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Abstract

Bayesian optimization (BO) is a popular method for efficiently inferring optima of
an expensive black-box function via a sequence of queries. Existing information-
theoretic BO procedures aim to make queries that most reduce the uncertainty
about optima, where the uncertainty is captured by Shannon entropy. However,
an optimal measure of uncertainty would, ideally, factor in how we intend to use
the inferred quantity in some downstream procedure. In this paper, we instead
consider a generalization of Shannon entropy from work in statistical decision
theory [13, 39], which contains a broad class of uncertainty measures parameterized
by a problem-specific loss function corresponding to a downstream task. We first
show that special cases of this entropy lead to popular acquisition functions used in
BO procedures such as knowledge gradient, expected improvement, and entropy
search. We then show how alternative choices for the loss yield a flexible family
of acquisition functions that can be customized for use in novel optimization
settings. Additionally, we develop gradient-based methods to efficiently optimize
our proposed family of acquisition functions, and demonstrate strong empirical
performance on a diverse set of sequential decision making tasks, including variants
of top-k optimization, multi-level set estimation, and sequence search2.

1 Introduction

Bayesian optimization (BO) is a popular method for efficient global optimization of an expensive
black-box function, which leverages a probabilistic model to judiciously choose a sequence of
function queries. In BO, there are a few key paradigms that motivate existing methodologies. One
paradigm is decision-theoretic BO, which includes methods such as knowledge gradient [16] and
expected improvement [33, 25]. At each iteration of BO, these methods aim to make a query that
maximally increases the expected value, under the posterior, of a final estimate of the optima (some-
times referred to as a terminal action). Another common paradigm is based on maximal uncertainty
reduction and includes information-based BO methods such as the family of entropy search methods
[22, 24, 47, 35]. At each iteration of BO, these methods aim to make a query that most reduces the
uncertainty, under the posterior, about a quantity of interest (such as the location of the optima).

In the uncertainty-reduction paradigm, the information-based methods have predominantly used
Shannon entropy as the measure of uncertainty. While Shannon entropy is one measure of uncertainty
that we could aim to reduce at each iteration of BO, it is not the only measure, and it is not necessarily
the most ideal measure for every optimization task. For instance, an optimal uncertainty function
would, ideally, factor in how we intend to use the final uncertainty about an inferred quantity in some
downstream procedure.

⇤The first two authors contributed equally to this work.
2For additional details, see the project website: https://willieneis.github.io/hes-website
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In this paper, we develop a framework that aims to first unify and then extend these two paradigms.
Specifically, we adopt a generalized definition of entropy from past work in Bayesian decision
theory [13, 39, 21], which proposes a family of decision-theoretic entropies parameterized by a
problem-specific loss function and action set. This family includes Shannon entropy as a special case.
Using this generalized entropy, we can view information-based BO methods as instances of decision-
theoretic BO, with a terminal action chosen from a different type of action set. Similarly, this frame-
work also includes as special cases the decision-theoretic methods such as expected improvement and
knowledge gradient, which yields an uncertainty-reduction view of these methods. Beyond this uni-
fied view, our framework can be easily adapted to novel problem settings by choosing an appropriate
loss and action set tailored to a given downstream use case. This allows for handling new optimization
scenarios that have not previously been studied and where no BO procedure currently exists.

As an example, there are many real-world problems where we want to estimate a set of optimal points,
rather than a single global optimum. Use cases include when we wish to find a set of highest-value
points subject to some constraints on the similarity between these points (e.g. to produce a diverse
set of candidates in drug or materials design [38, 44, 45]), or points which satisfy some sequential
relation (e.g. to construct a library of molecules that attains a sequence of desired measurements [15]).
Further, we may wish to estimate other properties of a black-box function, such as certain curves,
surfaces, or subsets of the domain [54, 28, 40]. Due to the vast number of possibilities, most custom
problem settings have not been explicitly studied in the literature. A key advantage of our framework
is that it provides a way to approach these problems where no suitable methods have been developed.

Additionally, since we define this family of generalized entropies in a standardized way, we can
develop a common acquisition optimization procedure, which applies generically to many members
of this family (where each member is induced by a specific loss function and action set). In particular,
we develop a fully differentiable acquisition optimization method inspired by recent work on one-shot
knowledge gradient procedures [4]. This yields an effective and computationally efficient algorithm
for many optimization and sequential decision making tasks, as long as the problem-specific loss
function is differentiable. In summary, our main contributions are the following:

• We propose an acquisition function based on a family of decision-theoretic entropies parame-
terized by a loss function ` and action set A. Under certain choices of ` and A, we can view
multiple BO acquisition functions in a single decision-theoretic perspective, which sheds light
on the settings for which each is best suited.

