
A Theoretical Consideration of the One-vs-All Classifier

Let C(i|x, y), y ∈ {1, . . . , n} be an ensemble of binary classifiers with C(o|x, y) = 1− C(i|x, y).
Furthermore we define the joint distribution

pU (x, y) = p(x|y)pU (y) (12)

w.r.t. a uniform class distribution, i.e., pU (y) ≡
1
n
∀y ∈ Y . Lastly we define

C̃(i|x, y) =
1
n
C(i|x, y)

1
n
C(i|x, y) + n−1

n
C(o|x, y)

. (13)

Additionally, p̂(y), ∀y ∈ Y , are the estimated relative class frequencies. Recalling (1), our proposed
training objective for the ensemble of binary classifiers is defined by

min
C

1

|S|

∑

(x,y)∈S



− log(C(i|x, y))−
1

n− 1

∑

y′∈Y\{y}

p̂(y)

p̂(y′)
log(C(o|x, y′))



 . (1)

Assumption 1. We make the following assumptions for our one-vs-all classifier C

1. We sample S ∼ p(x, y) i.i.d. and there is no GAN-generated data involved;

2. Let H = {C} the set of all realizable one-vs-all classifiers. We assume, there exists a
C∗ ∈ H such that p̂(y|x) = p(y|x), i.e., p(y|x) is realizable;

3. We can compute an empirical risk minimizer, i.e., we can determine a CS ∈ H which
minimizes (1) for a given sample S.

Note that the above assumptions are typical assumptions in statistical learning theory [42, 49]. Under
these assumptions, the empirical risk minimizer converges to the desired hypothesis C∗ for |S| → ∞.
Furthermore, (deep) neural networks have an asymptotic (i.e., for increasing network capacity)
universal approximation property [54] which makes assumption 2 fairly realistic.

Lemma 1 (Class posterior). Under assumption 1 and training C on equation (1) it holds that for
|S| → ∞

p̂(y|x) =
C̃(i|x, y)p̂(y)

∑

y′∈Y C̃(i|x, y′)p̂(y′)
−→ p(y|x) . (3)

Proof. Without loss of generality consider a single one-vs-all classifier C(i|x, y∗) with y∗ ∈ Y fixed
and define ȳ∗ := Y \ {y∗} as the counter-part class of class y∗ (class ªnot y∗º).
If we now sample Sy∗ ∼ p̃y∗(x, y) = p(x|y)p̃y∗(y), with p̃y∗(y∗) = 1

2 and p̃y∗(y) = 1
2(n−1) , ∀y ∈

Y \ {y∗}, we are weighting y∗ and ȳ∗ equally. The loss contribution of C(i|x, y∗) in equation (1)
then becomes

1

|Sy∗ |

∑

(x,y)∈Sy∗

−✶{y=y∗} log(C(i|x, y∗))−
1

n− 1
✶{y ̸=y∗}

1
2
1

2(n−1)

log(C(o|x, y∗)) (14)

=
1

|Sy∗ |

∑

(x,y)∈Sy∗

−✶{y=y∗} log(C(i|x, y∗))− ✶{y ̸=y∗} log(C(o|x, y∗)) , (15)

which is the binary cross entropy loss for equal class weights of y∗ and ȳ∗. This shows that our
chosen loss function (1) yields a balanced one-vs-all classifier. As the change in sampling from the
classes does not affect p(x|y), by assumptions 1±3 we obtain for |S| → ∞ that

C(i|x, y) −→
p(x|y)

p(x|y) + p(x|ȳ)
, ∀y ∈ Y . (16)
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Figure 4: Illustration of the low dimensional regularizer for a single class and example (c.f. equa-
tion (10)).

This implies that the re-weighted classifier C̃ for |S| → ∞ fulfills

C̃(i|x, y) =
1
n
C(i|x, y)

1
n
C(i|x, y) + n−1

n
C(o|x, y)

−→

1

n
p(x|y)

p(x|y)+p(x|ȳ)
1

n
p(x|y)+n−1

n
p(x|ȳ)

p(x|y)+p(x|ȳ)

(17)

=
1
n
p(x|y)

1
n
p(x|y) + n−1

n
p(x|ȳ)

(18)

=
p(x|y)pU (y)

p(x|y)pU (y) + p(x|ȳ)pU (ȳ)
(19)

=
p(x|y)pU (y)

pU (x)
(20)

= pU (y|x) . (21)

By the preceding convergence, we obtain

C̃(i|x, y)p̂(y)
∑

y′ C̃(i|x, y′)p̂(y′)
−→

pU (y|x)p(y)
∑

y′ pU (y′|x)p(y′)
(22)

=

pU (x|y)pU (y)p(y)
pU (x)

∑

y′

pU (x|y′)pU (y′)p(y′)
pU (x)

(23)

=
p(x|y)p(y)

∑

y′ p(x|y′)p(y′)
(24)

= p(y|x) , (25)

for |S| → ∞, which concludes the proof.

B Low Dimensional Regularizer

In this section we explain how our low dimensional regularizer behaves on a simple example, aiming
at providing the reader with a clearer intuition on the role of that regularizer. Recalling (11), the low
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dimensional regularizer applied to our GAN training is defined as

LR =
1

n

∑

y∈Y





1

Ny

∑

(x,y)∈S

lR(Aenc(x, y), y)



 , (11)

with

lR(z, y) =
2

Nz
y · (Nz

y − 1)
·

∑

z̄i,z̄j∈Z(z,y)
i<j

− log

(

arccos

(

z̄i ∗ z̄j

∥z̄i∥ · ∥z̄j∥

)

·
1

π

)

, (10)

where for a given example (x, y) ∈ S, z = Aenc(x, y) is the latent embedding of x, Z(z, y) =

{z̃ − z|z̃ = G(e, y), e ∼ U(0, 1)} =
{

z̄1, . . . , z̄N
z
y

}

are all, by the GAN, generated latent codes but

normalized to origin z and Ny = |{(x, y′)|y′ = y}| are the number of examples x with class label y.

As the regularizer loss is class conditional let us consider a simple example with a single class. In
figure 4 you can see an illustration similar to the left Gaussian in figure 1. In this example the cosine
similarity between z̄i and z̄j can be computed as

cos(α) =
z̄i ∗ z̄j

∥z̄i∥ · ∥z̄j∥
∈ [−1, 1] , (26)

where cos(α) = −1 implies that z̄i and z̄j point in opposite directions and cos(α) = 1 implies that
they point into the same direction. In order to get a distance measure that is taking values in [0, 1], we
compute the angle α in radians and normalize the result by 1/π, i.e.,

α

π
= arccos

(

z̄i ∗ z̄j

∥z̄i∥ · ∥z̄j∥

)

·
1

π
∈ [0, 1] . (27)

This is now the same quantity as in equation (10). By maximizing the average angular distance
between all unique pairs z̄i, z̄j ∈ Z(z, y), i < j, we are forcing the generator to spread all generated
latent codes on the boundary of the distribution represented by the class-specific data example.
Transforming these angular distances via a logarithm and averaging over all (x, y) ∈ S, yields our
low dimensional regularizer in equation (11).

