
Appendices
A Proofs

A.1 Proof of Theorem 1

Proof. We denote the perturbed node features as X
0 and change Equation (2) to the following

equivalent form:

Z
(k) = �

k
g
k(F)Z(0)

S
k +

k�1X

i=0

�
i
g
i(F)X 0

S
i
.

Let k ! 1, the first term becomes zero as � < 1. We further decompose the above equation to
Z

(k) =
Ph�1

i=0 �
i
g
i(F)XS

i +
Pk�1

i=h �
i
g
i(F)XS

i
. Since node p and q are h-hop apart, Si

p,q = 0

when i < h. Then, we have Z
(k) =

Pk�1
i=h �

i
g
i(F)X 0

S
i.

Let the perturbed features X 0
:,p = X:,p+�X:,p, we have

�
X

0
S
i
�
:,q

=
�
XS

i
�
:,q

+�X:,pS
i
p,q . Then

we have the following:

�Z
(k)
:,q =

k�1X

i=h

�
i
g
i(F)

�
�X:,pS

i
p,q

�
(14)

Apply the L2 norm on the change �Z
(k)
:,q ,

k�Z
(k)
:,q k =

k�1X

i=h

�
i
kg

i(F)�X:,pS
i
p,qk (15)

 (
k�1X

i=h

�
i)kgh(F)�X:,pS

h
p,qk (16)

�
h
� �

k

1� �
kg

h(F)�X:,pS
h
p,qk (17)

The last inequality is derived by the sum of a geometric series.

As k ! 1, Z⇤ = limk!1 Z
(k) and limk!1 �

k = 0 . Then we have the following upper bound:

k�Z
⇤
:,qk

�
h

1� �
kg

h(F)�X:,pS
h
p,qk (18)

A.2 Proof of Corollary 1

Proof. Given the ✓-effective range h, combining Definition 1 and Equation (3) in Theorem 1, we
have ✓ < �Z

⇤
:,q

�h

1�� kg
h(F)�X:,pS

h
p,qk. Since (1� �) > 0, this is equivalent to �

h
> (1� �)✓

and thus h ln � > ln((1� �)✓). Since ln � < 0, we have that

h <
ln(✓(1� �))

ln �
. (19)

Therefore, if node features X:,p of node p are perturbed, the perturbation can only affect the equilib-
rium of nodes which are up to ln(✓(1��))

ln � -hop away from p.

A.3 Proof of Theorem 2

Proof. For any matrix M 2 Rm1⇥m2 , we define the vectorization of the matrix by vec[M] 2 Rm1m2 ,
and the Frobenius norm of the matrix by kMkF . We define the map ' by '(Z) = �g(F)ZS

m +

14

f(X,G). Recall that Z 2 Rh⇥n. We want to show that the map ' is contraction. Using the property
of the vectorization and the Kronecker product,

vec['(Z)] = � vec[g(F)ZS
m] + vec[f(X,G)] = �[(Sm)> ⌦ g(F)] vec[Z] + vec[f(X,G)].

Therefore, for any Z,Z
0
2 Rh⇥n,

k'(Z)� '(Z 0)kF = k vec['(Z)]� vec['(Z 0)]k2

= k�[(Sm)> ⌦ g(F)](vec[Z]� vec[Z 0])k2

 �k[(Sm)> ⌦ g(F)]k2k vec[Z]� vec[Z 0]k2

= �k[(Sm)>k2kg(F)]k2k vec[Z]� vec[Z 0]k2

 �kZ � Z
0
kF .

Since � 2 [0, 1), this shows that ' is a contraction mapping on the metric space (Rh⇥n
, d̂) where

d̂(Z,Z 0) = kZ � Z
0
kF . Thus, using the Banach fixed-point theorem, the desired statement of this

theorem follows.

A.4 Proof of Theorem 3

We denote the perturbed node features as X 0 and change Equation (4) to the following equivalent
form:

Z
(k) = �

k
g
k(F)Z(0)

S
mk +

k�1X

i=0

�
i
g
i(F)X 0

S
im

.

Following the similar procedure in the proof of Theorem 1, as k ! 1 and S
i
p,q = 0 when i < h, we

have Z
(k) =

Pk�1
i=bh/mc �

i
g
i(F)X 0

S
im.