• By selecting a suitable ` and A, we can produce a problem-specific acquisition function, which
is tailored to a given downstream use case. This yields a customizable BO method that can be
applied to new optimization problems and other sequential decision making tasks, where no
applicable methods currently exist.

• We develop an acquisition optimization procedure that applies generically to many instance of
our framework. This procedure is computationally efficient, using a gradient-based approach.

• We demonstrate that our method shows strong empirical performance on a diverse set of tasks
including top-k optimization with diversity, multi-level set estimation, and sequence search.

2 Setup

Let f : X ! Y ⇢ R denote an expensive black-box function that maps from an input search space
X to an output space Y , and f 2 F . We assume that we can evaluate f at an input x 2 X , and will
observe a noisy function value yx = f(x) + ✏, where ✏ ⇠ N (0, ⌘

2
).

We also assume that our uncertainty about f is captured by a probabilistic model with prior distribution
p(f), which reflects our prior beliefs about f . Given a dataset of observed function evaluations
Dt = {(xi, yxi)}t�1

i=1 , our model gives a posterior distribution over F , denoted by p(f |Dt).

Suppose that, after a given BO procedure is complete, we intend to choose a terminal action a from
some set of actions A, and then incur a loss based on both this action a and the function f . We denote
this loss as ` : F ⇥ A ! R. As one example, after the BO procedure, suppose we make a single
guess for the function maximizer, and then incur a loss based on the value of the function at this
guess. In this case, the action set is A = X and the loss is `(f , a) = �f(a).
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3 Decision-theoretic Entropy Search

In this section, we first describe a family of decision-theoretic entropies from past work in Bayesian
decision theory [13, 39, 21], which are parameterized by a problem-specific action set A and loss
function `. This family includes Shannon entropy as a special case. We denote this family using
the symbol H`,A, and refer to it as the H`,A-entropy.

Definition 3.1. (H`,A-entropy of f ). Given a prior distribution p(f) on functions, and a dataset D of
observed function evaluations, the posterior H`,A-entropy with loss ` and action set A is defined as

H`,A [f | D] = inf
a2A

Ep(f |D) [`(f, a)] . (1)

Intuitively, after expending our budget of function queries, suppose that we must make a terminal
action a

⇤ 2 A, where this action incurs a loss `(f, a
⇤
) defined by the loss ` and function f . Given

a posterior p(f |D) that describes our belief about f after observing D, we take the terminal
action a

⇤ to be the Bayes action, i.e. the action that minimizes the posterior expected loss,
a
⇤

= arg infa2A Ep(f |D) [`(f, a)]. The H`,A-entropy can then be viewed as the posterior expected
loss of the Bayes action. We next describe how this generalizes Shannon entropy, and why it is a
reasonable definition for an uncertainty measure.

Example: Shannon entropy Let P(F) denote a set of probability distributions on a function
space F , which we assume contains the posterior distribution p(f | D) 2 P(F). Suppose, for the
H`,A-entropy, that we let the action set A = P(F), and loss function `(f, a) = � log a(f), for
a 2 P(F). Unlike the previous examples, note that the action set is now a set of distributions.

Then, the Bayes action will be a
⇤

= p(f | D) (this can be shown by writing out the definition of the
Bayes action as a cross entropy, see Appendix A.1), and thus

H`,A[f | D] = Ep(f |D) [� log a
⇤
(f)] = H[f | D], (2)

where H[f | D] = �
R

p(f | D) log p(f | D) is the Shannon differential entropy. Thus, the
H`,A-entropy using the above (`, A) is equal to the Shannon differential entropy.

Note that we have focused here on the Shannon entropy of the posterior over functions p(f | D). In
Section 4 we show how this example can be extended to the Shannon entropy of the posterior over
properties of f , such as the location (or values) of optima, which will provide a direct equivalence to
entropy search methods in BO.

