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Abstract

Real-world classification problems must contend with domain shift, the (potential)
mismatch between the domain where a model is deployed and the domain(s)
where the training data was gathered. Methods to handle such problems must
specify what structure is common between the domains and what varies. A natural
assumption is that causal (structural) relationships are invariant in all domains.
Then, it is tempting to learn a predictor for label Y that depends only on its causal
parents. However, many real-world problems are “anti-causal” in the sense that
Y is a cause of the covariates X—in this case, Y has no causal parents and the
naive causal invariance is useless. In this paper, we study representation learning
under a particular notion of domain shift that both respects causal invariance and
that naturally handles the “anti-causal” structure. We show how to leverage the
shared causal structure of the domains to learn a representation that both admits an
invariant predictor and that also allows fast adaptation in new domains. The key is
to translate causal assumptions into learning principles that disentangle “invariant”
and “non-stable” features. Experiments on both synthetic and real-world data
demonstrate the effectiveness of the proposed learning algorithm. Code is available
at https://github.com/ybjiaang/ACTIR.

1 Introduction

This paper concerns the problem of domain shift in supervised learning, the phenomenon where
a predictor with good performance in some (training) domains may have poor performance when
deployed in a novel (test) domain. There are two goals when faced with domain shifts. First, we
would like to learn a fixed predictor that is domain-invariant in the sense that it has good performance
in all domains. Note, however, that even a good domain-invariant predictor may still be far from
optimal in any given target domain. In such cases, we’d like to learn an optimal domain-specific
predictor as quickly as possible. Then, the second goal is to learn a representation for our data that
is transportable in the sense that, when given data from a new domain, we can use the representation
to learn a domain-specific predictor using only a small number of examples.

Domain shifts plague real-world applications of machine learning and there is a large and active
literature aimed at mitigating the problem [e.g., Arj+19; Vei+21; PBM16; Rot+21; Wan+21; Zho+21;
Koh+21; Zhu+20; Cai+21; Shi+21; Sag+19; Bai+20; SSS19; Zhe+21; Liu+21; Lu+21]. Empirically,
when domain shift methods are applied to wide-ranging benchmarks, there is no single dominant
method—indeed, it’s common for methods that work well in one context to do worse than naive
empirical risk minimization (i.e., ignore the shift problem) in another context [Koh+21; GL21]. This
problem is fundamental: it is impossible to build predictors that are robust to all possible kinds of
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Figure 1: Causal model for the data generating process. We decompose the observed covariate X into latent
parts defined by their causal relationships with Z. Solid circles denote observed variables, while shaded circles
denote hidden variables.

shifts.1 Accordingly, it is necessary to specify the manner in which the training and test domains are
related to each other; that is, what structure is common to all domains, and what structure can vary
across them. Then, to make progress on the domain shift problem, the task is to identify structural
assumptions that are well matched to real-world problems and then find methods that can achieve
domain-invariance and transportability under this structure.

In this paper, we rely on a particular variant of the assumption that structural causal relationships
are invariant across domains, but certain “non-causal” relationships may vary. The motivation is that
relationships fixed by the underlying dynamics of a system are the same regardless of the domain
[PJS17]. A similar causal domain-structure assumption is already well-studied in the domain-shift
literature [e.g., PBM16; Arj+19; Rot+21; Roj+18; MBS13]. There, the goal is to predict the target
label Y using only its causal parents (reconstructed from observed features X). In particular, the
aim is to build predictors that do not rely on any part of the features that is causally affected by Y .
However, in many problems, it can happen that the observed covariates X are all caused by Y , so that
the causal parents of Y are the empty set. In this case, the naive causally invariant predictor is vacuous.

The purpose of this paper is to study an alternative causal notion of domain shift that handles such
“anti-causal” (Y causes X) problems, and that maintains the interpretation that structural causal
relationships are held fixed across all domains. Specifically,

1. We formalize the anti-causal domain shift assumption.

2. We show how the causal domain shift assumption can be leveraged to find an invariant
predictor and transportable representation.

3. We use this as the basis of a concrete learning procedure for domain-invariant and domain-
adaptive representations.

2 Causal Setup

The first step is to make precise what structure is preserved across domains, and what structure varies.
Once we have this, we’ll make the notions of invariant and fast-adapting predictor precise.