Figure 5 shows OoC examples generated by GANs who where trained with different weights for
the low dimensional regularizer (λreg). Especially in the MNIST 0-4 example one can see that the
GAN trained with λreg = 32 produces much more diverse samples compared to no low-dimensional
regularization.

C Additional Toy Examples

As a more challenging 2D example, we also present a result on the two moons dataset. In figure 6, the
results of an experiment with two separable classes is shown. In the top row of the figure, the training
data is class-wise separable. In that case, we observe that the decision boundary also belongs to the
OoD regime (top left panel), which is true as there is no in-distribution data present. Our model is
able to learn this since the classes are shielded tightly enough such that the generated OoC examples
are in part also located in the vicinity of the decision boundary. To better visualize the distribution of
generated data, we depict estimated densities of the generated OoC data in the top right panel. For
the aleatoric uncertainty in the top center panel, we observe that due to numerical issues, aleatoric
uncertainty increases further away from the in-distribution data. However this can be accounted for
by first considering epistemic uncertainty and then the aleatoric one. By this procedure, most of the
examples close to the decision boundary would be correctly classified as OoD which is also correct
since there is only a minor amount of aleatoric uncertainty involved in this example due to moderate
sample size not being reflected by the data.
In the bottom row example, an experiment analogous to the top row but with a noisier version of
the data is presented. The bottom left panel shows that the epistemic uncertainty on the decision
boundary between the two classes clearly decreases in comparison to the top left panel. At the same
time the bottom center panel shows the gain in aleatoric uncertainty compared to the top center panel.
Note that for data points far away from the in-distribution regime, all C(i|x, y) take values close
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Figure 5: Generated OoC examples by our approach with different weights on the low dimensional
regularizer. a) CIFAR10 0-4 samples with λreg = 0; b) CIFAR10 0-4 samples with λreg = 1; c)
MNIST 0-4 samples with λreg = 0; d) MNIST 0-4 samples with λreg = 32.

to zero. In practice this requires the inclusion of a small ε > 0 in the denominator to circumvent
numerical problems in the logarithmic loss terms. In our experiments this also results in a high
aleatoric uncertainty far away from the in-distribution as all estimated probabilities uniformly take
the lower bound’s value ε. However, a joint consideration of aleatoric and epistemic uncertainty
disentangles this, since a high estimated probability of being OoD means that the estimate of aleatoric
uncertainty can be neglected. This also becomes evident in the center panels where one can observe
high aleatoric uncertainty H(x) outside the in-distribution regime, which can however be masked out

by the OoD probability C̃(o|x).

Figure 7 shows a toy example on a 3× 3 grid of Gaussians. In the top row each Gaussian belongs to
its own class, resulting in 9 classes in total, while in the bottom row multiple Gaussians belong to
one class, resulting in disconnected class regions. In both cases our method is able to predict a high
aleatoric uncertainty between class boundaries and high epistemic uncertainty away from the training
data. We can also observe the high aleatoric uncertainty far away from the training data as in figure 6,
which can also be disentangled by a joint consideration of aleatoric and epistemic uncertainty.
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Figure 6: Two toy examples of the two moons dataset with different variance. From left to right: 1.
OoD heatmap with orange indicating a high probability of being OoD and white for in-distribution;
2. Aleatoric uncertainty (entropy over Equation (3)) with orange indicating high and white low
uncertainty; 3. Gaussian kernel density estimate of the GAN examples. Triangles indicate GAN OoC
examples and crosses correspond to the in-distribution data. The data underlying the bottom row has
higher variance than the one underlying the top row.

Figure 7: Two toy examples of a 3x3 grid of independent Gaussians. In the top row each Gaussian
has its own class assigned, resulting in 9 classes and in the bottom row disconnected Gaussians
were assigned to 3 classes in total. From left to right: 1. OoD heatmap with orange indicating a
high probability of being OoD and white for in-distribution; 2. Aleatoric uncertainty (entropy over
Equation (3)) with orange indicating high and white low uncertainty; Triangles indicate GAN OoC
examples and crosses correspond to the in-distribution data.

D Hyperparameter Settings for Experiments

For the Bayes-by-Backprop implementation we use spike-and-slap priors in combination with
diagonal Gaussian posterior distributions as described in [2]. MC-Dropout uses a 50% dropout
probability on all weight layers. Both mentioned methods average their predictions over 50 forward
passes. The deep-ensembles were built by averaging 5 networks. Implementations of Confident
Classifier and GEN use the architectures and hyperparameters recommended by the authors and
we followed their reference code where possible. Parameter studies showed that our method is
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mostly stable w.r.t. the hyperparameter selection. We used λgp = 10 as proposed in [11], λcl = 2
for MNIST/Tiny Imagenet and λcl = 4 for CIFAR10/100, λreal = 0.6, λR = 32 for MNIST/Tiny
ImageNet and λR = 1 for CIFAR10/100.

The latent dimension for MNIST was set to 32 while using 128 dimensions for CIFAR10/100 and
Tiny ImageNet. We used batch stochastic gradient descent with the ADAM [19] optimizer and a
batch size of 256. The learning rate was initialized to 10−3 for the classification model and 2 · 10−4

for the GAN while linearly decaying them to 10−5 over the course of all training iterations. Training
on the MNIST dataset required 2 000 generator iterations while taking 10 000 iterations for the
CIFAR10/100 and Tiny ImageNet datasets (one iteration is considered to be one gradient step on
the generator). As recommended in [11], we use batch normalization only in the generator, while
the critic as well as the classifier do not use any type of layer normalization. We also adopt the
alternating training scheme from the just mentioned work. For each generator iteration the critic as
well as classifier are performing 5 optimization steps on the same batch. We do apply some mild
data augmentation by using random horizontal flipping where appropriate. The test set sizes used for
computing the numerical results can be found in table 6. Besides the already mentioned LeNet and
ResNet architectures for the classification model, the cAE uses a small convolutional architecture
for MNIST and a ResNet architecture for CIFAR10/100 and Tiny ImageNet. The generator and
discriminator are both implemented as fully connected networks with (1024, 512, 256) neurons for
the generator and (512, 512, 512) neurons for the discriminator. We experimented with different
sizes of the generator and observed low to no influence on the final performance of the classifier.
All experiments were performed on a Nvidia RTX 3090, Tesla P100 or A100 GPU but models with
less VRAM are also sufficient as the cGAN itself is very small. On the RTX 3090 training takes
approximately 50 minutes, 3 hours, 3.5 hours and 5.5 hours for MNIST, CIFAR10, CIFAR100 and
Tiny ImageNet, respectively.