Why is this a reasonable measure of uncertainty? The H`,A-entropy has been interpreted as
a measurement of uncertainty in the literature because it satisfies a few intuitive properties. First,
similar to Shannon differential entropy, the H`,A-entropy is a concave uncertainty measure [13, 21].
Intuitively, if we have two distributions p1 and p2, and flip a coin to sample from p1 or p2, then we
should have less uncertainty if we were told the outcome of the coin flip than if we weren’t. In other
words, the average uncertainty of p1 and p2 (i.e. coin flip outcome known) should be less than the
uncertainty of 0.5p1 +0.5p2 (coin flip outcome unknown). Since H`,A is concave, it has this property.
As a consequence—also similar to Shannon differential entropy—the H`,A-entropy of the posterior
is less than the H`,A-entropy of the prior, in expectation. Intuitively, whenever we make additional
observations (i.e. gain more information), the posterior entropy is expected to decrease.

Acquisition function We propose a family of acquisition functions for BO based on the H`,A-
entropy, which are similar in structure to information-theoretic acquisition functions in the entropy
search family. Like these, our acquisition function selects the query xt 2 X that maximally reduces
the uncertainty, as characterized by the H`,A-entropy, in expectation. We refer to this quantity as the
expected H`,A-information gain (EHIG).

Definition 3.2. (Expected H`,A-information gain). Given a prior p(f) on functions and a dataset
of observed function evaluations Dt, the expected H`,A-information gain (EHIG), with loss ` and
action set A, is defined as

EHIGt(x; `, A) = H`,A [f | Dt]� Ep(yx|Dt) [H`,A [f | Dt [ {(x, yx)}]] . (3)

There are multiple benefits to developing this acquisition function. Though similar in form to entropy
search acquisition functions, the EHIG yields (based on the definition of H`,A) the one-step Bayes
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optimal query for the associated decision problem specified by the given loss ` and action set A. We
prove in Section 4 that the EHIG casts both uncertainty-reduction and decision-theoretic acquisition
functions under a common umbrella, using different choices of ` and A; this standardization provides
guidance on which acquisition function is optimal for a given use case, based on details of the
associated terminal action. More interestingly, in Section 5 we show how the EHIG allows us to
derive problem-specific acquisition functions tailored to novel optimization and sequential decision
making tasks. And importantly, since we frame acquisition optimization of this family in a common
way—as a bilevel optimization problem over the sample space and action space—we can develop a
single acquisition optimization method that can generically apply to many custom tasks (Section 6).

In Algorithm 1, we present H`,A-ENTROPY SEARCH, our full Bayesian optimization procedure using
the EHIG acquisition function. This procedure takes as input a loss `, action set A, and prior model
p(f). At each iteration, the procedure optimizes EHIGt(x; `, A) to select a design xt 2 X to query,
and then evaluates the black-box function on this design to observe an outcome yxt ⇠ f(xt) + ✏.
In Section 6 we describe methods for optimizing the EHIG acquisition function via gradient-based
procedures, which provide a computationally efficient algorithm for many A and `.

Algorithm 1 H`,A-ENTROPY SEARCH

Input: initial dataset D1, prior p(f), action set A, loss `.
1: for t = 1, . . . , T do

2: xt  arg maxx2X EHIGt(x; `, A) . Optimize the EHIG acquisition function
3: yxt ⇠ f(xt) + ✏ . Evaluate the function f at xt

4: Dt+1  Dt [ {(xt, yxt)} . Update the dataset
Output: distribution p(f | DT+1)

4 A Unified View of Information-based and Decision-theoretic Acquisitions

In this section, we aim to show how acquisition functions commonly used in BO are special cases
of the proposed EHIG family, for particular choices of ` and A. This will allow us to view each
acquisition function (including information-based ones) from the perspective of a common decision
problem: after the BO procedure is complete, we choose a terminal action from action set A and
then incur a loss defined by `. Each acquisition function can be viewed as reducing the posterior
uncertainty over f in a way that yields a terminal action with lowest expected loss.

This unified view provides two main benefits. First, it sheds light on the particular scenarios in which
one of the existing acquisition functions is optimal over the others (which we focus on in this section).
Second, it shows how using the EHIG with other choices for ` and A provides new acquisition
functions for a broader set of optimization scenarios and related tasks (which is the focus of Section 5).

Information-based acquisition functions We state the family of entropy search acquisitions func-
tion in a general way that includes the entropy search (ES) [22], predictive entropy search (PES) [24],
and max-value entropy search (MES) [47] algorithms. Let ✓f 2 ⇥ denote a property of f we would
like to infer. For example, we could set ✓f = arg maxx2X f(x) = x

⇤ 2 X , i.e. the location of the
global maximizer of f , or ✓f = maxx2X f(x) 2 R, i.e. the maximum value achieved by f in X .
This family of entropy search acquisition function can then be written as:

ESt(x) = H [✓f |Dt]� Ep(yx|Dt) [H [✓f |Dt [ {(x, yx)}]] .