In each domain e, we have observed data (Xi, Yi)
iid⇠ P e, where P e is a domain-specific data-

generating distribution. We will mainly consider problems where we have (finite) datasets sampled
from multiple distinct domains at training time, and wish to make predictions on data sampled from
some additional domains not observed during training. This paper discusses classification problems
where Yi is discrete.

To formalize the causal structure assumption, we’ll introduce two additional latent (unobserved)
variables. First, Z, a (subset of) the causes of X . Second, U , a confounding variable that affects both
Z and Y ; see Figure 1. Conceptually, Z are the factors of variation where the association with Y
can vary across domains. The confounder U is the reason the association can vary. The relationship
between Y and Z induced by U needs not be stable across domains. Slightly abusing notation, we
have that Zi, Ui, Xi, Yi

iid⇠ P e in each domain e. We can now describe the set of domain shifts we
consider.

1For any given predictor, it’s possible to adversarially construct a domain where that predictor does poorly.
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Definition 1. (Compatible Anti-Causal Shift Domains) Distributions {P e} (over X,Y ) are compati-

ble anti-causal shift domains if the following conditions hold. First, there are unobserved variables
Z,U such that causal graph in Figure 1 holds in all domains. Second, there is a fixed distribution P
and for each e there is some distribution Qe

(U) such that P e
(X,Y, Z) =

R
P (X,Y, Z | U)dQe

(U).

Informally: The causal structure is fixed in all domains (implying the conditional distribution over X,
Y, Z given U is the same). We allow only the distribution of the unobserved common cause U to vary.

This notion of domain shift respects the preserved-causal-structure desiderata. However, it is not
obvious that it suggests any useful algorithms for learning robust predictors. This is the subject of the
remainder of the paper.

2.1 Invariant Prediction

Intuitively, a predictor will be robust against domain shifts if it depends only on causes of X that
have a stable relationship with Y in all domains. In our setup, these are the factors of variation that
are not included in Z. Accordingly, we want a predictor that depends only on the parts of X that are
not causally influenced by Z.

To formalize this notion, we’ll use the concept of counterfactual invariance to Z [Vei+21]. A
function f is counterfactually invariant to Z if f(X(z)) = f(X(z0)) for all z, z0, where X(z)
denotes the counterfactual X we would see had Z been z. Learning a predictor that does not depend
on the factors of variation Z that induce unstable relationships means learning a predictor that is
counterfactually invariant to Z.

Part of our goal in the following will be to learn a counterfactually invariant predictor. This causal
notion of invariance is closely related to the notion of invariance that requires a predictor to be the
risk minimizer in all domains [PBM16; Arj+19]. Specifically, under the anti-causal structure, if prior
distributions P e

(Y ) are the same in all domains, then Veitch et al. [Vei+21, Thm. 4.2] shows that
if f is the counterfactually invariant predictor with the lowest risk in any training domain, it is also
the counterfactually invariant predictor with the lowest risk in all domains. Even when P e

(Y ) is
not constant across domains—there’s a prior shift—imposing counterfactual invariance should still
improve out-of-domain performance since it removes the domain-varying part of the features X . This
is supported by experiments in Appendix B.2. Throughout the paper, we use the term "invariant" in
the sense of counterfactual invariance.

2.2 Causal Decomposition of X

To go further in our formalization, we’ll need another idea from Veitch et al. [Vei+21]: the decompo-
sition of X into (latent) parts defined by their causal relationship with Z. We define X?

z to be the part
of X that is not causally affected by Z. More precisely, X?

z is the part of X such that any function
of X is counterfactually invariant if and only if it is a function of X?

z alone (that is, f(X) is X?
z

measurable). Under weak conditions on Z, X?
z is well defined (e.g., discrete Z suffices) [Vei+21].

We also introduce Xz to denote the part of X that is not invariant to Z. We make the extra assumption
that X?

z does not have a causal effect on Xz (the other direction is ruled out by the definition of X?
z ).

The meaning of this assumption is that the Z-specific parts of X can be disentangled in the sense that
it’s possible to vary the other parts of X without affecting Xz . For example, we can change the object
of the image without changing the background. This is a non-trivial assumption about the structure
of the anti-causal shift domains, baked into the causal compatibility assumption by the absence of an
arrow between Xz and X?

z .