Table 6: Test set sizes used for computing the numerical results.

Dataset Test-Set Size

MNIST 0-4 5 000
MNIST 5-9 5 000

CIFAR10 0-4 5 000
CIFAR10 5-9 5 000

Tiny ImageNet 0-99 5 000
Tiny ImageNet 100-199 5 000

EMNIST-Letters 20 800
Fashion-MNIST 10 000

SVHN 26 032
Omniglot 13 180

LSUN 10 000

E Parameter Study

In order to examine the influence of hyperparameter selection onto our framework we conducted an
extensive experimental study. We displayed all mentioned evaluation metrics from section 4 while
varying λcl, λreal, λreg and the chosen latent dimension for the cAE and cGAN. For λcl in equation (8),
which controls the influence of the classifier predictions onto the generated OoC examples, figure 9
shows clearly that for MNIST λcl = 2 and for CIFAR10 λcl = 4 are locally optimal values w.r.t.
maximum performance. While larger λcl tend to increase the in-distribution accuracy slightly it
greatly decreases all other evaluation metrics. A very interesting observation in figure 10 about
the influence of λreal from equation (9) is that both extremes (λreal ∈ {0, 1}) are greatly decreasing
the results. This shows clearly that the generated OoC examples have a positive effect on the OoD
detection performance and in-distribution separability. In terms of the dimensionality of the latent
space, figure 11 shows that 32 and 128 dimensions are the optimal values for MNIST and CIFAR10,
respectively. This is coherent with the visual quality of the examples decoded by the cAE, which
does not improve much with higher dimensions. Analysing the influence of λreg in figure 12 one can
observe a positive effect on the results on the MNIST dataset by increasing the value of the parameter
up to λreg = 32 where we reach a local maximum. It is also very apparent, that for λreg = 0 the
results are comparatively bad, emphasizing the role of the low dimensional regularizer in our model.
For CIFAR10 the effect is not as clear as for the MNIST dataset, but figure 12 also shows a locally
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Figure 8: Influence of the number of classes on the OoD detection and accuracy based on the Tiny
ImageNet dataset. a) Influence on the AUROC; b) Influence on the accuracy. The number of classes
corresponds to the Tiny ImageNet dataset and the rest of the classes are then considered as OoD.
Additonally the SVHN, Fashion-MNIST and MNIST datasets were used as OoD. Hyperparameters
and models are the same as for the results in tables 5 and 11 and kept fixed for different numbers of
classes.

optimal setting of λreg ∈ [1, 2]. We believe that the higher latent dimension required for the CIFAR10
dataset and thus the curse of dimensionality is the main factor behind this finding. Figure 5 shows
qualitatively the influence of λreg on the generated OoC examples. We can observe that for a training
with a higher λreg we obtain much more diverse examples compared to when using no regularizer.
This is especially apparent in the MNIST setting.

Figure 8 shows the OoD detection performance w.r.t. AUROC and the accuracy on the in-distribution
set while increasing the number of classes present during training. The hyperparameters as well
as all model architectures were kept fixed for this experiment. We used the Tiny ImageNet dataset
with varying class-wise subsets as in-distribution data and the remaining Tiny ImageNet classes,
SVHN, Fashion-MNIST and MNIST datasets as OoD examples. All methods were trained on our
training subset while the figure displays the results on the respective test sets. For GEN we faced
numerical problems with exploding evidence values. Due to this, we chose different hyperparameter
settings for different numbers of classes, which also results in larger standard deviation values for
GEN in tables 5 and 11. The study shows that increasing the number of classes also increases the
OoD detection performance of our approach. This is also true for GEN, which is why we argue that
the gain in performance can in part be attributed to the use of an autoencoder. As the number of
classes increases, so does the number of examples in the training dataset, improving the ability of
the autoencoder to produce diverse embeddings. When observing the accuracy on the in-distribution
data the most apparent observation is that for all methods the accuracy decreases for a higher number
of classes. This is not surprising as we kept the classification model fixed. In general we observe
that our approach with MC-dropout has the overall highest performance, being equal to standard
MC-Dropout and Ensembles from 150 classes and above. Our approach without dropout achieves
mid-tier results while still being superior to GEN.

F Joint Detection of OoD and FP in the Wild

In this section, we perform CIFAR10-based OoD and FP detection in the wild, i.e., we perform
both tasks jointly while presenting in-distribution and OoD data in the same mix as in table 3 to the
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Figure 9: Parameter study over λcl in equation (8). For MNIST hyperparameters were fixed at λreg =
14, λreal = 0.5, latent dimension = 16 and for CIFAR10 at λreg = 0, λreal = 0.6, latent dimension =
128. All seeds were also the same for all experiments. All metrics were computed on the validation
sets of MNIST 0-4 / CIFAR10 0-4 as in-distribution datasets and the entirety of all assigned OoD
datasets as defined in section 4.

Table 7: Results obtained from aggregating predicted uncertainty estimates in a gradient boosting
model which was then trained on a validation set. In distribution dataset is CIFAR10 (0-4) and OoD
datasets are CIFAR10 (5-9), LSUN, SVHN, Fashion-MNIST, MNIST.

Method

Uncertainty Scores and Predicted Probabilities Uncertainty Scores Only

Accuracy
TP

Accuracy
FP

Accuracy
OoD

Accuracy
TP

Accuracy
FP

Accuracy
OoD

Ours 78.32 (1.20) 37.33 (3.05) 75.47 (0.92) 76.96 (1.14) 40.88 (2.65) 66.07 (0.99)
Ours with MC-Dropout 79.59 (0.61) 47.58 (2.68) 82.50 (0.55) 77.16 (1.19) 41.86 (2.92) 70.37 (0.69)

One-vs-All Baseline 68.54 (1.65) 46.54 (1.92) 73.69 (1.81) 64.78 (2.25) 33.75 (6.83) 56.02 (2.61)
Max. Softmax [15] 66.04 (0.33) 49.51 (1.69) 71.55 (1.48) 64.98 (0.58) 33.58 (4.01) 48.77 (4.34)
Entropy 66.98 (0.56) 48.47 (1.74) 72.36 (1.33) 66.13 (1.07) 29.90 (5.67) 51.42 (4.62)
Bayes-by-Backprop [2] 67.98 (0.88) 44.65 (2.05) 73.34 (0.99) 64.81 (0.93) 33.62 (4.31) 52.76 (4.31)
MC-Dropout [7] 72.20 (0.41) 52.53 (1.29) 77.38 (0.49) 66.97 (1.88) 44.31 (2.14) 59.91 (2.10)
Deep-Ensembles [24] 72.10 (0.33) 47.76 (0.90) 75.30 (0.41) 67.76 (0.56) 36.29 (1.78) 53.56 (1.01)
Confident Classifier [27] 68.15 (0.77) 50.64 (1.45) 72.23 (0.71) 64.69 (1.47) 39.84 (3.85) 45.62 (3.47)
GEN [40] 69.86 (2.11) 49.13 (2.43) 76.04 (1.17) 70.47 (0.94) 64.88 (1.52) 54.31 (2.52)