We can view this acquisition function as a special case of the EHIG in the following way. Suppose,
after the BO procedure is complete, we choose a distribution q from a set of distributions P(⇥) and
then incur a loss equal to the negative log-likelihood of q for the true value of ✓f . In this case, we
view the action set as A = P(⇥) and the loss function as `(f, a) = � log a(✓f ), where a 2 A. To
visualize this, in the case where ✓f = x

⇤, see Figure 1 (left), which shows the terminal action (gold
density function) and corresponding loss (horizontal dashed line).

Under this choice, the H`,A-entropy of f will be equal to the Shannon entropy of ✓f , and thus the
EHIGt will be equal to ESt. We formalize this in the following proposition.

Proposition 1. If we choose A = P(⇥) and `(f, q) = � log q(✓f ), then the EHIG is equivalent to
the entropy search acquisition function, i.e. EHIGt(x; `, A) = ESt(x).
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a� x�

a�(x�)

Action set: A = P(X )
Loss: �(f, a) = � log a(x�), a 2 A

X

Entropy Search

a�

f(a�)

Action set: A = X
Loss: �(f, a) = �f(a), for a 2 A

X

Knowledge Gradient

a�

f(a�)

Action set: A = {xt}T

t=1

Loss: �(f, a) = �f(a), for a 2 A

X

Expected Improvement

a�
1

a�
2

f(a�
1)

f(a�
2)

Action set: A = X ⇥ X
Loss: �(f, a) = � max(f(a1), f(a2))

X

k-Guesses

Figure 1: Example acquisition functions, and their corresponding Bayes actions a
⇤ visualized. For each, we

write the associated action set A and loss function ` below the plot. In each plot, the true function is a solid
black line, the posterior mean is a red dashed line, the observed data are black dots, and the Bayes action is
shown in gold. See Section 4 for further discussion.

Proof of Proposition 1. See Appendix A.1.

Decision-theoretic acquisition functions We next describe how the EHIG generalizes decision-
theoretic acquisition functions such as knowledge gradient (KG) and expected improvement (EI).
Since these acquisition functions are often motivated from a perspective of a terminal decision, it is
straightforward to show how they are a special case of the EHIG. However, the choice of A and `

here is insightful to review before extending EHIG to other scenarios.

First, the KG acquisition function can be written

KGt(x) = Ep(yx|Dt)

⇥
µ
⇤
t+1(x, yx)

⇤
� µ

⇤
t ,

where µ
⇤
t = supx02X Ep(f |Dt) [f(x

0
)] is the max value of the posterior mean of f given data Dt, and

µ
⇤
t+1(x, yx) = supx02X Ep(f |Dt[{(x,yx)}) [f(x

0
)] is the max value of the posterior mean, given both

data Dt and observation (x, yx). Second, the EI acquisition function can be written

EIt(x) = Ep(yx|Dt) [max(yx � f
⇤
t , 0)] ,

where f
⇤
t = max{f̂(xi)}t�1

i=1 , for xi 2 Dt and f̂(xi) is the posterior expected value of f at xi. This
definition is equal to the standard formulation of EI in the noiseless setting (i.e. when yx = f(x) for
queried x) and the plug-in formulation of EI in the noisy setting, when yx = f(x) + ✏ [37, 6].

To view these decision-theoretic acquisition functions as special cases of the EHIG, suppose that after
BO is complete, we aim to make a single guess x

⇤ 2 A for the maximizer of f , and then incur a loss
equal to the value of the function at x

⇤, i.e. `(f, x
⇤
) = �f(x

⇤
). For KG, we let A = X , in which

case the Bayes action a
⇤ is the maximizer of the posterior mean, and for EI, we let A = {xi}t�1

i=1 , in
which case a

⇤ is the best queried point. We visualize these as gold vertical lines in Figure 1 (center
panels). In Appendix A, we prove this equivalence with EHIGt, for KGt and EIt. Additionally, in
Appendix A.4 we discuss connections to the probability of improvement (PI) acquisition function.

We thus see two key differences here, in comparison with information-based BO: (i) the terminal
action a

⇤ is a point estimate of the optimizer x
⇤ rather than a distribution over X , and (ii) the loss

does not depend on the particular value of the true optima x
⇤ (nor on how accurately a

⇤ provides an
estimate of x

⇤), but rather only depends on the function value of the terminal action, f(a
⇤
).

