
A Fourier Approach to Mixture Learning

Mingda Qiao
⇤

Stanford University
mqiao@stanford.edu

Guru Guruganesh

Google Research
gurug@google.com

Ankit Singh Rawat

Google Research
ankitsrawat@google.com

Avinava Dubey

Google Research
avinavadubey@google.com

Manzil Zaheer

Google DeepMind
manzilzaheer@google.com

Abstract

We revisit the problem of learning mixtures of spherical Gaussians. Given
samples from mixture 1

k

P
k

j=1 N (µj , Id), the goal is to estimate the means
µ1, µ2, . . . , µk 2 Rd up to a small error. The hardness of this learning problem can
be measured by the separation � defined as the minimum distance between all pairs
of means. Regev and Vijayaraghavan [2017] showed that with � = ⌦(

p
log k)

separation, the means can be learned using poly(k, d) samples, whereas super-
polynomially many samples are required if � = o(

p
log k) and d = ⌦(log k).

This leaves open the low-dimensional regime where d = o(log k).
In this work, we give an algorithm that efficiently learns the means in d =
O(log k/ log log k) dimensions under separation d/

p
log k (modulo doubly loga-

rithmic factors). This separation is strictly smaller than
p
log k, and is also shown

to be necessary. Along with the results of Regev and Vijayaraghavan [2017], our
work almost pins down the critical separation threshold at which efficient parameter
learning becomes possible for spherical Gaussian mixtures. More generally, our
algorithm runs in time poly(k) · f(d,�, ✏), and is thus fixed-parameter tractable
in parameters d, � and ✏.
Our approach is based on estimating the Fourier transform of the mixture at
carefully chosen frequencies, and both the algorithm and its analysis are simple
and elementary. Our positive results can be easily extended to learning mixtures of
non-Gaussian distributions, under a mild condition on the Fourier spectrum of the
distribution.

1 Introduction

Gaussian mixture models (GMMs) are one of the most well studied models for a population with
different components. A GMM defines a distribution over the d-dimensional Euclidean space as
the weighted sum of normal distributions

P
k

i=1 wi · N (µi,⌃i), which are specified by following
quantities: the number of components k 2 N, the component means µi 2 Rd, the component
covariances ⌃i 2 Rd⇥d, which are positive definite matrices, and the weights wi � 0 that sum up to
1. In this work, we consider the uniform spherical case, where the weights wi are uniform wi =

1
k

and the covariance matrix ⌃i = Id is the identity matrix. The central problem in this setup is to
efficiently estimate the means µ1, . . . , µk. To avoid degenerate cases such as when some of the means
are the same, it is common to parameterize the problem by the separation of the means �, which
guarantees that kµi � µjk2 � � for all i 6= j.

⇤Part of this work was done while working as an intern at Google Research.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

More precisely, the problem is to estimate the means µ1, . . . , µk 2 Rd up to an error ✏ with runtime
that is poly(k, 1

✏
, d) with as small a separation � as possible. There has been a long line of work on

this problem which we survey in Section 1.3.

Recently, Regev and Vijayaraghavan [2017] showed that a separation � = ⌦(
p
log k) is strictly

necessary when the dimension d = ⌦(log k). Two natural questions arise immediately. First, if � =p
log k is sufficient when d = ⌦(log k). Although the original work of Regev and Vijayaraghavan

[2017] showed that it was information theoretically possible, an actual efficient algorithm was only
recently developed by Liu and Li [2022] (who show nearly tight results). The second main question
is determining the optimal separation in low dimensions when d = o(log k). Previously, even in O(1)
dimensions, the exact separation necessary was unknown. In this paper, we settle the second question
and give nearly optimal bounds on the separation necessary in low dimensions (see Figure 1 for more
details).

1.1 Overview of Results

We begin with a few definitions. A point set {x1, x2, . . . , xk} is called �-separated if kxj �xj0k2 �
� for any j 6= j

0. We say that a Gaussian mixture is �-separated (or has separation �) if the means
of its components are �-separated. Two point sets {u1, . . . , uk} and {v1, . . . , vk} are ✏-close if for
some permutation � over [k], kuj � v�(j)k2  ✏ holds for every j.

Our main result is an algorithm that efficiently learns the parameters of a mixture of k spherical
Gaussians under separation � ⇡ dp

log k
· poly(log log k) in d = O(log k/ log log k) dimensions. In

the low-dimensional regime, this separation is strictly smaller than min{
p
log k,

p
d}, the smallest

separation under which previous algorithms could provably learn the parameters in poly(k) time.
Theorem 1.1 (Upper bound, informal). Let P be a uniform mixture of k spherical Gaussians in

d = O

⇣
log k

log log k

⌘
dimensions with separation � = ⌦

✓
d

p
log((log k)/d)p

log k

◆
. There is a poly(k)-time

algorithm that, given samples from P , outputs k vectors that are w.h.p. ✏-close to the true means for

✏ = O(�/
p
d).

See Theorem 2.1 and Remark 2.2 for a more formal statement of our algorithmic result, which holds
for a wider range of separation � and accuracy parameter ✏. Our learning algorithm is provably
correct for arbitrarily small �, ✏ > 0 (possibly with a longer runtime), whereas for most of the
previous algorithms, there is a breakdown point �⇤ such that the algorithm is not known to work
when � < �⇤. Two exceptions are the algorithms of Moitra and Valiant [2010], Belkin and Sinha
[2010], both of which allow an arbitrarily small separation but run in e

⌦(k) time. We also remark
that the runtime of our algorithm scales as Õ(k3) · f(d,�, ✏), and is thus fixed-parameter tractable in
parameters d, � and ✏.2

We complement Theorem 1.1 with an almost-matching lower bound, showing that the d/
p
log k

separation is necessary for efficient parameter learning in low dimensions.