2.3 Rapid Adaptation

Even if P (Y ) is held fixed, the optimal counterfactually invariant predictor g(X) is unlikely to be
the best predictor in any given domain. The reason is that it excludes Z-dependent information that
may in fact be highly predictive in a given domain. Given a new domain e, we would like to be able
to quickly learn a new predictor fe

(X) that updates the invariant predictor with domain-specific
associations. This update should only depend on Xz because the relation between X?

z and Y is
stable. Accordingly, we want to learn a representation h(X) that encapsulates the information in
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Xz . Moreover, this should be done in a manner such that, given g(X) and h(X), we can learn a
good predictor for P e with only a small number of samples.

To formalize this, we’ll introduce the following domain-specific predictors:
fe

(X) = g(X) +Meh(X) (2.1)

Here fe
(X) is logits. In words: fe adds a correction to the invariant predictor g that is logit-linear

in the learned representation h(X). We take the correction to be a linear map because, once h is
known, linear maps are very sample efficient to learn. Accordingly, we can formalize “learn h such
that we can rapidly adapt in new domains" as “learn h such that the domain-specific predictor with
optimal Me has low risk under P e". Then, our second goal is to learn such a representation h.

2.4 Learning Goals

We have now given a causal formalization of the domain transfer scenario we consider, and formaliza-
tions of the problems of learning invariant and rapidly adapting predictors. With the causal notation
in hand, our goal can be plainly stated. We want to learn an invariant g(X) and a domain-varying
h(X) with the following properties.

1. g(X) depends only on X?
z .

2. g(X) has low risk in each training domain.
3. h(X) depends only on Xz .
4. fe

(X) = g(X) +Meh(X) should have low risk in each training domain, where Me is the
linear map that minimizes the domain-specific risk.

The challenge now is that we do not observe Z (or U ) for any data point and we do not know the
decomposition of X into X?

z and Xz . As we will see in the next section, we can find a relaxation
that is enforced with observed data which relies on the particular anti-causal structure.

3 Observable Signature

The first problem we must confront is how to learn a function g(X) that depends on X?
z alone,

and h(X) that depends on Xz alone. Strictly speaking, learning such functions precisely would be
impossible, even if we observed Z [Vei+21]. The reason is that we have access to only observational
data, but the two parts of X are defined in terms of the underlying causal structure. Instead, the best
we can hope for is to require that g(X) and h(X) satisfy the observable implications of the causal
structure. That is, the properties of the causal assumption that can actually be measured using the
observed data.

When Z is observed, a signature for g(X) is that g(X) is conditionally independent of Z given Y
[Vei+21]. But when Z is unobserved, it is challenging to learn g(X) and h(X), as these representa-
tions of X are intimately tied to Z.

The key observation is that there are two relations that connect g(X) and h(X). The first relation
comes from the causal graph. In particular, we want to impose the requirement that g(X) and h(X)

satisfy the observable implications of the causal structure. The next theorem gives such an observable
implication, which can serve as an observable signature of the causal decomposition.

Theorem 2. If g(X) depends only on X?
z and h(X) depends only on Xz , then, under the causal

graph in Figure 1, g(X) ?? h(X) | Y .

The usefulness of this theorem is that the conditional independence statement can be measured from
data, and enforced in the model training.

The second relation is subtler and it comes from our formulation of domain-specific predictors fe.
Specifically, fe, as a linear combination of g and h, should minimize the risk in every domain. And
by only allowing coefficients of h to change, we hope g would capture "invariant" information (X?

z )
and h would learn "unstable" information (Xz).

Therefore, to try to enforce conditions 1 and 3 in Section 2.4, we can learn g and h jointly to minimize
domain-specific risk, while enforcing that g(X) and h(X) satisfy the conditional independence
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implied by the causal structure. Since the observable signature is only necessary (not sufficient) for
the causal decomposition and there could be multiple candidates of g and h pairs that can parameterize
fe in the aforementioned way, it’s not guaranteed to recover g and h that only rely on X?

z and Xz

respectively. However, it does strongly constrain the functions we can learn. And, as we will see in
Section 6, enforcing the signature does lead to predictors with good robustness and fast adaptation
properties.