Entropy Oracle 76.89 (0.32) 54.33 (2.05) 86.59 (0.37) 71.36 (1.59) 61.40 (2.77) 82.35 (0.62)
One-vs-All Oracle 75.35 (0.90) 58.20 (2.03) 80.00 (2.43) 73.60 (1.74) 60.49 (0.84) 74.78 (2.85)

classifier. To this end, we apply gradient boosting to the uncertainty scores provided by the respective
methods to predict TP, FP and OoD. In more detail, we use the following uncertainty scores:

• Ours: OoD uncertainty C(o|x) and entropy H(x) of the estimated class probabilites
• Ours with MC dropout: C(o|x), H(x) and the standard deviations of p̂(y|x) summed over

all y = 1, . . . , n under MC dropout for 50 forward passes.
• One-vs-All Baseline: Same as ªOursº.
• Max softmax: Maximum softmax probability.
• Entropy: Entropy over estimated class probabilities.

• Bayes-by-Backprop: For 50 samples from the posterior we compute a = 1
K

∑K

1 H(p̂(y|x))

(aleatoric uncertainty) and b = H( 1
K

∑K

1 p̂(y|x))− a (epistemic uncertainty) as in [18].
• MC-Dropout: Entropy of estimated class probabilities averaged over 50 forward passes,

standard deviation of the class probabilities summed over all y = 1, . . . , n.
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Figure 10: Parameter study over λreal in equation (9). For MNIST, hyperparameters were fixed at
λreg = 32, λcl = 1, latent dimension = 16 and for CIFAR10 at λreg = 0, λcl = 2, latent dimension =
128. All seeds were also the same for all experiments. All metrics were computed on the validation
sets of MNIST 0-4 / CIFAR10 0-4 as in-distribution datasets and the entirety of all assigned OoD
datasets as defined in section 4.

• Deep-Ensembles: Entropy of estimated class probabilites averaged over 5 ensemble mem-
bers, standard deviation of the class probabilities summed over all y = 1, . . . , n.

• Confident Classifier: Entropy over estimated class probabilities.

• GEN: Entropy over estimated class probabilities resulting of the estimated evidence of the
Dirichlet distribution.

The corresponding results are given in table 7 in terms of class-wise accuracy. While the right-hand
half of table 7 presents results for gradient boosting applied to the uncertainty scores of each method,
aiming to predict TP, FP and OoD, the left half of the table shows analogous results while additionally
using the estimated class probabilities p̂(y|x) as inputs for gradient boosting. We do so for the sake of
accounting for other possible transformations of p̂(y|x) that are not explicitly constructed. The main
observations are that our method outperforms the other GAN-based methods and that our method
including dropout achieves the overall best performance. It can be observed that the Entropy Oracle
performs very strong while using only a single uncertainty score. At a second glance, this is not
surprising since a FP mostly involves the confusion of two classes while training the DNN to output
maximal entropy on OoD examples is likely to result in the confusion of up to five classes, therefore
yielding different entropy levels. Also in the left part as well as the right part of the table, our method
including dropout is fairly close the best oracle, which is the entropy oracle. Apart from the oracle, in
both studies including and excluding the estimated class probabilities p̂(y|x), our method including
MC-dropout outperforms all other methods. However, reviewing the result in an absolute sense, there
still remains plenty of room for improvement.

G Detailed Results on Individual OoD Datasets

In section 4 we have presented results on the in-distribution datasets MNIST 0-4, CIFAR10 0-4 and
CIFAR100 0-49 versus the entirety of all respective OoD datasets. To give more detailed insights,
this appendix section contains comparisons of the respective in-distribution dataset and each of the
single corresponding OoD datasets.
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Figure 11: Parameter study over latent dimensions of z in equation (8). For MNIST, hyperparameters
were fixed at λreg = 32, λcl = 1, λreal = 0.5 and for CIFAR10 at λreg = 0, λcl = 4, λreal = 0.6. All
seeds were also the same for all experiments. All metrics were computed on the validation sets of
MNIST 0-4 / CIFAR10 0-4 as in-distribution datasets and the entirety of all assigned OoD datasets as
defined in section 4.

The comparison by dataset for the MNIST 0-4 as in-distribution set in the OoD-dataset-wise break-
down given in table 8 shows that we achieve mid-tier results compared to the other methods, except
for when MNIST 5-9 is considered as the OoD dataset. In that challenging case, we achieve stronger
results compared to the other methods. Examining the results of our OoD experiments with CIFAR10
0-4 being the in-distribution dataset in table 9, it becomes apparent that we consistently outperform
all other methods on each single OoD dataset. The performance gains are particularly pronounced
when using the very similar datasets CIFAR10 5-9 and LSUN as OoD datasets. For CIFAR100 0-49
we have a similar situation as for MNIST, where our approach performs particularly well on the
difficult task of CIFAR100 0-49 vs. CIFAR100 50-99 while achieving mid-tier results on the other
tasks. This consistency supports the finding that our method ± especially in the case of OoD datasets
very similar to the in-distribution dataset ± shows the most improvement compared to other methods.
This finding might be to some extent attributable to our tight class shielding.
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Figure 12: Parameter study over λreg in equation (8). For MNIST, hyperparameters were fixed at λcl =
1, λreal = 0.5, latent dimension = 16 and for CIFAR10 at λcl = 4, λreal = 0.6, latent dimension =
128. All seeds were also the same for all experiments. All metrics were computed on the validation
sets of MNIST 0-4 / CIFAR10 0-4 as in-distribution datasets and the entirety of all assigned OoD
datasets as defined in section 4.

Table 8: An OoD-dataset-wise breakdown of the results given in table 2.