Theorem 1.2 (Lower bound, informal). For d = O

⇣
log k

log log k

⌘
and � = o

⇣
dp
log k

⌘
, there are two

mixtures of k spherical Gaussians in Rd
such that: (1) both have separation �; (2) their means are

not (�/2)-close; and (3) the total variation (TV) distance between them is k
�!(1)

.

See Theorem E.1 for a more formal version of the lower bound.

Theorem 1.1 and Theorem 1.2 together nearly settle the polynomial learnability of spherical Gaussian
mixtures in the low-dimensional regime. Up to a doubly logarithmic factor, the “critical separation”
where efficient learning becomes possible is d/

p
log k. To the best of our knowledge, this was

previously unknown even for d = O(1).3

See Figure 1 below for a plot of our results in the context of prior work. The green regions cover the
parameters (�, d) such that mixtures of k spherical Gaussians in d dimensions with separation � are

2While we focus on the uniform-weight case for simplicity, Theorem 1.1 can be easily extended to the setting
where each weight is in [1/(Ck), C/k] for some constant C > 1.

3An exception is the d = 1 case: A result of Moitra [2015] implies that � = ⌦(1/
p
log k) suffices (see

Section 1.3), and a matching lower bound was given by Moitra and Valiant [2010].

2

separation Δ

dimension "

log &

1
1/ log & log &

IIII

1

Learnable with poly & samples
Not poly & -sample learnable

II

Theorem 2

IV
Theorem 1

Figure 1: Region I is a direct corollary of Moitra and Valiant [2010, Proposition 15]. Regions II, III,
and IV are shown by Regev and Vijayaraghavan [2017, Theorems 1.2, 1.3, and 1.4] respectively. The
upper boundary of Region IV is the curve � =

p
d. Theorems 1.1 and 1.2 settle the learnability in

the remaining area, by proving that the line � = d/
p
log k is the boundary between polynomial and

super-polynomial sample complexities (up to a doubly-logarithmic factor).

learnable (up to O(�) error) using poly(k) samples.4 The red regions contain the parameters under
which polynomial-sample learning is provably impossible.

The algorithm that underlies Theorem 1.1 can be easily extended beyond the spherical Gaussian case.
The following more general result states that for any distribution D whose the Fourier transform does
not decay too fast, we can efficiently learn the parameters of a mixture of k translated copies of D. In
the following, let Dµ denote the distribution of X + µ when X is drawn from D.

Theorem 1.3 (Learning more general mixtures, informal). Let P = 1
k

P
k

j=1 Dµj for �-separated

µ1, . . . , µk 2 Rd
. There is an algorithm that, given ✏ > 0 and samples from P , runs in time

poly

✓
k,�/✏, 1/�, max

k⇠k2M

��� E
X⇠D

h
e
i⇠

>
X

i���
�1

◆

for some � = �(D, ✏) and M = M(k, d,�, ✏), and outputs µ̂1, . . . , µ̂k that are w.h.p. ✏-close to the

true parameters.

See Theorem F.1 and Corollary F.2 for a more formal statement of the runtime. Theorem 1.3 applies to
many well-known distribution families that are specified by either a “location parameter” or a “scale
parameter”. Table 1 gives a few examples of applying Theorem 1.3 to mixtures of single-parameter
univariate distributions; see Appendix F.2 and Appendix F.3 for more details.

Limitations of our work. The main limitation is that the positive results only apply to the regime
that the dimension d is logarithmic in the number of clusters, and that all clusters are translated
copies of the same distribution. A concrete future direction would be to extend our results to learning
mixtures of general Gaussians, even in one dimension.

1.2 Proof Overview

For simplicity, we focus on the one dimensional case that P = 1
k

P
k

j=1 N (µj , 1) for �-separated
means µ1, . . . , µk 2 R. We index the components such that |µ1|  |µ2|  · · ·  |µk|, and focus

4In terms of the computational complexity, all the green regions (except a small portion of Region III) admit
efficient algorithms. The algorithm of Liu and Li [2022] is efficient when � = ⌦((log k)1/2+c) for any c > 0
and thus almost covers Region III. For Region IV, Regev and Vijayaraghavan [2017] gave an efficient algorithm
only for d = O(1), whereas Theorem 1.1 covers the entire Region IV.

3

Distribution Parameter Density Function Runtime

Cauchy µ
1

⇡(1+(x�µ)2) O(k3) · eO(
p
log k/�)

Logistic µ
e
�(x�µ)

(1+e�(x�µ))2
O(k3) · eO(

p
log k/�)

Laplace µ
1
2e

�|x�µ|
Õ(k3/�5)

Exponential ln� �e
��x · [x � 0] O(k3) · eO(

p
log k/�)

Table 1: Implication of Theorem 1.3 for learning various families of mixtures of univariate distribu-
tions beyond Gaussians, assuming that the parameters of different components are �-separated. The
algorithm outputs k parameters that are O(�)-close to the true parameters.

on the following testing problem: Given ✏ > 0 and samples from P , determine whether µ1 = 0 or
µ1 � ✏, assuming that one of them is true. Note that this testing problem is not harder than estimating
µ1, . . . , µk up to error ✏/3—in the former case that µ1 = 0, one of the mean estimates would fall
into [�✏/3, ✏/3], whereas all of them must be outside (�2✏/3, 2✏/3) in the latter case. Conversely, as
we will prove in Section 2, an algorithm for the testing version can be used for recovering the means
as well.