3.1 Causal Regularization

We enforce g(X) and h(X) to satisfy the conditional independence condition via regularization.
Specifically, we want to define a regularizer such that its value goes to zero whenever the conditional
independence requirement is met. In general, measuring conditional independence is hard [Zha+12;
Fuk+07; TSS16]. Instead, we enforce a weaker condition that uses the following fact.

Lemma 3. If A ?? B | D, then, E[A · (B � E[B|D])] = 0

This is a necessary but not sufficient condition for conditional independence. However, it is easy to
compute and leads to good results in practice (as shown in Section 6). With this identity in hand,
we define Ccond(A,B,D), the (infinite data) conditional independent regularization term between
random variables A,B given random variable D, and its empirical estimate Ĉcond as follows:

Ccond(A,B,D) = E[A · (B � E[B|D])]

Ĉcond({(ai, bi, di)}ni=1) =

������

������
1

n

X

i

ai

✓
bi �

1

|#j : dj = di|
X

j:dj=di

bi

◆������

������
1

where {ai}ni=1, {bi}ni=1, {di}ni=1 are samples of A,B and D. Here, the conditional random variable
D is assumed to be discrete which is true for the use case in this paper.

4 Learning Algorithm

We have reduced our goal to learning g and h such that

1. For training domains, g(X) has low risk.
2. For a given domain e, there exists Me such that fe

(X) = g(X) + Meh(X) is the risk
minimizer of that domain.

3. g(X), h(X) are constrained by the conditional independence regularization.

We now design a specific algorithm that accomplishes the learning task. First, we parameterize the
learning problem in a form that’s convenient to use with neural networks. Then, we translate our
learning objectives into a bi-level optimization problem. Finally, we introduce a practical algorithm to
solve the bi-level optimization problem. We name our method ACTIR for Anti- Causal Tranportable
and Invariant Representation.

4.1 Reparameterization

In principle, we could learn two completely separate functions g(X) and h(X). However, this can be
wasteful. For instance, in vision, many low-level features can be reused by different predictors. To
address this, we first notice that we can always rewrite (2.1) as follows

fe
(X) = (W b

+W e
)�(X). (4.1)

That is, as a shared representation � followed by a fixed linear map W b defining g and a domain-
specific linear map W e defining Meh(X).2 The task is then learning the representation (which we’ll
parameterize by a neural network), and the invariant and domain-specific linear maps.

In fact, a further simplification is possible: we can fix W b to be

I 0
0 0

�
. The reason is that, because

� is unconstrained, learning W b doesn’t actually add expressive power—any non-zero map suffices.

2Consider �(X) = [g(X)T , h(X)T ]T , W b =


I 0
0 0

�
and W e =


0 0
0 Me

�
.
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4.2 Bi-Level Optimization

We have now reduced our task to a bi-level optimization problem

min
�

X

e2Etr

�Re
((W b

+W e
)�) + (1� �)Re

(W b
�)

st W e 2 argmin
W

Re
((W b

+W )�) + �Ccond(W
b
�,W�, Y ) 8e 2 Etr

(4.2)

where � 2 [0, 1], � > 0. The set Etr consists of all training domains, and Re
(f) is the domain-specific

population risk defined as Re
(f) = E(x,y)⇠P e [`(f(x),y)] with the cross-entropy loss function `.

In words: we try to learn a representation � such that the invariant predictor has low risk (second
term), the domain-specific predictor has low risk in each domain (first term), and the domain-specific
perturbation W e is optimal given W b and � while satisfying the observable signature of the causal
condition (constraint, with the Ccond regularization).

