74.6 ± 5.3
PCGrad [35] 81.8 ± 5.2
CARE [24] 86.6 ± 9.8
PaCo 93.3 ± 5.8

Table 4: Results on Meta-World-V2 MT10 [36] with fixed goals (MT10-fixed).

MT50 is a more complex benchmark in Meta-World containing 50 different manipulation tasks
(including the MT10 tasks). A more complex task combination brings more randomness to the
training process and requires more samples and training steps, especially for the random-goal setting
(MT50-rand). Therefore it’s hard to determine if the policy has reached to the optimal. In Table 5, we
show the performance of PaCo with 20 parameter groups and some baselines on MT50-rand in 100M
environment steps (for all environments in total).

Methods Success Rate
Multi-Task SAC [36] 49.3 ± 1.5
SAC + FiLM [17] 36.5 ± 12.0
CARE [24] 50.8 ± 1.0
PaCo (K=20) 57.3 ± 1.3

Table 5: Results on Meta-World-V2 MT50 [36] with random goals (MT50-rand).

A.1.3 Additional Results: Performance Scores During Training

In the main paper, we report the final performance on MT10-rand according to the protocol of 20M
total environmental for training for 10 tasks (2M environmental steps-per-task). Here we provide the
results of different methods at intermediate training steps up to 20M total environmental steps on
MT-10-rand for reference. Empirically, we observed that 20M total environmental steps are sufficient
for training MTRL methods to convergence and there is no significant improvements with more
environmental steps for training.

Total Env steps 1M 2M 3M 5M 10M 15M 20M
Single-Task SAC 10.0±8.2 17.7±2.1 18.7±1.1 20.0±2.0 48.0±9.5 57.7±3.1 61.9±3.3
Multi-Task SAC 34.9±12.9 49.3±9.0 57.1±9.8 60.2±9.6 61.6±6.7 65.6±10.4 62.9±8.0

SAC + FiLM 32.7±6.5 46.9±9.4 52.9±6.4 57.2±4.2 59.7±4.6 61.7±5.4 58.3±4.3
PCGrad 32.2±6.8 46.6±9.3 54.0±8.4 60.2±9.7 62.6±11.0 62.6±10.5 61.7±10.9

Soft-Module 24.2±4.8 41.0±2.9 47.4±5.3 51.4±6.8 53.6±4.9 56.6±4.8 63.0±4.2
CARE 26.0±9.1 52.6±9.3 63.8±7.9 66.5±8.3 69.8±5.1 72.2±7.1 76.0±6.9
PaCo 30.5±9.5 49.8±8.2 65.7±4.5 64.7±4.2 71.0±5.5 81.0±5.9 85.4±4.5

Table 6: Results on Meta-World-V2 MT10 [36] with random goals (MT10-rand).

A.1.4 Compositional Vector Visualization

The final output of PaCo framework is a parameter set Φ of K groups of parameters and the
compositional vectors W = [w1,w2, · · · ,wT ] for each skill/task.

In Figure 6 and Figure 7, we show the full compositional matrix used to compose policies for the
ten skills in MT10-rand and MT10-fixed experiments. The policies used here reach a success rate of
90% and 100% in the random and fixed goal setting respectively. The absolute value of compositional
vectors shouldn’t be compared directly since we didn’t put any regularization or restriction on the
parameter set. We can see not all the columns of the parameter set Φ play an important rule for each
skill, and some skills share very similar compositional vectors.

To better understand the difference of the skills, we also plot the projection of the 5D compositional
vector learned in MT10-rand and MT10-fixed in 2D space (referred to as w-space) using Principal

15



Figure 6: Compositional vector for each task in MT10-rand task. This is a policy reaching average of
90% success rate for all rand-goal tasks (fail on pick-place skill).

Figure 7: Compositional vector for each task in MT10-fixed task. This is a policy reaching 100%
success rate for all fixed-goal tasks.

16



(a) MT10-rand (b) MT10-fixed
Figure 8: 2D PCA projection of the ten 5D compositional vectors (a) learned on MT10-rand (original
full vector values are given in Figure 6) and (b) learned on MT10-fixed (original full vector values
are given in Figure 7).