Examine the Fourier spectrum. We start by examining the Fourier transform of P , (FP)(⇠) :=
EX⇠P

⇥
e
i⇠X

⇤
, more commonly known in the literature as the characteristic function. Since the

Fourier transform of a Gaussian is still a Gaussian, and a translation in the time domain shifts the
phase in the frequency domain, we have

E
X⇠P

h
e
i⇠X

i
=

1
k

kX

j=1

E
X⇠N (µj ,1)

h
e
i⇠X

i
=

e
�⇠2/2

k

kX

j=1

e
iµj⇠. (1)

We will focus on the quantity Aµ(⇠) :=
P

k

j=1 e
iµj⇠ , which is the “total phase” over the k components

of P . Equation (1) essentially states that Aµ(⇠) can be estimated by averaging e
i⇠X over samples

X ⇠ P .

The key observation is that each term e
iµj⇠ of Aµ(⇠) behaves quite differently depending on the

magnitude of µj : If µj = 0, eiµj⇠ = 1 is a constant, whereas e
iµj⇠ is a high-frequency wave

when |µj | is large. This suggests that the two cases (µ1 = 0 and |µ1| � ✏) can be distinguished by
estimating Aµ(⇠) at different frequencies. The cost of estimating Aµ(⇠), however, depends heavily on
the frequency ⇠ – Equation (1) together with a simple concentration bound shows that O(k2) · eO(⇠2)

samples are sufficient for estimating Aµ(⇠) up to a constant error.

Therefore, the crux of this approach is to find the minimum M > 0 such that the two cases can
be distinguished by estimating Aµ(⇠) over ⇠ 2 [�M,M]. (This is known as the super-resolution

problem, which we discuss in Section 1.3.) The sample complexity of the testing problem can then
be roughly bounded by O(k2) · eO(M2). In the following, we explore different ways of picking ⇠

from the range [�M,M].

Choosing ⇠ randomly. Our overall strategy is to draw ⇠ randomly from some distribution D⇠ over
interval [�M,M] and evaluate E⇠⇠D⇠ [Aµ(⇠)]. We will argue that this expectation is very close to
its first term E⇠⇠D⇠

⇥
e
iµ1⇠

⇤
, which takes different values depending on whether µ1 = 0 or |µ1| � ✏.

Then, D⇠ needs to be chosen such that: (1) There is a gap in the value of E⇠⇠D⇠

⇥
e
iµ1⇠

⇤
between the

two cases; (2)
���
P

k

j=2 E⇠

⇥
e
iµj⇠

⇤��� is small enough for the gap in the first term to be easily identified.

As a warmup, let D⇠ be the uniform distribution over [0,M]. A simple calculation shows that the
gap in the first term E⇠⇠D⇠

⇥
e
iµ1⇠

⇤
between the two cases (µ1 = 0 or |µ1| � ✏) is lower bounded

by ⌦(min{M✏, 1}), whereas the contribution from the j-th component satisfies
��E⇠⇠D⇠

⇥
e
iµj⇠

⇤�� =

4

O

⇣
1

M |µj |

⌘
. Furthermore, the �-separation between the means implies |µj | = ⌦(�j). Thus,

�����

kX

j=2

E
⇠

h
e
iµj⇠

i����� .
kX

j=2

1
M |µj |

. 1
M�

kX

j=2

1
j
. log k

M�
.

The above is much smaller than min{M✏, 1} if we set M & max

⇢
log k

� ,

q
log k

�✏

�
. Unfortunately,

even when � and ✏ are constants, we have O(k2) · eO(M2) = k
O(log k) and the resulting sample

complexity is already super-polynomial in k.

A better choice of D⇠. It turns out that choosing D⇠ to be a truncated Gaussian leads to a much
lower sample complexity. For some � ⌧ M , we draw ⇠ ⇠ N (0,�2) and then truncate it to [�M,M].
Without the truncation, the expectation of eiµj⇠ has a nice closed form:

E
⇠⇠N (0,�2)

⇥
e
iµj⇠

⇤
= e

��
2
µ
2
j/2,

which is exactly the Fourier weight of N (0,�2) at frequency µj . Note that this decreases very fast as
|µj | grows, compared to the previous rate of 1

M |µj | when D⇠ is uniform.

It again follows from a simple calculation that: (1) Depending on whether µ1 = 0 or |µ1| � ✏, the
gap between E⇠

⇥
e
iµ1⇠

⇤
is ⌦(min{�2

✏
2
, 1}); (2) The total contribution from j = 2, 3, . . . , k is upper

bounded by
�����

kX

j=2

E
⇠⇠N (0,�2)

h
e
iµj⇠

i����� =
kX

j=2

e
��2µ2

j/2 
kX

j=2

e
�⌦(�2�2j2) = e

�⌦(�2�2)
,

where the second step applies |µj | = ⌦(�j) and the last step holds assuming � = ⌦(1/�). In
addition, we need to deal with the error incurred by the truncation. The Gaussian tail bounds imply
that |⇠| � M happens with probability e

�⌦(M2
/�

2). Since |Aµ(⇠)|  k for any ⇠, the noise from the
truncation is at most k · e�⌦(M2

/�
2) in magnitude.