4.3 Practical Algorithm

(4.2) is a challenging optimization problem. In general, each constraint calls for an inner optimization
routine. So instead of solving (4.2) directly, we use a gradient penalty to make the problem more
tractable. Specifically, we translate the condition that the domain-specific risk is optimal (the inner
loop) into the condition that the gradient of the domain-specific risk with respect to W e is 0. Then,
we regularize the `2-norm of this gradient. This is inspired by a similar trick used in Invariant Risk
Minimization [Arj+19]. The finite sample objective function can be expressed as:

L(W b,W e,�) =
X

e2Etr

 X

(x,y)2De

�`
�
(W b

+W e
)�(x), y

�
+ (1� �)`

�
W b

�(x), y
��

+ �g

X

e2Etr

krLe
inner(W

e
)k2

where �g > 0 is a regularization coefficient for the gradient penalty, De is a labeled dataset collected
from training domain P e and Le

inner is given by

Le
inner(W ) =

X

(x,y)2De

`

 
(W b

+W )�(x), y

!
+ �Ĉcond

 ⇢
(W b

)�(x),W�(x), y

�

(x,y)2De

!

4.4 Invariant and Adaptive Prediction

After training, suppose the returned representation is �̂. Then the invariant predictor is

g(X) = W b
�̂(X)

Moreover, given a few labeled examples from a new domain, we can find a domain-specific predictor
by fine-tuning the linear layer W b.

5 Related Work

Causal Prediction Several papers connect causality and robustness to domain shifts. [e.g., PBM16;
HDPM18; Arj+19; Lu+21]. These papers usually assume that all domains share a common causal
structure, and consider the set of domains induced by arbitrary intervention on any node other than
the label Y . In this case, the predictor that has invariant risk across domains is the one that depends
only on the causal parents of Y . By contrast, in this paper, we only allow changes of unobserved
confounders—resulting in a much smaller set of possible shifts. Restricting the possible shifts
enlarged the set of possible invariant predictors, allowing for invariant predictors that depend on the
descendants of Y .

A closely related work is Invariant Risk Minimization [Arj+19], that also seeks to learn a representa-
tion � of X such that a fixed linear map on top of the representation yields an invariant predictor.
The major distinction with the approach here is that we have a different notion of invariance (see
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Section 2.1), and we rely on simultaneously learning the non-stable factors of variation in order to
identify the representation.

Other papers also consider settings where the covariates X are not direct causes of Y [Liu+21;
Mit+21; Ils+20]. They assume that both X and Y are caused by latent variables that can be divided
into stable and non-stable parts. Then, they use generative models reflecting this assumption. By
contrast, the approach in this paper is fully nonparametric—there is no explicit modeling of the
generative process. Prediction in the anti-causal direction has also been studied in other contexts
[Sch+12; Li+18; Wal+21; KPS18; Gon+16; HM21]. In particular, Schölkopf et al. [Sch+12] study
the role of anti-causal learning in semi-supervised learning and transfer learning.

This work fits into the emerging literature on causal representation learning [e.g., Bes+18; Loc+20;
Sch+21; WJ21]. This literature seeks to find representations that disentangle causally meaningful
components of the data—here, we disentangle the factors of variation that have domain-stable or
domain-varying relationships with the target Y .

Veitch et al. [Vei+21] introduce the notion of counterfactual invariance to a spurious factor and make
some connections with domain shifts. However, they assume Z is known in advance and observed,
and rely on this to learn the counterfactually-invariant predictor. In contrast, in this paper we merely
assume the existence of some Z—we don’t need to know it in advance, and we don’t need to measure
it directly. And, they use data from only a single domain, whereas we require observations from
several distinct domains. We also treat the problem of learning transportable representations, but
they only handle invariant learning.

Domain Adaptation and Meta Learning There have been numerous fruitful developments in the
fields of domain generalization and adaptation [e.g., Zho+21; Wan+21], including ones under various
causal assumptions [Zha+13; Mag+18; CB21; SSS19; Sch+12; Lv+22]. A distinctive aspect of the
work in this paper is that we consider the interplay between both the problem of invariant/robust
learning and adaptation.

The adaptive part of the learning model in this paper is also related to meta learning, where the goal
is to learn predictors that can quickly adapt to new tasks. Meta learning has been used for supervised
learning [San+16], reinforcement learning [Wan+16] and even unsupervised learning [JV19]. Tra-
ditional approaches to meta learning include defining a distribution over the structure of input data to
perform inference [Lak+11] or to use a memory model such as LSTM [Wan+18]. But the dominant
models for meta learning are generic gradient-based learning methods such as MAML [FAL17] and
Reptile [NAS18]. Theoretically, Tripuraneni et al. [TJJ21] and Du et al. [Du+20] also examine the rep-
resentation power of meta-learning. Although not motivated by causality, they show that if there is a
shared common structure, meta learning can be used to reduce sample complexity in unseen domains.