Component Analysis (PCA). The results are shown in Figure 8. There are several interesting
observations from Figure 8:

• Some skills could lie in different part of the w-space, e.g. reach v.s. others in Figure 8(a);
• Some skills are close in the w-space, e.g. window-open v.s door-open, window-open v.s. window-

close in Figure 8(a);
• Another interesting observation is that some skills that are not literally related are also ap-

pear to be close in the w-space learned by PaCo, e.g. peg-insert v.s. window-open/window-
close/door-open/drawer-open. Although literally distinct, peg-insert and the other skills mentioned
above are related from the perspective of behavior, i.e., first interacting with an object (e.g.,
peg/window/door), and then taking a trajectory of motions to accomplish the subsequent operation,
(e.g. insert/window/door). Therefore, these literally unrelated skills are inherently semantically
related at the behavior level. This is something that could be useful but is not able to be leveraged
by CARE [24], explaining one possible reason why PaCo is more effective.

• The compositional vectors are more scattered in the MT10-rand case (Figure 8(a)). For the MT10-
fixed case (Figure 8(b)), the skills approximately lie on a 1D low-dimensional space, suggesting
that there is a possibility to solve all the tasks with a single model, e.g. a model with fully shared
parameters across tasks. This is likely because of the very limited variations in the MT10-fixed
setting and is indeed why we move beyond it with random goals. Indeed, this observation is
consistent with our empirical results on MT10-fixed, as shown in Table 4, where single model
based methods (e.g. Multi-Task SAC) can actually generate very compelling results. Also for
a similar reason, the gradient conflictions in the presence of this level of limited task variations
are likely to be reconcilable, potentially explaining why gradient-projection-based approach like
PCGrad [35] works well for MT10-fixed, but not as good when the level of variations is increased
as in MT10-rand.

A.2 Implementation Details

A.2.1 Practical Implementation of PaCo

Compositional Parameters As introduced in the paper, PaCo keeps the parameter set Φ and
compose the task-specific parameters by θτ =Φwτ . In practical implementation, we achieve this
compositional structure by replacing the Linear/Fully-Connect (FC) layers in neural networks with a
new compositional-FC layer.

A regular FC layer with input size di and output size do contains weight V ∈ Rdi×do and bias
b ∈ Rdo . Given a batched input x ∈ Rb×di , the output y is calculated by:

y=x · V + b (4)

17



In a compositional layer, we add another dimension on the weight and bias, obtaining a parameter set
of size K, with V̂ ∈ RK×di×do , b̂ ∈ RK×do . Given a batched input x ∈ Rb×di and compositional
vector w ∈ RK , the output y is calculated by:

In this case, the forwarding calculation is

y=x ·

(
K∑
i=1

wi · V̂i

)
+

K∑
i=1

wi · b̂i (5)

where V̂i ≜ V [i], b̂i ≜ b[i].

By replacing all the FC layers to compositional-FC layers 11 in the selected networks, we can make
the whole structure compositional and flexibly adjust the parameter set size in PaCo. In this way, we
don’t need to change the implementations and hyper-parameters used in other MTRL methods.

Random Initialization of Parameters For PaCo, we need to initial K groups of parameters with
identical structure. Instead of separately initializing all the parameters, we randomly initialize one of
the K layers, and copy the weights to the other K − 1 groups. With the identical initialization on Φ,
all task-specific parameters θτ will be identical regardless the initialization of wτ . Experiments show
that PaCo can find interpolated policies faster with identical initialization of parameter set.

A.2.2 MTRL Implementation Details and Hyper-parameters

In this section, we provide the hyper-parameter PaCo used in MT10-rand experiment in Table 7, and
some general hyper-parameters used across PaCo and the baselines in Table 8.

Hyper-parameter Value
extreme loss threshold ϵ 3e3
param-set size K 5
compositional vector learning rate 3e-4

Table 7: PaCo specific hyper-parameters on MT10-rand

Hyper-parameter Value
batch size 1280
number of parallel env 10
MLP hidden layer size [400, 400, 400]
policy learning rate 3e-4
Q learning rate 3e-4
discount 0.99
episode length 150
exploration steps 1500
replay buffer size 1e6

Table 8: General MTRL hyper-parameters on MT10-rand

A.2.3 Details on Computational Resources

For training, we used internal cluster with GeForce RTX 2080 Ti GPU. Training is repeated 10 times
with different seeds. On MT10-rand for baseline methods, the time required for a single complete
run varies from 10 (e.g. Mult-Head SAC [36]) to 31 hours (e.g. PCGrad [35]). For PaCo, the
time takes for each run ranges from 20 to 30+ hours, depends on the compositional structure used.
One point to note is that for the baseline methods, there is a non-negligible possibility of failure in
training, when the training loss explodes. In this case, a new training job has to be relaunched thus
consuming additional computational resources. For more details on training stability, please refer to
Section A.2.4.