Let the perturbed features X 0
:,p = X:,p+�X:,p, we have

�
X

0
S
i
�
:,q

=
�
XS

i
�
:,q

+�X:,pS
i
p,q . Then

we have the following:

�Z
(k)
:,q =

k�1X

i=b h
m c

�
i
g
i(F)

�
�X:,pS

im
p,q

�
(20)

(21)

Apply the L2 norm on the change �Z
(k)
:,q ,

k�Z
(k)
:,q k =

k�1X

i=b h
m c

�
i
kg

i(F)�X:,pS
im
p,qk (22)

�

h
m � �

k

1� �
kg

h
m (F)�X:,pS

h
p,qk (23)

As k ! 1, Z⇤ = limk!1 Z
(k) and limk!1 �

k = 0 . Then we have the following upper bound:

k�Z
⇤
:,qk

�
h
m

1� �
kg

h
m (F)�X:,pS

h
p,qk (24)

A.5 Proof of Corollary 2

Proof. Similarly to the proof of Corollary 1 above, if h satisfies that �h/m

1�� > ✓, then the numerical
error ✓ does not dominate. Since (1� �) > 0 and ln � < 0, this is equivalent to

h <
m ln(✓(1� �))

ln �
. (25)

Therefore, the change on node p’s features can affect the equilibrium of node q which is up to
m ln(✓(1��))

ln � -hop away from p.

15

A.6 Derivation of the gradients

Here, we provide the derivation of Equation (12) for obtaining gradients of trainable parameters with
implicit differentiation Using the chain rule, the gradients of trainable parameters can be computed
by:

@`

@(·)
=

@`

@Z⇤
@Z

⇤

@(·)
, (26)

where (·) denotes any trainable parameters within or before the implicit layer Z⇤ = '(Z⇤
, X,G).

Note that @`
@(·) is directly handled by automatic differentiation (autodiff) packages, while @Z⇤

@(·) cannot
be directly obtained with autodiff since Z

⇤ and (·) are implicitly related.

By differentiating the both side of the fix-point equation, we can have:

@Z
⇤(·)

@(·)
=

@'(Z⇤
, X,G)

@Z⇤
@Z

⇤(·)

@(·)
+

@'(Z⇤
, X,G)

@(·)
, (27)

where we use Z
⇤(·) to denote the case where we treat Z⇤ as an implicit function of variables we

are differentiating with respect to (e.g., the parameters of ') and Z
⇤ alone to refer to the value of

equilibrium.

By rearranging the above equation, we can obtain the explicit expression for @Z⇤

@(·) :

@Z
⇤(·)

@(·)
= (I � J'(Z

⇤))�1 @'(Z⇤
, X,G)

@(·)
, (28)

where J'(Z⇤) = @'(Z⇤,X,G)
@Z⇤ .

Combining Equation (28) and (26), we can have the following:

@`

@(·)
=

@`

@Z⇤ (I � J'(Z
⇤))�1 @'(Z⇤

, X,G)

@(·)
. (29)

B Inefficiency of using higher �

Using a large contraction factor � usually make the process of finding the fixed-point more instable
and difficult and it requires more iterations to find the fixed-point solution, which compromises the
efficiency. We conduct the empirical experiments to verify this. We use EIGNN [20] with iterative
solvers as the model on the chain dataset (as described in Sec 4). Table 5 demonstrates the training
time of using different values of �. We can see that when using � = 0.9 can cost 2x training time
compared with using � = 0.8. Smaller � empirically causes faster convergence to get the fixed-point
solutions.

� 0.6 0.8 0.9 0.95

Time per epoch 0.86s 1.65s 3.71s 3.95s
Total time 4596s 8267s 18580s 19916s

Table 5: Training time with different � used in the iterative method.

Besides EIGNN, IGNN also faces instability in the training if it uses a large contraction factor.
Different with Equation (2), IGNN projects the weight matrix W with a contraction factor onto a
convex constraint set to ensure the convergence of iterative mapping. In their official implementation
repo 2, they mention that too large may cause the non-convergence of the equilibrium equation,
which leads significant performance degradation. In the training log they provided 3, with = 0.98,
we can see that the loss suddenly jump to more than 2000 from around 0.019 and the accuracy
degrades from 0.96 to 0.39. This verifies again that a large contraction factor may cause instability
during the training, although EIGNN and IGNN use different ways for contraction.

2https://github.com/SwiftieH/IGNN/issues/3
3https://github.com/SwiftieH/IGNN/files/7052441/PPI_output_log.txt

16

Figure 4: Averaged accuracies on Chains dataset:
compare MGNNI to implicit and explicit GNNs.

Figure 5: Averaged accuracies on color-counting
dataset: compare MGNNI with explicit GNNs.

C More on Experiments

C.1 Synthetic experiments

Chains dataset The synthetic chain dataset is used in Gu et al. [13] and Liu et al. [20] to evaluate
the ability of models to capture distant information. Chain dataset contains several chains directed
from one end to the other with length l. The label information is only encoded as the node features in
the starting end node of each chain. The nodes on the same chains share the same class label. The
task is to classify nodes into different classes, which requires simply passing information from one
end to the other end of a chain graph. We consider binary classification, 20 chains for each class, and
l nodes in each chain. Then, the chain dataset has 40⇥ l nodes. We randomly split the dataset for
train/val/test as 5%/10%/85%.