5 A Framework to Derive New Acquisition Functions for Custom Tasks

There are many real-world problems that go beyond simple black-box optimization, which have
not been explicitly studied in the literature, and for which there does not exist a suitable acquisition
function. For these use cases, we can define an action set and loss based on details of the problem,
and use the EHIG to provide a corresponding problem-specific acquisiton function. As examples
of this, below we apply the EHIG to a number of relevant problems where, as far as we are aware,
no corresponding acquisition function has been developed by prior work.
Illustrative example: k-guesses As a simple example to illustrate our framework, suppose, after
optimization is complete, we are allowed to make a batch of k guesses for the function maximizer x

⇤,
and then recieve a final reward based on the best guess. This setup appears in cases where, after BO
is complete, we can make a batch of final designs (e.g. synthesize a final set of materials [44] or train
a final set of models [49, 41]), and only care about the single best design of the batch. We can thus
view the action set as A = X k, and loss as `(f, a) = �max (f(a1), . . . , f(ak)).
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Figure 1 (far right) provides a visualization of this for k = 2. In this scenario, one of the Bayes
actions (a⇤

2) is near the maximizer of the posterior mean (similar to KG), while the other (a⇤
1) is

separated from the first. Intuitively, to minimize the expected loss, the second guess should have both
a high posterior mean, and also a low correlation to the first guess—the first guess has a better chance
of a low loss, but in cases where it fails, we want the second guess to not fail (i.e. not match the first
guess), while also achieving a low loss. In practice, this yields an EHIG acquisition function that has
a similar but distinct exploration strategy from KG. It spends a small portion of the budget on queries
that give some information about not just the first guess, but the other k-1 guesses as well.

Top-k optimization with diversity Instead of a single optimal point in X , there are applications
where we wish to estimate a set of top-k optima, i.e. the subset of X of size k that has the highest sum
of values under f . Examples of this can be found in materials discovery [30, 44], sensor networks
[2, 18], and medicine [51]. Note that the goal of this problem is distinct from the k-guesses example
described above. When X is continuous, to avoid redundant solutions, we may wish to carry out the
task of top-k optimization with diversity, which aims to find the top-k optima such that d(xi, xj) � c,
8i, j 2 {1, . . . , k}, for a problem-specific distance d. As one example of our EHIG framework,
suppose that we choose A = X k (where a = (a1, . . . , ak) 2 A denotes a set of top-k points) and
incur the loss

`(f, a) = �
X

i

f(ai)�
X

1i<jk

d(ai, aj). (4)

Note that we can select the distance function d here to match the problem-specific constraint.
Intuitively speaking, this choice of (`, A) yields an EHIG acquisition function that makes a sequence
of queries which rotate focus between multiple diverse optimal points in the domain.

Multi-level set estimation The goal of level set estimation (LSE) is to estimate a subset of the
design space X , where function values are larger than a given threshold c, Sc = {x 2 X : f(x) > c}.
This task appears in a number of applications, including catalyst design [54], interactive learning [5],
and environmental monitoring [40]. While many prior works have studied standard LSE, here we
consider the task of multi-level set estimation (MLSE), where we are given m thresholds satisfying
c1 < . . . < cm and want to estimate m + 1 sets: Si = {x 2 X : ci < f(x) < ci+1} for
i = {0, . . . , m} (where c0 := �1 and cm+1 := +1). This is useful in the above applications when
we have more than one threshold of interest—for example, public health policy makers must estimate
regions where disease prevalence exceeds 1%, 2%, etc., for graded reopening decisions [36, 52].

As one approach to MLSE using the EHIG, we focus on settings with a discrete set of design points
X0 ⇢ X , |X0| = J [19, 26]. Suppose, after querying is complete, we must choose a set of values
a 2 A = [0, 1]

J⇥m (one for each x 2 X0 and i 2 {0, . . . , m}), which represent level set identity
variables. Suppose we then incur a loss with the following form, that depends on these identity
variables a, as well as on a flexible relation r(f(x), ci) between function values f(x) and thresholds
ci, i.e.

`(f, a(x)) = �
mX

i=1

X

x2X0

ai(x)r(f(x), ci). (5)

For instance, if r(f(x), ci) = f(x) � ci, then the optimal ai(x) should specify the ci-super level
set for each i 2 {1, . . . , m}, i.e. ai(x) = 1 for each x 2 X0 with f(x) > ci and ai(x) = 0

otherwise. This example loss yields an acquisition function that, empirically, focuses samples around
the boundaries of multiple level sets of a black-box function simultaneously.