11Although only MLP is used in this work, compositional conv layers can be implemented in a similar way.

18



A.2.4 Loss Explosion and Training Stability

It has been observed empirically that the MTRL may suffer from instability in training, sometimes
with exploding loss. This is aligned with the know issue of gradient conflictions between different
tasks [35]. To mitigate this issue, [24] adopted an empirical trick to stop training once this issue is
spotted.12 This whole run will be discarded and and new training run need to be launched instead.
This scheme has been applied to all the baseline methods in this work, following the setting in [24].
Note that whenever this happens, although not taken into account by following the stop-relaunch
trick from [24] when reporting the performance, the actual effective number of environmental steps
is increased.

This scheme is unnecessary for PaCo, since it has an built-in scheme for stabilization, leveraging its
unique decompositional structure.

A.3 Initial Attempts on Some Possible Future Extensions with PaCo

A.3.1 PaCo-based Transfer Learning

Going beyond MTRL, another question we may ask in application is how we benefit from the
policy trained by PaCo when we meet new tasks. The unique property of a well separated task-
agnostic parameter set and task-specific compositional vector give us potential to use PaCo in a more
challenging continual setting. The main reason for catastrophic forgetting in continual learning is that
the training on new tasks modifies the policies of existing tasks. However, in our PaCo framework,
if we can find the policies for new task τ̃ in the existing policy subspace defined by Φ with a new
compositional vector wτ̃ , the forgetting problem can be avoided. With no change on Φ, we extend
the existing parameters to a new task with no additional cost. In reality, there is no guarantee for the
existence of such policy, the relation between skills are quite important. However, in experiments, we
do find successful extensions from existing skill set to a new skill when the skills are similar. For
instance, reach, door-open, drawer-open to drawer-close.

In practice, we can design a more general training scheme to learn the policy for a series of tasks.
Given a parameter set Φ with K parameter groups trained on N tasks, if we find the policy for new
tasks in the policy subspace, we save the compositional vector for the new task. If we cannot find the
policy in subspace, we train the new tasks on a new parameter set Φ̃ and merge them into subspace
with higher dimension. Verifying this property on larger skill sets is an interesting future direction
and requires more complex experiment designs.

12
https://github.com/facebookresearch/mtrl/blob/eea3c99cc116e0fadc41815d0e7823349fcc0bf4/mtrl/agent/sac.py#L322

19

https://github.com/facebookresearch/mtrl/blob/eea3c99cc116e0fadc41815d0e7823349fcc0bf4/mtrl/agent/sac.py#L322

	Introduction
	Preliminaries
	Markov Decision Process (MDP)
	Soft Actor-Critic

	Revisiting and Analyzing Multi-Task Reinforcement Learning
	Multi-Task Reinforcement Learning Setting
	Challenges in Multi-Task Reinforcement Learning

	Parameter-Compositional Multi-Task RL
	Formulation
	Stable Multi-Task Reinforcement Learning
	Unified Perspective on Some Existing Methods

	Related Work
	Experiments
	Benchmark Results on Meta-World
	Stable MTRL Training
	Ablation Study
	Qualitative Results on Parameter Set and Compositional Vectors

	Conclusion, Limitation and Future Work
	Appendix
	Additional Results
	Analyze Stability of PaCo on MT10-rand from Training Curve
	Additional Details on Meta-World Benchmarks and Results
	Additional Results: Performance Scores During Training
	Compositional Vector Visualization

	Implementation Details
	Practical Implementation of PaCo
	MTRL Implementation Details and Hyper-parameters
	Details on Computational Resources
	Loss Explosion and Training Stability

	Initial Attempts on Some Possible Future Extensions with PaCo
	PaCo-based Transfer Learning