In Figure 1 of Section 4, the starting end node is regarded as node p. We perturb the node features of
starting node p by masking the features to all zeros. After that, we measure the L2 norm of the change
in node q’s equilibrium as increasing the distance between node q and p to support our analysis.

Here, as in Liu et al. [20] and Gu et al. [13], we also provide the averaged results over 20 runs on
the Chains dataset for comparison between MGNNI and other representative baselines in Figure
4. As we can see, MGNNI with different scale combinations can all achieve 100% accuracy as
EIGNN, which indicates the superiority of capturing long-range dependencies. In contrast, IGNN
has decreasing accuracies as the chain length increases. CGS has similar performance with GAT,
which demonstrates the deficiency in capturing long-range information. We conjecture the reason is
that CGS uses a single layer attention variant of graph network (GN) [6] as the input transformation
which is a finite GNN as GAT. For simplicity, we omit more results of other explicit GNNs as those
results can provided by Liu et al. [20] in their Figure 1. Note that those explicit GNNs all generally
perform worse than IGNN and EIGNN.

More results on color-counting dataset Besides the comparison between MGNNI and other
implicit GNNs, we also compare MGNNI with explicit GNN models. Figure 5 shows that MGNNI
with different scales consistently outperform all explicit GNNs, which confirms that MGNNI as an
implicit GNN model has the better ability to capture long-range dependencies compared with explicit
GNNs. Explicit GNN models still can achieve more than 85% accuracy when the chain length is 10.
It is because that the test set are randomly sampled where some test nodes may be placed nearby the
starting end node. However, the performance of explicit GNNs drops quickly as the chain length
increases.

C.2 Node classification on real-world datasets

Dataset descriptions We first use 5 heterophilic graph datasets as in Pei et al. [23] to evaluate the
capability of capturing long-range dependencies:

• Chameleon and Squirrel: these graphs are originally collected by Rozemberczki et al. [25], using
the web pages in WikiPedia of the corresponding topic. Nodes represent web pages and edges are

17

hyper-links from a web page to another. The class labels are generated by Pei et al. [23]. There are
5 categories indicating the amount of the average monthly traffic of web pages.

• Cornell, Texas, and Wisconsin: these datasets contain the web-page graphs of the corresponding
universities. Label classes indicate the category of web pages, where 5 classes are considered, i.e.,
student, faculty, course, project, and staff. These three datasets are collected by the CMU WebKB
project 4. The preprocessed version generated by Pei et al. [23] is used in our experiments.

To evaluate the model capacity on multi-label multi-graph inductive setting, we conduct the ex-
periment on Protein-Protein Interaction (PPI) dataset. The dataset is originally collected from the
Molecular Signatures Database [26] by Hamilton et al. [14]. PPI dataset has 24 graphs, where each
graph represents a different human tissue. Each graph has nodes representing proteins and edges
indicating interactions between proteins. Each node can have maximum 121 labels which represents
gene ontology sets. We use the same data splits as in Hamilton et al. [14], i.e., 20 graphs for training,
two graphs for testing, and two other graphs used for validation.

Experimental settings For heterophilic graphs, we compare MGNNI with 3 implicit GNNs (i.e.,
IGNN [13], EIGNN [20], and CGS [21]) and 8 explicit GNNs (i.e., Geom-GCN [23], SGC [28],
GCN [17], GAT [27], APPNP [18], JKNet [30], GCNII [8], and H2GCN [34]). As we follow the
exact same setting as in [20], we reuse their results of baselines, except CGS. For CGS and MGNNI,
we conduct the experiments with 20 different runs and report the averaged accuracies with standard
deviation.

For network architectures used in MGNNI on heterophilic graphs, we use two-layer MLP followed by
the ReLU function as input features transformation f(·) and a linear map as the output transformation
function (i.e., fo(X) = WX). The hyperparameter search space is set as follows: multiscale set
M {{1,2}, {1,3}, {1,2,3}}, weight decay {5e-6, 5e-4}, learning rate {0.01, 0.05, 0.1, 0.5}. We use
� = 0.8 for all scale modules and 0.5 as the dropout rate. The Adam optimizer [16] is used for
optimization. For CGS, we use the suggested network architectures (i.e., a single layer attention
variant of graph network (GN) [6] and the same number of hidden neurons as in CGS paper [21]. For
other hyperparameter tuning, we optimize over learning rate {0.001, 0.005, 0.01, 0.05}, weight decay
{5e-6, 5e-4}, and � {0.5, 0.8}.

For PPI datasets, we use a 4-layer MLP directly after the multiscale propagation, while IGNN applies
4 MLPs between four consecutive IGNN layers. We set {1,2} as the multiple scales in our propagation
module, and use 0.001 as the learning rate. No dropout is used.