Sequence search We define sequence search as the task of estimating a sequence of inputs
(x1, . . . , xm) 2 Xm with outputs values matching a set of problem-specific criteria. For exam-
ple, we may wish to estimate a sequence of inputs corresponding to a predefined set of function
values (y

~
1 , . . . , y

~
m). This finds applications in materials science, such as in the task of synthesizing

a nanoparticle library [15] (i.e. finding a set of input conditions that yield a set of nanoparticles of
different pre-defined sizes). As another example, in the context of public health, we may be interested
in a set of locations where vaccination rates equal some pre-specified values (e.g. (20%, . . . , 80%))
when making decisions involving vaccine allocations, as we describe in Section 7. As an example of
these applications in our EHIG framework, we might have the action set A = Xm and loss
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`(f,a) =

mX

i=1

(f(am)� y
~
m)

2
. (6)

These examples all aim to show that the EHIG can be used to define a problem-specific acquisition
function, which can be tailored to the details of a particular use case. As a result, when used in
Algorithm 1, we gain a customizable optimization framework that can be applied to a variety of novel
problem settings with special-purpose losses.

6 Gradient-based Acquisition Optimization

At each iteration of H`,A-ENTROPY SEARCH (Algorithm 1), we optimize the acquisition function to
select the next query xt = arg maxx2X EHIGt(x; `, A). Classically, zeroth order optimization routin-
ues have been used for acquisition optimization in BO. However, recent work has developed gradient-
based methods for optimizing certain acquisition functions [48, 4], which can allow for efficient acqui-
sition optimization over X . We work on similar methodology here—namely, we develop a gradient-
based acquisition optimization procedure for appropriate settings (i.e. assuming continuous X and A,
and certain conditions on `). We can, for example, apply this gradient-based optimization to each of
the acquisition functions described in Section 5, for which we show experimental results in Section 7.

Similar to related work [48, 4], we give the following derivation with a focus on Gaussian process
(GP) models, though the methodology can be extended to other models in which we can apply the
reparameterization procedure described below to differentiate through posterior model parameters.

Differentiable loss function We first describe a few assumptions that must be satisfied to carry
out the gradient-based optimization procedure. Denote the posterior expected loss given D by
L(D, a) := Ep(f |D) [`(f, a)]. We assume that this loss function depends only on the function
value of f at a finite number of points, i.e. there exists functions x1(a), · · · , xK(a), and a function
`
0
: RK ⇥A! R, for K 2 N, such that

`(f, a) = `
0
(f(x1(a)), f(x2(a)), · · · , f(xK(a)), a). (7)

This requirement is satisfied by the loss functions in Section 5. For brevity, denote the sequence
x1(a), · · · , xK(a) by x1:K(a) and f(x1(a)), · · · , f(xK(a)) by f(x1:K(a)). We assume that the func-
tions xk and `

0 are differentiable with respect to all arguments. Given a dataset D and GP prior, the
posterior distribution of f(xK(a)) is also Gaussian. In particular, there exist functions

µ : x1:K(a)⇥D 7! RK and U : x1:K(a) ⇥D 7! RK⇥K

such that f(x1:K(a)) = µ(x1:K(a); D) + U(x1:K(a); D)✏ where ✏ is drawn from a K-dimensional
standard normal distribution. We can combine the above results to get

L(D, a) = E✏ [`
0
(µ(x1:K(a); D) + U(x1:K(a); D)✏, a)] .

A key property is that we can compute unbiased gradients of this with respect to both D and a, as
rL(D, a) = E✏ [r`

0
(µ(x1:K(a); D) + U(x1:K(a); D)✏, a)] .