It remains to choose M,� > 0 that satisfy the two inequalities:

e
�⌦(�2�2) ⌧ min{�2

✏
2
, 1} and k · e�⌦(M2

/�
2) ⌧ min{�2

✏
2
, 1}.

It suffices to choose � . 1
�

q
log �

✏
and M . 1

�

q
log �

✏

q
log k�

✏
. For ✏ = ⌦(�), the sample

complexity O(k2) · eO(M2) reduces to k
O(1/�2), which is polynomial in k for any fixed �.

We note that in the above derivation, the assumption that each cluster of P is a Gaussian is only applied
in Equation (1) (through the Fourier transform). For any distribution D over R and P = 1

k

P
k

j=1 Dµj ,
the quantity Aµ(⇠) =

P
k

j=1 e
iµj⇠ can still be read off from the Fourier transform of P at frequency

⇠, except that the extra factor e�⇠
2
/2 becomes (FD)(⇠), the Fourier transform of D at frequency ⇠.

This observation leads to our algorithm for learning a mixture of multiple translated copies of D
(Theorem 1.3).

Gaussian truncation. For the spherical Gaussian case, however, the above only gives an algorithm
with runtime k

O(1/�2), which becomes super-polynomial as soon as � = o(1), falling short of
achieving the near-optimal separation of

q
log log k

log k
in Theorem 1.1.

We further improve our algorithm for the spherical Gaussian case using a “Gaussian truncation”
technique. Intuitively, when deciding whether the mixture P contains a cluster with mean zero, a
sample X ⇠ P is much more informative when |X| is small. This motivates us to focus on samples
with a small magnitude via a truncation.

We apply such a truncation in a soft way—weighting each sample X with e
�X

2
/2. This turns

out to be sufficiently effective while keeping the entire analysis simple. Note that the weighting
effectively multiplies the mixture P with the standard Gaussian N (0, 1) pointwise. The result is

5

still a (un-normalized) mixture of Gaussians: Up to a constant factor, the pointwise product is
1
k

P
k

j=1 e
�µ

2
j/4 · N (µj/2, 1/2). Consequently, if we repeat the analysis from previous paragraphs

to this weighted mixture, the noise coming from components with large |µj | become even smaller.

This eventually allows us to learn the mixture efficiently at separation � =
q

log log k

log k
. We prove

Theorem 1.1 via a natural extension of this analysis to the d-dimensional case.

Lower bound. Our proof of Theorem 1.2 follows an approach similar to those in the previous
lower bound proofs of Moitra and Valiant [2010], Hardt and Price [2015], Regev and Vijayaraghavan
[2017]: First, construct two sets of well-separated points {µ(P)

1 , . . . , µ
(P)
k

} and {µ(Q)
1 , . . . , µ

(Q)
k

}

with (approximately) matching lower-order moments, i.e., 1
k

P
k

j=1

h
µ
(P)
j

i⌦t

⇡ 1
k

P
k

j=1

h
µ
(Q)
j

i⌦t

for every small t. Then, show that these matching moments imply that after a convolution with
Gaussian, the resulting mixtures are close in TV-distance and thus hard to distinguish.

In more detail, similar to the proof of Regev and Vijayaraghavan [2017], we start by choosing N

arbitrary points from a small `2 ball, such that they are �-separated. The main difference is that Regev
and Vijayaraghavan [2017] pick N � k, and show that among all the

�
N

k

�
possible mixtures, there

are at least two mixtures with similar moments via a pigeon-hole type argument. In contrast, we work
in the N ⌧ k regime, and obtain two point sets with matching lower-order moments by slightly
perturbing these N points in opposite directions. The existence of such a good perturbation is shown
via a careful application of the Borsuk–Ulam Theorem, which is inspired by a similar application
in Hardt and Price [2015].

1.3 Related Work

Learning Gaussian mixture models. Most closely related to this paper is the line of work in the
theoretical computer science literature on algorithms that provably learn mixtures of Gaussians.
The pioneering work of Dasgupta [1999] showed that an ⌦(

p
d) separation between the means of

different components is sufficient for the samples to be easily clustered. Several subsequent work
(e.g., Vempala and Wang [2004], Arora and Kannan [2005], Achlioptas and McSherry [2005], Kannan
et al. [2005], Dasgupta and Schulman [2007], Brubaker and Vempala [2008]) further generalized
this result and the separation condition is relaxed to � = ⌦((min{k, d})1/4 · poly(log k, log d))
by Vempala and Wang [2004]. We refer the readers to Regev and Vijayaraghavan [2017] for a more
detailed survey of these results.

Moitra and Valiant [2010] and Belkin and Sinha [2010] gave the first algorithms for learning general
mixtures of Gaussians (with different unknown covariances) under an arbitrarily small separation
between different components. Both algorithms are based on the method of moments, and run in
time polynomial in d and the inverse of the minimum TV-distance between different components
when k = O(1). For large k, however, the runtime is exponential in k.

Regev and Vijayaraghavan [2017] showed that poly(k, d) samples are sufficient to estimate the means
of a mixture of spherical Gaussians, if the means are separated by � = ⌦(

p
log k). Unfortunately,

their algorithm involves an exhaustive search and is computationally inefficient. Subsequently, three
concurrent work [Diakonikolas et al., 2018, Hopkins and Li, 2018, Kothari et al., 2018] developed
algorithms based on the Sum-of-Squares hierarchy that run in time (dk)poly(1/�) and learn mixtures
with separation � = ⌦(k�). In particular, setting � ⇡ log log k

log k
gives a quasi-polynomial time

algorithm that achieves the
p
log k separation in Regev and Vijayaraghavan [2017]. A very recent

work of Liu and Li [2022] made further progress towards learning ⌦(
p
log k)-separated mixtures

efficiently, by giving a polynomial-time algorithm that succeeds under separation (log k)1/2+c for
any constant c > 0.