Method AUROC ↑ AUPR-In ↑ AUPR-Out ↑
FPR@

95% TPR
↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑

FPR@
95% TPR

↓

MNIST 0-4 vs. MNIST 5-9 MNIST 0-4 vs. EMNIST-Letters
Ours 92.34 (2.31) 93.17 (2.78) 89.96 (2.23) 38.68 (7.09) 96.44 (0.76) 86.32 (2.69) 99.11 (0.20) 13.80 (3.06)
Ours + Dropout 95.50 (0.53) 96.22 (0.59) 93.66 (0.83) 24.46 (2.20) 96.71 (0.55) 86.99 (2.49) 99.18 (0.14) 12.49 (1.63)
One-vs-All Baseline 93.65 (0.97) 92.32 (1.36) 94.36 (0.84) 20.06 (2.98) 91.32 (0.31) 70.45 (1.43) 97.69 (0.10) 29.30 (1.12)
Max. Softmax 92.77 (0.55) 91.46 (1.05) 93.58 (0.26) 22.17 (1.04) 91.63 (0.28) 73.52 (1.02) 97.72 (0.07) 29.31 (0.88)
Entropy 92.80 (0.54) 91.20 (1.27) 93.63 (0.24) 22.11 (1.04) 91.68 (0.27) 73.51 (1.14) 97.73 (0.07) 29.23 (0.91)
Bayes-by-Backprop 93.73 (0.99) 92.74 (1.58) 93.83 (0.69) 22.17 (1.40) 90.59 (0.80) 71.60 (2.22) 97.34 (0.23) 34.28 (1.54)
MC-Dropout 94.32 (1.10) 93.05 (1.79) 95.19 (0.70) 17.27 (1.60) 92.80 (0.37) 76.85 (1.53) 98.09 (0.09) 26.72 (1.00)
Deep-Ensembles 94.20 (0.24) 92.82 (0.18) 95.00 (0.28) 16.89 (1.09) 93.08 (0.10) 77.32 (0.73) 98.16 (0.02) 24.65 (0.37)
Confident Classifier 95.33 (0.74) 95.43 (1.00) 94.95 (0.64) 19.74 (1.46) 94.60 (0.41) 81.71 (1.56) 98.53 (0.11) 22.28 (1.87)
GEN 88.91 (2.64) 86.09 (4.55) 88.15 (2.20) 40.49 (5.53) 99.27 (0.30) 97.05 (1.22) 99.82 (0.07) 3.61 (1.48)
Entropy Oracle 99.76 (0.04) 99.77 (0.03) 99.74 (0.04) 0.93 (0.12) 99.84 (0.04) 99.43 (0.12) 99.96 (0.01) 0.73 (0.21)
One-vs-All Oracle 99.65 (0.04) 99.66 (0.03) 99.65 (0.04) 1.21 (0.13) 99.87 (0.01) 99.49 (0.05) 99.97 (0.00) 0.59 (0.10)

MNIST 0-4 vs. Omniglot MNIST 0-4 vs. Fashion-MNIST
Ours 96.70 (0.52) 94.25 (1.07) 98.32 (0.26) 18.00 (3.26) 99.36 (0.19) 99.04 (0.32) 99.62 (0.10) 2.19 (1.36)
Ours + Dropout 98.45 (0.24) 96.94 (0.37) 99.25 (0.14) 5.95 (1.08) 99.65 (0.26) 99.52 (0.35) 99.78 (0.17) 0.68 (0.98)
One-vs-All Baseline 98.75 (0.11) 97.60 (0.22) 99.41 (0.05) 4.75 (0.74) 99.39 (0.12) 99.15 (0.16) 99.59 (0.10) 1.60 (0.53)
Max. Softmax 98.54 (0.06) 97.10 (0.24) 99.31 (0.02) 5.52 (0.50) 99.29 (0.23) 99.03 (0.36) 99.53 (0.15) 1.79 (1.34)
Entropy 98.59 (0.06) 97.15 (0.24) 99.35 (0.01) 5.36 (0.50) 99.35 (0.22) 99.06 (0.36) 99.59 (0.15) 1.74 (1.31)
Bayes-by-Backprop 96.82 (0.16) 95.22 (0.30) 97.46 (0.23) 14.86 (0.56) 97.93 (0.18) 97.64 (0.24) 98.26 (0.20) 8.02 (1.30)
MC-Dropout 98.96 (0.09) 97.56 (0.27) 99.58 (0.03) 3.85 (0.43) 99.69 (0.05) 99.52 (0.08) 99.83 (0.03) 0.75 (0.21)
Deep-Ensembles 98.93 (0.04) 97.77 (0.07) 99.52 (0.02) 3.76 (0.20) 99.59 (0.09) 99.38 (0.15) 99.76 (0.05) 1.01 (0.63)
Confident Classifier 98.35 (0.29) 96.22 (0.83) 99.29 (0.11) 6.78 (1.06) 99.95 (0.01) 99.91 (0.03) 99.97 (0.01) 0.06 (0.02)
GEN 91.03 (3.53) 78.34 (9.87) 94.92 (1.67) 36.96 (9.71) 99.92 (0.02) 99.84 (0.04) 99.96 (0.01) 0.23 (0.11)
Entropy Oracle 99.68 (0.09) 99.25 (0.21) 99.87 (0.04) 1.26 (0.35) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)
One-vs-All Oracle 99.68 (0.05) 99.18 (0.13) 99.88 (0.02) 1.22 (0.17) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)

MNIST 0-4 vs. SVHN MNIST 0-4 vs. CIFAR10
Ours 99.83 (0.09) 99.50 (0.21) 99.96 (0.02) 0.17 (0.06) 99.84 (0.08) 99.76 (0.11) 99.91 (0.05) 0.21 (0.12)
Ours + Dropout 99.80 (0.22) 99.47 (0.53) 99.94 (0.07) 0.32 (0.40) 99.84 (0.19) 99.78 (0.26) 99.90 (0.12) 0.28 (0.47)
One-vs-All Baseline 99.76 (0.07) 99.30 (0.17) 99.93 (0.04) 0.36 (0.12) 99.55 (0.16) 99.39 (0.21) 99.69 (0.14) 0.75 (0.45)
Max. Softmax 99.68 (0.12) 99.14 (0.24) 99.92 (0.04) 0.39 (0.12) 99.54 (0.13) 99.39 (0.17) 99.69 (0.10) 0.59 (0.30)
Entropy 99.75 (0.11) 99.22 (0.23) 99.94 (0.03) 0.37 (0.11) 99.61 (0.13) 99.45 (0.17) 99.76 (0.09) 0.56 (0.29)
Bayes-by-Backprop 97.20 (0.32) 95.75 (0.34) 98.77 (0.24) 11.46 (3.55) 97.52 (0.40) 97.48 (0.35) 97.11 (0.73) 7.44 (2.13)
MC-Dropout 99.94 (0.01) 99.75 (0.05) 99.99 (0.00) 0.15 (0.03) 99.92 (0.03) 99.87 (0.05) 99.96 (0.02) 0.09 (0.05)
Deep-Ensembles 99.89 (0.01) 99.55 (0.05) 99.98 (0.00) 0.25 (0.06) 99.82 (0.05) 99.73 (0.07) 99.90 (0.03) 0.20 (0.09)
Confident Classifier 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)
GEN 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.01) 100.00 (0.00) 0.01 (0.01)
Entropy Oracle 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)
One-vs-All Oracle 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00)
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Table 9: An OoD-dataset-wise breakdown of the results given in table 3.