Differentiable acquisition function For a given input x 2 X , let y(x, D) denote the posterior
predictive distribution of our model. Note that there exists a deterministic function ȳ(x, D, �) such
that y(x, D) = ȳ(x, D, �), where � is drawn from a standard normal distribution. Hence, if ` satisfies
Eq. (7), then we can optimize EHIGt with gradient descent. In particular, we can write

inf
x2X
�EHIGt(x; `, A) = inf

x2X
inf

a:� 7!A
E�,✏[`

0
(µ̂(x, a(�)) + Û(x, a(�))✏, a(�))] (8)

where in Eq. (8), to avoid clutter, we use the shorthand µ̂(x, a(�)) := µ(x1:K(a(�)); D[ ȳ(x, D, �)),
and Û(x, a(�)) := U(x1:K(a(�)); D [ ȳ(x, D, �)). Importantly, we can compute the unbiased gradi-
ent of the quantity E�,✏[`

0
(µ̂(x, a(�)) + Û(x, a(�))✏, a(�))]. In practice, we can also take gradients

of a Monte Carlo estimate of Eq. (8) [4], by fixing samples of �, ✏ throughout the optimization.
Specifically, we can sample �1, · · · , �M and ✏1, · · · , ✏N and approximate Eq. (8) via

inf
x2X
�EHIGt(x; `, A) ⇡ inf

x2X
inf

a1,...,aM

1

NM

X

m,n

`
0
(µ̂(x, am) + Û(x, am)✏n, am), (9)

where we use am = a(�m) for brevity. Under the assumptions above, we can compute the unbiased
gradient of this quantity, and by using systems such as GPyTorch [17] and BoTorch [4] we can
compute this gradient efficiently via automatic differentiation.
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Figure 2: Top-k optimization with diversity. Top row: Plots of the negative loss �`(f , a⇤) versus iteration
for all methods, on the Alpine-3, Alpine-5 and Vaccination functions, where error bars represent one standard
error. Bottom row: Visualization of methods in two dimensions, showing the set of ground-truth top-5 diverse
design points (blue squares), queries Dt taken (black dots), acquisition function optimizer (pink dot), and the
estimated set of top-5 diverse design points (gold stars).

7 Experiments

We evaluate our proposed method on the example tasks described in Section 5: top-k optimization
with diversity, multi-level set estimation, and sequence search. For these applications, we show
comparisons against a set of baselines on real and synthetic black-box functions.

Comparison methods. In our experiments, we compare the following set of acquisition strategies:

• H`,A-ENTROPY SEARCH (HES). We follow Algorithm 1, using the loss and action set for each
task as described in Section 5, and the gradient-based procedure outlined in Section 6.

• RANDOM SEARCH (RS). At each iteration, we draw a sample xt uniformly at random from X .
• UNCERTAINTY SAMPLING (US). At each iteration, we select the point that maximizes the

posterior predictive variance, i.e. xt = arg maxx2X Var[p(yx | Dt)].
• KNOWLEDGE GRADIENT (KG). We show KG as a representative method for standard BO. KG

allows us to carry out a similar gradient-based procedure as in HES.
• PROBABILITY OF MISCLASSIFICATION (POM). This is a common acquisition function for level

set estimation [7]. We predict whether a point is above a threshold, represented by a binary variable
z, and select the design with maximal label uncertainty xt = arg minx2X maxz2{0,1} p(z|x).

Note that we are restricted to comparing against relatively general-purpose baseline methods, as
more-specific acquisition functions have not previously been developed for the tasks below.

Top-k Optimization with Diversity In our first task, the goal is to find a set of k diverse elements
in X , each with a high value of f . To assess each method, at each iteration we record the negative
loss �`(f , a⇤

) using Eq. (4)—i.e. the negative top-k with diversity loss of the Bayes action a
⇤

=

arg infa2A Ep(f |Dt) [`(f, a)] on the true function f—using the set of queries Dt produced by the
given method. Intuitively, if a method makes a set of queries that yield a good estimate of diverse
top-k elements, it will score a high value under this metric.

In Figure 2 (bottom row) we visualize results on the multimodal Alpine-d benchmark function (see
appendix for details). Here, we can see that HES concentrates queries over five local optima of this
function, while KG allocates a majority of samples on only the highest peak, and both US and RS
distribute their queries over the full domain X . In Figure 2 (top row), we compare performance by
plotting the negative loss versus iteration on two higher dimensional examples. We also compare
each method on the Vaccination function (provided by [53]), which returns the vaccination rate for
locations in the continential United States, given an input (latitude, longitude). The goal of this task
is to efficiently find a set of five diverse locations with highest vaccination rates. We show results in
Figure 2 (top row, right), and see a similar advantage of HES over comparison methods.
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Figure 3: Multi-level set estimation. Top row: Plots of accuracy versus iteration for all methods, where error
bars represent one standard error. Bottom row: Visualization of methods on the Multihills function, showing the
ground-truth level set boundaries (red and blue dashed lines) and queries Dt taken (black dots).