Lower bounds. On the lower bound side, Moitra and Valiant [2010] first proved, by explicitly
constructing a hard instance, that learning a mixture of k Gaussians with separation � = ⌦(1/

p
k)

requires e⌦(k) samples even in d = 1 dimension. Hardt and Price [2015] focused on the regime where
k = O(1) and the recovery error ✏ goes to zero, and showed that ⌦(✏2�6k) samples are necessary.
Anderson et al. [2014] proved a lower bound that strengthens the result of Moitra and Valiant [2010]:
Separation � = 1/poly(k) is insufficient for the mixture to be learnable with polynomially many

6

samples, even when the means of the Gaussians are drawn uniformly at random from [0, 1]d for
d = O(log k/ log log k).

Regev and Vijayaraghavan [2017] proved that in d = ⌦(log k) dimensions, no polynomial-sample
algorithm exists if � = o(

p
log k). In particular, even when the means are chosen randomly, the

resulting mixture is still hard to learn with high probability. This lower bound, together with their
positive result for the � = ⌦(

p
log k) regime, shows that

p
log k is the critical separation threshold

in high dimensions.

If we restrict our attention to statistical query (SQ) algorithms, Diakonikolas et al. [2017] proved that
any SQ algorithm needs d⌦(k) queries if d � poly(k) and non-spherical components are allowed.

Density estimation. In contrast to the parameter estimation setting that we focus on, the density

estimation setting requires the learning algorithm to output (the representation of) a hypothesis
distribution P̂ that is close to the mixture P in TV-distance. Ashtiani et al. [2020] proved that the
sample complexity of learning Gaussian mixtures up to a TV-distance of ✏ is ⇥̃(d2k/✏2) in general,
and ⇥̃(dk/✏2) if all components are axis-aligned. Unfortunately, their learning algorithms are not
computationally efficient and run in time exponential in k. For the spherical case, Diakonikolas
and Kane [2020] gave a more efficient algorithm that runs in quasi-polynomial time poly(d) ·
(k/✏)O(log2

k). In the proper learning setting (i.e., P̂ must be a Gaussian mixture), Suresh et al. [2014]
gave an algorithm that takes poly(dk/✏) samples and runs in time poly(d) · (k/✏)O(k2).

Super-resolution, and mixture learning using Fourier analysis. Finally, we acknowledge that
the Fourier approach that we explore in this work is fairly natural, and similar ideas have appeared in
prior work. In particular, our approach is closely related to the super-resolution problem (Donoho
[1992], Candès and Fernandez-Granda [2013, 2014])—to recover k unknown locations µ1, . . . , µk 2
Rd from (exact or noisy) observations of the form

P
k

j=1 e
iµj>⇠ for k⇠k  M , where M is called

the cutoff frequency, and the norm is typically `2 or `1. In comparison, our approach (outlined in
Section 1.2) differs in two aspects: (1) We focus on a simpler testing version of the problem—to
decide whether one of the locations is near a given reference point; (2) The Gaussian truncation
significantly down-weights the observation coming from the points that are far from the reference
point.

For the d = 1 case, Moitra [2015] showed that a cutoff frequency of M = O(1/�) suffices if the
points are �-separated. This implies an algorithm that efficiently learns spherical Gaussian mixtures
in one dimension under separation 1/

p
log k, which is (nearly) recovered by our positive result.

For the general case, Huang and Kakade [2015] gave an algorithm that provably works for (`2)
cutoff frequency M = O((

p
d log k + log k)/�). When applied to learning GMMs, however, their

algorithm requires separation
p
d. It is conceivable that the algorithm of Huang and Kakade [2015],

equipped with appropriate modifications and a tighter analysis (e.g., the approach of Chen and Moitra
[2021]), might give a guarantee similar to ours, but no such analysis is explicit in the literature to
the best of our knowledge. Moreover, our approach leads to an arguably simpler algorithm with an
elementary analysis.

More recently, Chakraborty and Narayanan [2020] gave an algorithm that is similar to ours for
learning mixtures of spherical Gaussians via deconvolving the mixture. However, their algorithm is
only shown to work when � = ⌦(

p
d). Chen et al. [2020] studied the problem of learning mixtures

of linear regressions (MLRs), which can be reduced to estimating the minimum variance in a mixture
of zero-mean Gaussians. They solved this problem by estimating the Fourier moments – the moments
of the Fourier transform, and gave the first sub-exponential time algorithm for learning MLRs. Chen
and Moitra [2021] studied learning mixtures of Airy disks, a problem that is motivated by the physics
of diffraction. Their algorithm also proceeds by first estimating the Fourier transform of the mixture,
and then dividing it pointwise by the Fourier spectrum of the “base” distribution.

1.4 Organization of the Paper

In Section 2, we formally state our main algorithmic result as well as our main technical theorem,
which addresses a testing version of the problem. We then sketch how our upper bound follows from

7

a simple reduction from parameter learning to testing. In Section 3, we give a simple algorithm that
solves this testing version by examining the Fourier transform of the mixture.