Method AUROC ↑ AUPR-In ↑ AUPR-Out ↑
FPR@

95% TPR
↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑

FPR@
95% TPR

↓

CIFAR10 0-4 vs. CIFAR10 5-9 CIFAR10 0-4 vs. LSUN
Ours 65.94 (0.29) 72.26 (0.30) 64.54 (0.44) 86.94 (1.12) 76.45 (0.52) 69.35 (0.56) 84.35 (0.42) 80.50 (1.31)
Ours + Dropout 71.31 (0.49) 71.98 (0.35) 68.45 (0.59) 84.07 (0.76) 82.52 (0.72) 76.03 (0.80) 88.01 (0.53) 72.93 (1.14)
One-vs-All Baseline 65.31 (0.67) 66.28 (0.76) 62.99 (0.44) 88.15 (0.52) 74.94 (0.79) 66.33 (1.06) 82.99 (0.61) 82.50 (1.03)
Max. Softmax 64.45 (0.55) 65.94 (0.80) 60.77 (0.55) 90.73 (0.33) 72.84 (0.59) 63.69 (0.93) 80.70 (0.45) 87.11 (0.56)
Entropy 64.64 (0.53) 65.82 (0.69) 61.36 (0.50) 89.50 (0.69) 73.33 (0.51) 63.95 (0.90) 81.62 (0.39) 83.58 (0.56)
Bayes-by-Backprop 66.78 (0.34) 67.16 (1.07) 63.22 (0.50) 88.50 (0.62) 75.31 (0.65) 66.79 (1.13) 82.75 (0.68) 82.64 (1.16)
MC-Dropout 63.52 (0.33) 64.11 (0.38) 60.82 (0.27) 90.01 (0.39) 77.04 (0.22) 70.27 (0.41) 83.75 (0.12) 81.53 (0.59)
Deep-Ensembles 66.85 (0.38) 67.64 (0.57) 64.07 (0.31) 87.59 (0.42) 78.03 (0.24) 69.56 (0.47) 85.49 (0.20) 77.07 (0.66)
Confident Classifier 65.58 (0.13) 66.94 (0.18) 62.60 (0.29) 88.46 (0.64) 75.25 (0.33) 67.26 (0.41) 82.97 (0.36) 81.66 (0.99)
GEN 65.56 (0.50) 66.67 (0.51) 61.90 (0.67) 89.09 (1.17) 75.82 (1.22) 67.74 (1.65) 82.66 (0.75) 83.19 (1.91)
Entropy Oracle 73.21 (0.52) 75.00 (0.41) 70.70 (0.73) 81.41 (0.88) 98.27 (0.09) 96.81 (0.14) 99.11 (0.06) 7.91 (0.45)
One-vs-All Oracle 69.45 (0.73) 69.58 (0.66) 67.38 (0.80) 84.92 (0.92) 95.92 (0.38) 92.38 (0.65) 97.93 (0.22) 19.36 (2.03)

CIFAR10 0-4 vs. SVHN CIFAR10 0-4 vs. Fashion-MNIST
Ours 98.50 (0.26) 92.05 (1.07) 99.72 (0.05) 5.99 (1.27) 78.78 (0.88) 72.41 (0.85) 85.12 (0.92) 81.09 (2.84)
Ours + Dropout 98.93 (0.12) 94.40 (0.62) 99.80 (0.02) 5.09 (0.44) 84.75 (1.32) 80.48 (1.45) 88.20 (1.38) 76.11 (5.07)
One-vs-All Baseline 70.07 (4.23) 45.76 (4.99) 89.65 (1.92) 91.83 (3.14) 73.94 (1.31) 68.28 (1.45) 80.23 (1.31) 89.25 (1.33)
Max. Softmax 70.96 (1.87) 44.63 (2.22) 90.72 (0.66) 88.76 (1.38) 73.90 (1.18) 67.14 (1.35) 80.38 (0.97) 88.48 (0.82)
Entropy 71.23 (1.94) 44.81 (2.17) 90.87 (0.72) 87.04 (2.22) 73.93 (1.26) 67.18 (1.38) 80.30 (1.11) 88.47 (1.71)
Bayes-by-Backprop 76.21 (0.58) 50.10 (1.76) 92.92 (0.24) 80.85 (1.42) 74.51 (1.34) 68.52 (1.75) 80.67 (1.13) 88.11 (1.87)
MC-Dropout 76.73 (2.77) 58.97 (4.10) 92.23 (0.86) 84.98 (1.87) 81.85 (0.75) 77.62 (0.79) 85.83 (0.62) 80.75 (1.85)
Deep-Ensembles 72.02 (1.11) 45.95 (2.24) 90.96 (0.30) 88.13 (0.61) 72.82 (1.20) 66.38 (2.02) 79.25 (0.63) 89.97 (0.84)
Confident Classifier 73.60 (0.61) 48.68 (1.08) 91.71 (0.23) 85.45 (1.08) 74.47 (0.52) 68.40 (0.77) 80.85 (0.35) 87.47 (0.60)
GEN 98.43 (0.42) 91.36 (1.82) 99.71 (0.08) 5.62 (1.68) 72.44 (3.94) 66.54 (4.86) 79.12 (2.47) 89.38 (2.57)
Entropy Oracle 96.85 (0.62) 88.28 (1.42) 99.29 (0.21) 14.26 (2.88) 97.89 (0.16) 96.65 (0.28) 98.71 (0.10) 9.50 (0.61)
One-vs-All Oracle 89.47 (1.47) 70.44 (2.54) 97.36 (0.51) 48.76 (7.42) 96.63 (0.40) 94.34 (0.71) 98.06 (0.22) 17.37 (2.48)

CIFAR10 0-4 vs. MNIST
Ours 83.24 (3.79) 75.49 (4.07) 90.43 (2.76) 58.75 (13.88)
Ours + Dropout 86.64 (1.18) 82.03 (1.28) 91.49 (1.02) 61.32 (5.75)
One-vs-All Baseline 78.65 (0.75) 75.69 (0.57) 83.12 (1.09) 86.70 (2.27)
Max. Softmax 78.89 (1.79) 74.29 (2.40) 84.41 (1.37) 83.07 (2.10)
Entropy 79.59 (1.81) 74.66 (2.38) 85.33 (1.55) 77.57 (3.12)
Bayes-by-Backprop 71.46 (4.50) 62.19 (6.23) 79.41 (3.14) 87.01 (3.35)
MC-Dropout 82.98 (1.21) 79.05 (1.68) 87.44 (0.83) 73.99 (1.97)
Deep-Ensembles 81.33 (1.54) 76.97 (1.67) 85.98 (1.26) 78.85 (3.47)
Confident Classifier 73.41 (2.43) 64.90 (4.16) 81.47 (1.62) 83.21 (2.58)
GEN 87.63 (3.97) 80.69 (5.53) 93.31 (2.29) 45.16 (11.84)
Entropy Oracle 97.59 (0.26) 97.10 (0.30) 97.82 (0.30) 10.16 (2.03)
One-vs-All Oracle 97.56 (0.20) 96.52 (0.40) 98.36 (0.07) 13.25 (1.95)

Table 10: An OoD-dataset-wise breakdown of the results given in table 4.