6 Experiments

The main claims of the paper are:

1. The invariant predictor g(X) will have good performance in new domains, so long as the
shifts obey the anti-causal structure.

2. The learned representation � enables rapid adaptation to new domains by learning only a
linear adjustment term on top of �.

3. The learned � disentangles the parts of X that are not affected by Z from the parts that are.

To evaluate the above claims, we conduct experiments on synthetic and real-world data. While causal
structures of real-world problems like image classification are usually unknown, we find that the
anti-causal based method works well on many such problems—suggesting the anti-causal structure
is appropriate. For space reasons, in addition to the experiments reported in this section, we also
report experiments on PACS [Li+17] and VLCS [FXR13] in Appendix B. These experiments also
strongly support the effectiveness of the causal adaptive model. We also provide a counterexample
showing that ACTIR can fail when causal assumptions fail to hold in, Appendix B.3.

Baselines For each experiment, all methods share a common architecture; they differ only in
objective functions or optimization procedures. For invariant learning, we compare with empirical risk
minimization (ERM), IRM [Arj+19] and the MAML [FAL17] base learner. To test how well learned
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(a) Synthetic Dataset (b) Color MNIST

Figure 2: The learned representation � disentangles stable and unstable factors of variation. Plots show
activation levels of different representation units. Units 0 and 1 are trained as the invariant part of the
representation. The invariant units have no dependency on the unstable factor Z, but the other unit has a
strong dependency. For synthetic dataset, Z is the random variable defined in the structural equations. For
Color MNIST, Z is the color.

representations � can enable fast adaptation, we fine-tune linear models on top of the representation.
For comparison, we also fine-tune linear layers on top of the representations (penultimate layers) from
ERM, IRM, and MAML. It has been shown recently that fine-tuning the last layer of models trained
by ERM has surprisingly good performance on many real-world datasets [RRR22]. For MAML, the
last layer is trained using the MAML update rule.

6.1 Synthetic Dataset

We generate synthetic data according to the following structural equations (which obey the anti-causal
structure):

Y  Rad(0.5) X?
z  Y · Rad(0.75) Z  Y · Rad(�e) Xz  Z

where input X is (Xz, X?
z ) and Rad(�) means that a random variable is �1 with probability 1� �

and +1 with probability �. We create two training domains with �e 2 {0.95, 0.7}, one validation
domain with �e = 0.6 and one test domain with �e = 0.1. Prediction with X?

z is stable but has a
lower accuracy compared to prediction with Xz during training. If a learning model only chooses
the classifier with the best prediction accuracy in training domains and ignores its instability, it will
choose Xz as its predictor and end up with only 10% accuracy on the test set. The robust predictor
would be X?

z with 75% accuracy. On the other hand, in the test domain, �Xz predicts Y with 90%

accuracy—so an adaptive predictor is better than the invariant one.

We use a three-layer neural network with hidden size 8 and ReLU activation for � and train the
neural network with Adam optimizer. The hyperparameters are chosen based on performance on the
validation set. For the fine-tuning test, we run 20 steps with a learning rate 10�2. The result is shown
in Table 1. Both IRM and ACTIR learn good invariant predictors. But ACTIR is also equipped with
the ability to adapt given a very small amount of data points while the performance of IRM stays the
same after fine-tuning. Perhaps unsurprisingly, ERM has a test accuracy of 10%, suggesting that it
uses only spurious features Xz .

6.2 Color MNIST

Color MNIST modifies the original MNIST dataset [Arj+19]. First, we assign label 0 to digits 0-4
and label 1 to digits 5-9. We then flip the label with probability 25% and assign colors to the original
images based on the label but with a flip rate 1� �e. That is, we assign color 0 to images with label 0
with probability �e. Here, color is naturally the factor of variation Z. We create two training domains
with �e 2 {0.95, 0.7}, a validation domain with �e

= 0.2 and a test domain with �e
= 0.1. Ideally,

we want to learn invariant predictors based on the shape of the digit—this will achieve 75% accuracy.
But the problem is significantly more challenging than the synthetic example because the color is a
much easier feature to learn than the shape of the digit, making models more susceptible to spurious
correlations. We use a three-layer convolutional neural network for � and train the neural network
with Adam optimizer. The hyperparameters are chosen based on performance on the validation set.
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Figure 3: ACTIR has good accuracy after fine-tuning with small datasets on Camelyon17. Graph shows
accuracy (%) on Camelyon17 for different numbers of fine-tuning examples. Standard errors are over 5 runs.
For each run, the accuracy is averaged for 100 fine-tuning tests.