The pseudocode of our algorithms are presented in Appendix A. We defer a few technical proofs to
Appendices B through D. We prove our lower bound result (Theorem 1.2) in Appendix E. Finally,
in Appendix F, we formally state and prove the guarantees for learning non-Gaussian mixtures and
present a few applications of this result.

2 From Learning to Testing

We first state our main positive result – the formal version of Theorem 1.1.
Theorem 2.1. Let P = 1

k

P
k

j=1 N (µj , Id) be a uniform mixture of k � 2 spherical Gaussians with

�-separated means in Rd
and ✏ < min{�/100,�/(32

p
min{d, ln k})}. There is an algorithm

(Algorithm 1) that, given samples from P , outputs k vectors that are ✏-close to µ1, . . . , µk with high

probability. The runtime (and thus the sample complexity) of the algorithm is upper bounded by

O((�/✏)4k3 log2 k) ·max{(d/✏)O(d)
, d

O(d)} · eO(M2)
,

where M
2 . 1

�2 (min{d, log k}+ log �
✏
) · (min{d+ log k, d log(2 + d

�2)}+ log �
✏
).

Remark 2.2. When d = O

⇣
log k

log log k

⌘
and �/✏ = ⇥(

p
d), the runtime can be simplified into

poly(k) · exp
✓
O

✓
d

�2
min

⇢
log k, d log

✓
2 +

d

�2

◆�◆◆
,

which is poly(k) if � = ⌦

✓
dp
log k

·
q

log log k

d

◆
. When d = o(log k), this condition is strictly

looser than both � = ⌦(
p
d) and � = ⌦(

p
log k).

We prove Theorem 2.1 by reducing the parameter learning problem into the following testing version:
Given samples from mixture P , determine whether P contains a cluster with a mean that is close to a
given guess µ⇤ 2 Rd. Formally, we prove the following theorem:
Theorem 2.3. Let P = 1

k

P
k

j=1 N (µj , Id) be a uniform mixture of k � 2 spherical Gaussians with

�-separated means in Rd
. Let ✏ < min{�/100,�/(32

p
min{d, ln k})} and µ

⇤ 2 Rd
. There is an

algorithm (Algorithm 2) that, given samples from P , either “accepts” or “rejects”, such that it:

• Accepts with probability � 2/3 if minj2[k] kµj � µ
⇤k2  ✏/2.

• Rejects with probability � 2/3 if minj2[k] kµj � µ
⇤k2 � ✏.

The runtime (and thus the sample complexity) of the algorithm is upper bounded by O(k2(�/✏)4) ·
e
O(d+M

2)
, where M

2 . 1
�2 (min{d, log k}+ log �

✏
) · (min{d+ log k, d log(2 + d

�2)}+ log �
✏
).

Assuming the above theorem, the proof of our main theorem is straightforward and is thus deferred to
Appendix C. The proof proceeds by first drawing a few samples X1, . . . , XN from the mixture, and
then running the tester (from Theorem 2.3) to decide whether each Xi is close to one of the mean
vectors of the mixture. Then, a simple argument shows that the samples that the tester accepts can
be easily clustered to recover the means. Note that if a sample Xi comes from the j-th component
N (µj , Id), there is a decent probability (e.g., ⌦(✏) when d = 1) that Xi is ✏-close to µj . Thus, we
can guarantee that X1, . . . , XN contain good guesses for all the k means for moderately large N .

3 Solve the Testing Problem using Fourier Transform

Now we solve the testing problem and prove Theorem 2.3. We assume without loss of generality
that µ⇤ = 0, since we can reduce to this case by subtracting µ

⇤ from each sample from P . We also
re-index the unknown means µ1, . . . , µk so that kµjk2 is non-decreasing in j. The testing problem is
then equivalent to deciding whether kµ1k2  ✏/2 or kµ1k2 � ✏.

The following simple lemma, which we prove in Appendix D, gives the Fourier transform of the
mixture P when a “Gaussian truncation” of e�kxk2

2/2 is applied.

8

Lemma 3.1. For P = 1
k

P
k

j=1 N (µj , Id) and any ⇠ 2 Rd
,

E
X⇠P

h
e
�kXk2

2/2 · ei(⇠
>
X)

i
=

e
�k⇠k2

2/4

2d/2k

kX

j=1

e
�kµjk2

2/4 · ei(µ
>
j ⇠/2) =

e
�k⇠k2

2/4

2d/2k
·Aµ(⇠),

where we define Aµ(⇠) :=
P

k

j=1 e
�kµjk2

2/4 · ei(µ
>
j ⇠/2)

.

We will show that Aµ(⇠) behaves quite differently depending on whether kµ1k2  ✏/2 or kµ1k2 � ✏.
Thus, we can solve the testing problem by estimating Aµ(⇠) for carefully chosen ⇠. Concretely,
we will draw ⇠ from N (0,�2

Id) and then truncate it to B(0,M) := {x 2 Rd : kxk2  M}, for
parameters M,� > 0 to be chosen later. Formally, we focus on the following expectation:

Tµ := E
⇠⇠N (0,�2Id)

[Aµ(⇠) · [k⇠k2  M]] .

The key step of our proof of Theorem 2.3 is to show that Tµ is close to e
�(�2

/2+1)kµ1k2
2/4, and is thus

helpful for deciding whether kµ1k2  ✏/2 or kµ1k2 � ✏. The following lemma, the proof of which
is relegated to Appendix D, helps us to bound the difference between Tµ and e

�(�2
/2+1)kµ1k2

2/4.