Method AUROC ↑ AUPR-In ↑ AUPR-Out ↑
FPR@

95% TPR
↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑

FPR@
95% TPR

↓

CIFAR100 0-49 vs. CIFAR100 50-99 CIFAR100 0-49 vs. LSUN
Ours 64.52 (0.17) 65.00 (0.35) 61.84 (0.21) 89.57 (0.47) 65.30 (0.56) 52.94 (0.30) 75.99 (0.42) 90.36 (0.61)
Ours + Dropout 66.97 (0.30) 65.14 (0.37) 64.41 (0.41) 87.74 (0.48) 68.60 (0.62) 56.80 (0.81) 78.09 (0.46) 88.77 (0.65)
One-vs-All Baseline 61.62 (0.31) 61.30 (0.42) 58.80 (0.34) 91.49 (0.37) 64.09 (1.09) 51.10 (1.14) 75.24 (0.84) 90.81 (0.92)
Max. Softmax 62.43 (0.72) 62.87 (1.41) 59.39 (0.61) 90.92 (0.48) 65.21 (1.34) 53.47 (1.45) 76.01 (1.09) 89.96 (1.00)
Entropy 63.53 (0.62) 63.45 (1.36) 60.59 (0.61) 90.23 (0.76) 66.62 (1.51) 54.37 (1.65) 77.22 (1.16) 88.76 (1.16)
Bayes-by-Backprop 64.16 (0.36) 64.56 (0.61) 60.64 (0.41) 90.44 (0.47) 67.02 (0.84) 55.60 (1.09) 76.79 (0.62) 90.05 (0.57)
MC-Dropout 62.97 (0.22) 62.21 (0.41) 60.02 (0.32) 90.34 (0.37) 67.19 (1.00) 56.12 (0.89) 77.92 (0.92) 87.38 (1.22)
Deep-Ensembles 66.95 (0.20) 65.94 (0.39) 63.82 (0.10) 87.90 (0.47) 71.34 (0.64) 59.76 (0.85) 80.73 (0.62) 84.60 (1.38)
Confident Classifier 62.39 (0.67) 62.31 (0.12) 59.78 (0.71) 90.10 (0.54) 64.24 (0.83) 51.61 (0.74) 75.73 (0.72) 89.53 (0.94)
GEN 62.66 (0.40) 61.82 (0.50) 60.39 (0.48) 89.89 (0.69) 62.59 (1.01) 51.97 (0.51) 72.87 (1.06) 93.96 (1.29)
Entropy Oracle 64.42 (0.31) 65.50 (0.31) 61.35 (0.37) 89.87 (0.86) 70.00 (0.33) 58.01 (0.24) 79.95 (0.34) 85.32 (0.88)
One-vs-All Oracle 67.55 (1.07) 66.49 (1.24) 65.17 (1.02) 86.70 (0.53) 78.10 (0.99) 64.04 (1.12) 86.95 (0.92) 70.25 (2.55)

CIFAR100 0-49 vs. SVHN CIFAR100 0-49 vs. Fashion-MNIST
Ours 96.47 (1.26) 81.59 (5.55) 99.25 (0.26) 11.95 (3.93) 62.98 (1.71) 51.89 (2.88) 73.95 (1.21) 92.37 (1.04)
Ours + Dropout 95.63 (1.27) 80.03 (4.04) 99.17 (0.26) 15.47 (4.21) 64.68 (2.02) 57.46 (1.99) 74.57 (1.48) 91.50 (1.15)
One-vs-All Baseline 60.63 (3.90) 26.37 (6.04) 87.22 (1.37) 93.11 (1.92) 59.80 (2.67) 51.35 (3.14) 70.68 (1.29) 95.13 (0.65)
Max. Softmax 66.32 (2.15) 37.61 (3.13) 89.38 (0.78) 89.73 (1.60) 68.46 (0.56) 60.24 (0.85) 77.66 (0.47) 89.36 (0.46)
Entropy 68.09 (2.54) 38.90 (3.51) 89.84 (0.88) 89.65 (1.44) 68.95 (0.48) 60.59 (0.68) 78.35 (0.45) 87.66 (0.75)
Bayes-by-Backprop 72.62 (1.07) 42.79 (1.62) 92.21 (0.50) 81.59 (2.61) 66.22 (2.02) 57.55 (3.02) 75.36 (1.32) 91.91 (1.20)
MC-Dropout 65.65 (2.51) 35.78 (3.03) 88.94 (1.09) 91.07 (1.95) 70.50 (1.49) 63.75 (1.52) 78.70 (1.54) 88.43 (2.58)
Deep-Ensembles 75.01 (1.06) 49.77 (2.19) 91.86 (0.46) 87.10 (1.26) 67.42 (1.14) 60.17 (1.35) 77.95 (0.83) 85.46 (1.12)
Confident Classifier 68.73 (0.49) 39.41 (0.95) 90.33 (0.17) 87.73 (0.71) 67.04 (0.89) 56.88 (0.96) 78.16 (0.38) 86.27 (1.46)
GEN 92.83 (2.72) 71.54 (8.20) 98.58 (0.56) 23.57 (7.35) 59.12 (6.18) 49.44 (5.14) 70.39 (4.78) 94.58 (3.06)
Entropy Oracle 86.97 (0.75) 63.53 (1.22) 96.97 (0.21) 50.09 (2.55) 97.47 (0.45) 94.63 (0.85) 98.83 (0.22) 10.94 (1.96)
One-vs-All Oracle 98.17 (0.22) 90.82 (0.89) 99.65 (0.04) 8.11 (0.98) 99.62 (0.05) 99.13 (0.12) 99.83 (0.02) 1.65 (0.23)