Multi-level Set Estimation In our second task, the goal is to carry out multi-level set estima-
tion. Here, we can assess each method using a more conventional metric: we produce an estimate
of the level for every x 2 X0, using the model’s posterior mean (given the queries selected by
a particular method), and then record the accuracy of this estimate averaged across all level set
thresholds. Intuitively, a method will achieve a higher accuracy if it chooses queries that yield a
better estimate of the function near the threshold boundaries of the level sets. In Figure 3 (bottom

row), we visualize results for a two-level set task on the Multihills function, defined as a mix-
ture density (details given in appendix). We see that HES concentrates queries along both of the
boundaries, which are drawn as blue and red dashed lines. In the top row, we compare the per-
formance of all methods, showing the accuracy vs. iteration. Here, the Pennsylvania Night Light

function [1] released by NASA (additional details in the appendix), returns the relative level of
light at a location in Pennsylvania, as queried by a satellite image. The goal of this experiment
is to determine the portion of land at which night light is above a specified threshold value. In
Appendix B, we show additional experiments, including a visualization of results on this function.
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Figure 4: Sequence search. Left: Negative loss
versus iteration, where error bars represent one stan-
dard error. Right: Visualization of the Vaccination

function, along with the queries Dt taken by HES
(black dots), and the estimated sequence (x~

1 , . . . , x
~
5 )

(red diamonds), such that (f(x~
1 ), . . . , f(x

~
5 )) =

(30%, 40%, 50%, 60%, 70%).

Sequence Search In our third task, the goal
is to find a sequence of elements whose value
under the black-box function matches a set of
pre-specified function values (y

~
1 , . . . , y

~
m). To

assess each method, at each iteration we record
the negative loss �`(f , a⇤

) from Eq. (6)—i.e.
the negative sequence search loss of the Bayes
action a

⇤
= arg infa2A Ep(f |Dt) [`(f, a)]—

using the set of queries Dt produced by
the given method. Intuitively, if a method
makes a set of queries that yield a good esti-
mate of a sequence of (x

~
1 , . . . , x

~
m) such that

(f(x~
1 ), . . . , f(x~

m)) ⇡ (y
~
1 , . . . , y

~
m), it will

score a high value on this metric.

In Figure 4 (right) we visualize results on the Vaccination function (described above). Here, our
goal is to find a sequence of five (latitude, longitude) coordinates with vaccination rates equal to
(y

~
1 , . . . , y

~
m) = (30%, 40%, 50%, 60%, 70%). Estimates of locations that match these function

values can be useful when making policy decisions involving a vaccine response or allocation. In this
case, we see that HES concentrates queries along a route from the relatively highly vaccinated region
in the East to the relatively lowly vaccinated region in the North. The left plots in Figure 4 provides a
quantitive comparison of methods on the Vaccination function (results on additional functions are
shown in the appendix), plotting the negative loss vs. iteration. These again show the benefits of
query selection performed by HES relative to the comparison strategies.
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8 Conclusion

In this paper, we take a decision making perspective on information-based acquisition functions: after
querying is complete, we assume that we must make some decision a

⇤ and then incur a loss `(f , a⇤
).

Our goal is thus to make a sequence of queries that reduce the uncertainty of the posterior distribution
p(f | Dt) in a way to best help make this decision with low loss. Using H`,A-entropy [13, 39], we
can define an EHIG acquisition function which carries this out directly: it selects a point that is
expected to maximally reduce the posterior expected loss of the Bayes action a

⇤. We incorporate this
acquisition function into a procedure called H`,A-ENTROPY SEARCH, and show, in many cases, that
we can perform efficient gradient-based optimization of this acquisition function.

There are multiple interesting avenues for future work. First, we hope to develop acquisition
optimization methods for additional settings, such as for non-continuous action sets A or design spaces
X [12], and for functions with multidimensional outputs [23, 11]. One interesting avenue is hybrid
optimization settings, where we can only take gradient steps with respect to either the design or action
variables. Another potential direction is to incorporate cost-aware Bayesian optimization techniques
into the EHIG framework [29, 50, 3]. We also wish to study how the proposed EHIG framework
could be applied in practice to solve various problems in the sciences, including experimental physics
[14, 32, 8], drug discovery [43, 27, 20], and materials design [31, 46]. Finally, we wish to study in
further detail how the EHIG acquisition function could be implemented for Bayesian decision making
with other probabilistic models beyond Gaussian processes [42, 10, 9, 34].
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