Lemma 3.2. For any M,� > 0 that satisfy M
2
/�

2 � 5d,

Tµ =
kX

j=1

e
�(�2

/2+1)kµjk2
2/4 +O

⇣
e
�M

2
/(5�2)

⌘
·

kX

j=1

e
�kµjk2

2/4,

where the O(x) notation hides a complex number with modulus  x.

By Lemma 3.2, the difference Tµ � e
�(�2

/2+1)kµ1k2
2/4 is given by

kX

j=2

e
�(�2

/2+1)kµjk2
2/4 +O

⇣
e
�M

2
/(5�2)

⌘
·

kX

j=1

e
�kµjk2

2/4.

Let S1 :=
P

k

j=2 e
�(�2

/2+1)kµjk2
2/4 and S2 :=

P
k

j=1 e
�kµjk2

2/4 denote the two summations above.
We have the following upper bounds on S1 and S2, which we prove in Appendix D:
Claim 3.3. Assuming (�2

/2 + 1)�2 � 100min{ln k, d}, S1  2e�(�2
/2+1)�2

/64 ·min{k, 2d}.

Claim 3.4. We have S2 
(
2, �2 � 100d,

1 + 267d
�2 ·max

n�
32d
�2

�d/2
, 1
o
, �2

< 100d.
Furthermore, S2 

10 ·min
n
k, 1 +

�
32d
�2

�d/2+1
o
.

Now we put all the pieces together and prove Theorem 2.3.

Proof of Theorem 2.3. By Lemma 3.1,

Tµ = E
⇠⇠N (0,�2Id)

[Aµ(⇠) · [k⇠k2  M]]

= E
X⇠P

⇠⇠N(0,�2Id)

h
2d/2k · ek⇠k

2
2/4 · e�kXk2

2/2 · ei(⇠
>
X) · [k⇠k2  M]

i
.

Since the term inside the expectation has modulus  k · eO(d+M
2), a Chernoff bound implies that we

can estimate Tµ up to any additive error � > 0 using O((k/�)2) · eO(d+M
2) samples from P .

By Lemma 3.2 and our definition of S1 and S2, assuming M
2
/�

2 � 5d,
���Tµ � e

�(�2
/2+1)kµ1k2

2/4
���  S1 + e

�M
2
/(5�2)

S2.

In the rest of the proof, we will pick � and M carefully so that both S1 and e
�M

2
/(5�2)

S2 are
upper bounded by � := (�2

/2 + 1)✏2/64. Assuming this, we are done: We can simply estimate Tµ

9

up to an additive error of �. Let cTµ denote the estimate. We accept if and only if RecTµ � ✓ :=
1
2

h
e
�(�2

/2+1)✏2/16 + e
�(�2

/2+1)✏2/4
i
. Indeed, suppose that kµ1k2  ✏/2, we have

RecTµ � ReTµ � � � e
�(�2

/2+1)kµ1k2
2/4 � (S1 + e

�M
2
/(5�2)

S2)� � � e
�(�2

/2+1)✏2/16 � 3�.

Similarly, RecTµ  e
�(�2

/2+1)✏2/4 + 3� if kµ1k2 � ✏. If we set � such that (�2
/2 + 1)✏2  1, we

have e
�(�2

/2+1)✏2/16 � e
�(�2

/2+1)✏2/4 � 1
8 (�

2
/2 + 1)✏2 = 8�, which implies RecTµ > ✓ in the

former case and RecTµ < ✓ in the latter case. Therefore, our algorithm decides correctly.

Choice of parameters. Claim 3.3 implies that if we set �2
/2 + 1 = 512

�2

�
min{d, ln k}+ ln �

✏

�
,

we can ensure S1  (�2
/2 + 1)✏2/64 = �. Furthermore, this choice of � and the assumption

✏ < min{�/100,�/(32
p
min{d, ln k})} guarantee the condition (�2

/2 + 1)✏2  1 that we need.

It remains to pick M such that e�M
2
/(5�2) ·S2  � = (�2

/2+1)✏2/64. We also need M
2
/�

2 � 5d

to ensure that Lemma 3.2 can be applied. It suffices to let M2 � 5�2 ·
⇣
d+ lnS2 + ln 64

(�2/2+1)✏2

⌘
.

Our choice of � guarantees ln 64
(�2/2+1)✏2  2 ln �

✏
, so it is in turn sufficient to pick M such that

M
2 =

5120

�2

✓
min{d, ln k}+ ln

�

✏

◆✓
d+ 2 ln

�

✏
+ lnS2

◆
.

Applying Claim 3.4 shows that M can be chosen such that

M
2 . 1

�2

✓
min{d, log k}+ log

�

✏

◆
·
✓
min

⇢
d+ log k, d log

✓
2 +

d

�2

◆�
+ log

�

✏

◆
.

Runtime. The runtime of our algorithm is dominated by the number of samples drawn from
P—O((k/�)2) · eO(d+M

2), where � = ⇥((�2 + 1)✏2). Plugging our choice of � into � gives
1/� = O((�/✏)2). The runtime can thus be upper bounded by O(k2(�/✏)4) · eO(d+M

2).

Acknowledgments

We would like to thank the anonymous reviewers of earlier versions of this paper for their suggestions
on the presentation and for pointers to the literature.

References

D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In Conference on

Learning Theory (COLT), pages 458–469, 2005.