C.3 Graph classification on real-world datasets

Dataset descriptions We conduct experiments on 4 bioinformatics datasets (MUTAG, PTC, PRO-
TEINS, NCI1) and 2 social-network datasets (IMDB-Binary and IMDB-Multi), following identical
settings as in [31, 13]. MUTAG is a dataset having 188 graphs representing mutagenic aromatic and
heteroaromatic nitro compounds with 7 discrete labels. PTC is a dataset of 344 chemical compounds
reporting the carcinogenicity for male and female rats and it has 19 discrete labels. PROTEINS
is a dataset where nodes are secondary structure elements (SSEs) and an edge between two nodes
indicates they are neighbors in the amino-acid sequence or in 3D space. It has 3 discrete labels,
representing sheet, helix or turn. NCI1 is a subset of balanced datasets of chemical compounds
screened for ability to suppress or inhibit the growth of a panel of human tumor cell lines with 37
discrete labels and it is made publicly available by the National Cancer Institute (NCI).

IMDB-Binary and IMDB-Multi are social-network datasets, indicating movie collaborations. Each
graph contains a ego-graph for each actor/actress, where nodes represent actors/actresses and edges
connect two actors/actresses if they appear in the same movie. Labels are pre-specified genres of
movies and each graph has the label corresponding to its genre. The task requires models to classify
the genre.

Experimental settings We compare MGNNI with several representative baselines, including sev-
eral explicit GNNs: Graph Convolution Network (GCN) [17], Deep Graph Convolutional Neural
Network (DGCNN) [33], Fast and Deep Graph Neural Network (FDGNN) [10], and Graph Isomor-

4http://www.cs.cmu.edu/ webkb/

18

phism Network (GIN) [31], and two other implicit GNNs: Implicit Graph Neural Network (IGNN)
[13] and Convergent Graph Solver (CGS) [21].

Since we follow the same experimental settings as in [13, 31], we reuse the results of baselines
from [13, 21], except EIGNN [20]. For the network architectures used in MGNNI for graph
classification, we use three-layer MLP followed the ReLU function as input feature transformation
f(·). After the multiscale propagation with attention mechanism, we use the sum-pooling aggregator
to obtain the graph representations. A linear map is used as the output transformation function (i.e.,
fo(Xg) = WXg). We set the number of hidden state as 32, y = 0.8 for all scale modules. The
search space for the other hyperparameters is set as follows: multiscale set M {{1,2}, {1,3}}, weight
decay {0, 5e-6}, and learning rate {0.001, 0.01}. The Adam optimizer [16] is used for optimization.
For EIGNN, after their implicit layer, we use a 3-layer MLP with ReLU activation followed the
sum-pooling layer to obtain the graph representations. A 2-layer MLP is used for generating the final
predictions. � is set to 0.8 and other hyperparameters (learning rate and weight decay) are tuned over
the same search space.

C.4 Efficiency Comparison

Table 6: Training time per epoch on PPI.

Method Train Time Pre-process

IGNN 32.7s N.A.
EIGNN 2.3s 45s

MGNNI 2.6s N.A.

Here, we provide the efficiency comparison among IGNN,
EIGNN, and MGNNI on PPI dataset. Table 6 demonstrates
the training time per epoch and the total pre-processing
time of different models. We can see that IGNN re-
quires around 30s for training an epoch, while EIGNN
and MGNNI requires only around 2s for an epoch. The
reason of inefficiency in IGNN is that IGNN requires 4
implicit layers sequentially stacked, which means that ev-
ery iterative solver needs to wait the fixed-point solution
provided by the previous iterative solver for solving its
own solution. In contrast, MGNNI have parallel equilibrium layers with different scales, where each
equilibrium layer can get the fixed-point solution simultaneously. Thus, the training time per epoch
of MGNNI is similar with that of EIGNN which only has one implicit layer. Additionally, MGNNI
does not require pre-processing time to conduct eigendecomposition of the adjacency S as EIGNN
which may be costly for large graphs.

C.5 The effect of the attention mechanism
Table 7: Performance of different scales.

Scales PPI Chameleon Texas

(wo/ att) {1,2} 98.35 61.46 81.35
(w/ att) {1,2} 94.62 58.24 82.97

(wo/ att) {1,2} 98.67 63.93 83.24
(w/ att) {1,2} 98.74 63.75 84.86

To quantitatively investigate the effect of the atten-
tion mechanism in MGNNI, we conduct additional
experiments by removing the attention mechanism
and instead use average pooling for fusing informa-
tion from multiple scales. The experimental results
are provided in Table 7. We can see that, if we re-
place the attention mechanism with average pooling,
the performance would drop. It verifies the effec-
tiveness of our attention mechanism, which is also
demonstrated in Figure 3 and its corresponding explanations in Section 6.3.

19