CIFAR100 0-49 vs. MNIST
Ours 77.28 (5.81) 70.28 (6.06) 84.38 (4.72) 78.32 (10.93)
Ours + Dropout 77.13 (3.87) 73.64 (4.41) 81.30 (2.83) 90.07 (2.55)
One-vs-All Baseline 71.94 (3.24) 64.45 (3.29) 78.80 (2.69) 90.07 (2.67)
Max. Softmax 75.57 (4.00) 68.72 (4.65) 83.09 (2.95) 81.22 (5.60)
Entropy 79.14 (4.38) 72.10 (5.53) 85.59 (3.17) 76.56 (8.39)
Bayes-by-Backprop 71.27 (2.11) 63.84 (3.33) 78.08 (1.57) 91.43 (1.92)
MC-Dropout 73.41 (1.90) 66.48 (3.12) 80.45 (1.38) 87.39 (2.49)
Deep-Ensembles 85.92 (1.62) 82.02 (1.88) 89.77 (1.50) 68.03 (5.45)
Confident Classifier 77.66 (1.41) 69.86 (1.33) 85.11 (0.82) 76.68 (1.55)
GEN 77.88 (6.84) 71.93 (7.67) 83.30 (5.81) 80.26 (14.55)
Entropy Oracle 99.79 (0.06) 99.56 (0.12) 99.90 (0.03) 1.02 (0.28)
One-vs-All Oracle 99.99 (0.01) 99.97 (0.01) 99.99 (0.00) 0.03 (0.03)
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Table 11: An OoD-dataset-wise breakdown of the results given in table 5.

Method AUROC ↑ AUPR-In ↑ AUPR-Out ↑
FPR@

95% TPR
↓ AUROC ↑ AUPR-In ↑ AUPR-Out ↑

FPR@
95% TPR

↓

Tiny ImageNet 0-99 vs. Tiny ImageNet 100-199 Tiny ImageNet 0-99 vs. SVHN
Ours 59.16 (0.52) 61.14 (0.44) 56.15 (0.40) 93.10 (0.35) 98.98 (0.44) 93.46 (2.87) 99.81 (0.08) 3.49 (1.31)
Ours + Dropout 62.01 (0.22) 64.70 (0.27) 58.16 (0.24) 91.97 (0.40) 99.39 (0.41) 96.18 (2.67) 99.89 (0.07) 2.19 (1.36)
One-vs-All Baseline 58.53 (0.45) 60.28 (0.33) 55.59 (0.43) 93.29 (0.27) 59.65 (4.57) 32.66 (4.11) 85.21 (1.86) 97.02 (0.95)
Max. Softmax 58.16 (0.25) 60.98 (0.30) 55.48 (0.28) 93.22 (0.52) 63.33 (1.39) 32.44 (2.05) 88.51 (0.54) 90.93 (1.05)
Entropy 58.69 (0.30) 61.42 (0.31) 55.68 (0.12) 93.30 (0.27) 65.35 (1.48) 34.25 (1.80) 88.73 (0.76) 91.90 (1.66)
Bayes-by-Backprop 57.99 (0.47) 60.44 (0.42) 55.25 (0.35) 93.18 (0.60) 74.18 (1.78) 38.32 (1.70) 93.23 (0.81) 73.54 (5.25)
MC-Dropout 61.12 (0.40) 64.16 (0.39) 57.24 (0.49) 93.11 (0.62) 63.54 (4.81) 37.05 (3.30) 87.00 (2.21) 95.33 (1.73)
Deep-Ensembles 60.70 (0.23) 64.15 (0.23) 56.84 (0.24) 93.16 (0.34) 73.51 (0.81) 48.67 (1.31) 90.92 (0.42) 90.76 (1.18)
Confident Classifier 58.45 (0.23) 61.26 (0.31) 55.36 (0.17) 93.22 (0.53) 61.86 (1.66) 31.25 (1.56) 87.62 (0.61) 92.79 (0.76)
GEN 56.32 (0.80) 58.82 (0.48) 53.80 (0.79) 94.07 (0.60) 91.40 (6.55) 71.24 (16.70) 98.24 (1.40) 24.80 (15.25)
Entropy Oracle 58.57 (0.73) 61.46 (0.75) 55.49 (0.65) 93.23 (0.68) 84.04 (2.72) 57.38 (4.13) 96.14 (0.82) 57.04 (8.27)
One-vs-All Oracle 60.16 (0.31) 61.23 (0.23) 57.46 (0.35) 91.92 (0.57) 99.39 (0.19) 95.80 (1.31) 99.89 (0.03) 2.25 (0.70)

Tiny ImageNet 0-99 vs. FMNIST Tiny ImageNet 0-99 vs. MNIST
Ours 55.53 (4.69) 42.81 (4.04) 69.36 (3.95) 93.93 (3.42) 61.69 (3.34) 49.40 (3.00) 73.63 (3.26) 91.39 (3.62)
Ours + Dropout 95.06 (1.45) 89.18 (2.88) 97.75 (0.68) 17.29 (4.71) 99.78 (0.18) 99.52 (0.39) 99.90 (0.09) 1.04 (0.94)
One-vs-All Baseline 45.63 (4.00) 41.60 (3.30) 59.66 (2.04) 99.70 (0.21) 51.48 (10.97) 45.52 (10.95) 64.34 (7.06) 97.71 (2.51)
Max. Softmax 61.16 (2.40) 51.69 (2.62) 71.73 (1.96) 94.55 (1.42) 58.91 (2.05) 48.66 (2.13) 70.89 (2.03) 94.19 (1.70)
Entropy 60.40 (2.88) 52.07 (2.77) 69.67 (2.27) 97.10 (1.16) 58.77 (2.97) 49.18 (2.26) 69.79 (3.04) 95.64 (2.23)
Bayes-by-Backprop 61.83 (2.86) 50.29 (2.99) 73.37 (2.38) 91.78 (2.26) 63.37 (5.57) 48.91 (6.19) 76.10 (4.20) 87.10 (5.19)
MC-Dropout 56.34 (6.24) 53.15 (4.84) 65.90 (3.83) 98.79 (0.84) 71.00 (3.85) 66.16 (4.66) 76.05 (2.72) 95.63 (2.55)
Deep-Ensembles 58.77 (1.34) 55.05 (2.29) 66.48 (0.83) 99.35 (0.25) 65.32 (1.95) 59.31 (1.74) 72.49 (1.96) 96.40 (1.83)
Confident Classifier 58.59 (2.13) 49.75 (1.96) 68.94 (1.61) 97.04 (0.84) 57.31 (5.67) 49.00 (5.73) 68.20 (3.76) 96.97 (1.45)
GEN 72.10 (11.72) 60.00 (14.00) 83.71 (7.27) 67.91 (17.06) 93.78 (4.14) 87.74 (6.11) 96.64 (2.87) 22.91 (18.67)
Entropy Oracle 91.63 (2.01) 85.61 (3.03) 95.54 (1.20) 35.67 (8.17) 96.29 (1.14) 93.32 (2.04) 98.11 (0.61) 17.98 (5.19)
One-vs-All Oracle 99.81 (0.11) 99.50 (0.27) 99.92 (0.05) 0.74 (0.43) 100 (0.00) 100 (0.00) 100 (0.00) 0.00 (0.00)
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