J. Anderson, M. Belkin, N. Goyal, L. Rademacher, and J. Voss. The more, the merrier: the blessing
of dimensionality for learning large gaussian mixtures. In Conference on Learning Theory (COLT),
pages 1135–1164, 2014.

S. Arora and R. Kannan. Learning mixtures of separated nonspherical gaussians. The Annals of

Applied Probability, 15(1A):69–92, 2005.

H. Ashtiani, S. Ben-David, N. J. Harvey, C. Liaw, A. Mehrabian, and Y. Plan. Near-optimal sample
complexity bounds for robust learning of gaussian mixtures via compression schemes. Journal of

the ACM (JACM), 67(6):1–42, 2020.

M. Belkin and K. Sinha. Polynomial learning of distribution families. In Foundations of Computer

Science (FOCS), pages 103–112, 2010.

S. C. Brubaker and S. Vempala. Isotropic pca and affine-invariant clustering. In Foundations of

Computer Science (FOCS), pages 551–560, 2008.

E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data. Journal of Fourier Analysis

and Applications, 19(6):1229–1254, 2013.

10

E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Commu-

nications on pure and applied Mathematics, 67(6):906–956, 2014.

S. Chakraborty and H. Narayanan. Learning mixtures of spherical gaussians via fourier analysis.
arXiv preprint arXiv:2004.05813, 2020.

S. Chen and A. Moitra. Algorithmic foundations for the diffraction limit. In Symposium on Theory of

Computing (STOC), pages 490–503, 2021.

S. Chen, J. Li, and Z. Song. Learning mixtures of linear regressions in subexponential time via fourier
moments. In Symposium on Theory of Computing (STOC), pages 587–600, 2020.

S. Dasgupta. Learning mixtures of gaussians. In Foundations of Computer Science (FOCS), pages
634–644, 1999.

S. Dasgupta and L. J. Schulman. A probabilistic analysis of em for mixtures of separated, spherical
gaussians. Journal of Machine Learning Research (JMLR), 8:203–226, 2007.

I. Diakonikolas and D. M. Kane. Small covers for near-zero sets of polynomials and learning latent
variable models. In Foundations of Computer Science (FOCS), pages 184–195, 2020.

I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for robust estimation of
high-dimensional gaussians and gaussian mixtures. In Foundations of Computer Science (FOCS),
pages 73–84, 2017.

I. Diakonikolas, D. M. Kane, and A. Stewart. List-decodable robust mean estimation and learning
mixtures of spherical gaussians. In Symposium on Theory of Computing (STOC), pages 1047–1060,
2018.

D. L. Donoho. Superresolution via sparsity constraints. SIAM Journal on Mathematical Analysis, 23
(5):1309–1331, 1992.

M. Hardt and E. Price. Tight bounds for learning a mixture of two gaussians. In Symposium on

Theory of Computing (STOC), pages 753–760, 2015.

S. B. Hopkins and J. Li. Mixture models, robustness, and sum of squares proofs. In Symposium on

Theory of Computing (STOC), pages 1021–1034, 2018.

Q. Huang and S. M. Kakade. Super-resolution off the grid. In Advances in Neural Information

Processing Systems (NIPS), pages 2665–2673, 2015.

R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. In
Conference on Learning Theory (COLT), pages 444–457, 2005.

P. K. Kothari, J. Steinhardt, and D. Steurer. Robust moment estimation and improved clustering via
sum of squares. In Symposium on Theory of Computing (STOC), pages 1035–1046, 2018.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals

of Statistics, pages 1302–1338, 2000.

A. Liu and J. Li. Clustering mixtures with almost optimal separation in polynomial time. In
Symposium on Theory of Computing (STOC), pages 1248–1261, 2022.

J. Matoušek, A. Björner, and G. M. Ziegler. Using the Borsuk-Ulam theorem: lectures on topological

methods in combinatorics and geometry. Springer, 2003.

A. Moitra. Super-resolution, extremal functions and the condition number of vandermonde matrices.
In Symposium on Theory of Computing (STOC), pages 821–830, 2015.

A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaussians. In Foundations

of Computer Science (FOCS), pages 93–102, 2010.

O. Regev and A. Vijayaraghavan. On learning mixtures of well-separated gaussians. In Foundations

of Computer Science (FOCS), pages 85–96, 2017.

11

D. J. Smith and M. K. Vamanamurthy. How small is a unit ball? Mathematics Magazine, 62(2):
101–107, 1989.

A. T. Suresh, A. Orlitsky, J. Acharya, and A. Jafarpour. Near-optimal-sample estimators for spherical
gaussian mixtures. In Advances in Neural Information Processing Systems (NIPS), pages 1395–
1403, 2014.

S. Vempala and G. Wang. A spectral algorithm for learning mixture models. Journal of Computer

and System Sciences, 68(4):841–860, 2004.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The

results are theoretical.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions are stated in the theorems.

(b) Did you include complete proofs of all theoretical results? [Yes] The main paper
includes part of the proof and most of the proof ideas. Technical proofs are included in
the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

	Introduction
	Overview of Results
	Proof Overview
	Related Work
	Organization of the Paper

	From Learning to Testing
	Solve the Testing Problem using Fourier Transform
	Pseudocode of Algorithms
	Auxiliary Lemmas
	Deferred Proofs from Section 2
	Deferred Proofs from Section 3
	Proof of Lower Bound
	Extension to Non-Gaussian Mixtures
	Proof of Theorem F.1
	Examples
	Application #1: Mixture of Exponential Distributions
	Application #2: Mixture of Linear Regressions in One Dimension