Table 1: ACTIR has good invariant and adaptive performance on synthetic datasets and Color MNIST, and it
outperforms baseline methods on Camelyon17 for invariant prediction. The table shows accuracy (%). Note
that adaptation (n) means that the predictor is tuned on n number of labeled examples. For synthetic datasets,
standard errors are over 100 runs. For Color MNIST, it is over 50 runs. For Camelyon17, it is over 5 runs.
In each run, the adaptive accuracy is determined by the average of 100 fine-tuning tests for both synthetic
datasets and Color MNIST.

Synthetic Dataset Color MNIST Camelyon17
METHOD TEST ACC. ADAPTATION (10) TEST ACC. ADAPTATION (10) TEST ACC.

ERM 9.95±0.10 11.57±0.71 28.24±0.51 27.26±0.48 70.77±1.98
IRM 74.91±0.13 74.27±0.47 59.97±0.91 60.16±0.90 71.59±2.76
MAML 17.14±2.22 44.01±3.48 22.18±1.01 75.03±3.30 70.22±2.40
ACTIR 74.77±0.44 89.28±0.25 70.30±0.71 85.25±1.11 77.73±1.74

For the fine-tuning test, we run 20 steps with a learning rate 10
�2. The result is shown in Table 1.

ACTIR learns both the invariant and adaptive structure significantly better than reference baselines.

Causal Disentanglement To understand why ACTIR can adapt to test domains in both synthetic
and Color MNIST datasets, we plot distributions of activation values of �. See Figure 2. We
see that the first two coordinates—used as the invariant part of the representation in training (see
Section 4.3)—have distributions that do not depend on the value of Z. On the other hand, some other
(non-invariant) representation coordinates have activations that change dramatically depending on the
value of Z. Thus, the representation effectively disentangles the X?

z and Xz features. Importantly,
this is achieved with no a priori knowledge of what Z might be, and no observations of it.

6.3 Camelyon17

The goal of the Camelyon17 dataset [Ban+18] is to predict the existence of a tumor given a region
of tissue. This is a binary classification problem. Data are collected from a small number of
hospitals. But there are variations in data collection and processing that could negatively impact
model performance on data from a new hospital. We take the individual hospitals to be separate
domains. The objective is to generalize to new hospitals not seen in training. The dataset consists of
input images with size 96⇥ 96 and binary labels that indicate if the central 32⇥ 32 regions contain
any tumor tissues. The dataset can be divided into 5 subsets, each from a different hospital. Following
the WILDS benchmark [Koh+21], we use 3 for training, 1 for validation, and the last one for test.

We use a pre-trained ResNet-18 model for our � and train the whole model using Adam optimizer
with a learning rate 10

�4. For the fine-tuning test, we run 20 iterations with a learning rate 10
�2. As

shown in Table 1, ACTIR has the best invariant accuracy. For adaptive performance, Figure 3 shows
that ACTIR has a large performance improvement when given a small fine-tuning dataset, while other
models require more fine-tuning examples to see a significant increase in accuracy.
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7 Discussion

This paper studies learning invariant and transportable representations for a specific class of anti-
causal shift domains. We assume that all domains have a common anti-causal structure and are
differentiated only by the distribution of certain unobserved confounders. This setup is a reasonable
match for many practical problems.

This work serves as a proof of concept for this anti-causal domain shift notion, showing that it can be
translated into useful learning principles for domain adaptation. This opens the door for substantial
future work. In particular, the practical training procedure we use can likely be refined. It would also
be nice to find formal guarantees for robust models trained under this setup—e.g., relying on some
notion of diversity of training domains.

8 Acknowledgments

Thanks to Jacob Eisenstein for feedback on an earlier version. We also acknowledge the University of
Chicago’s Research Computing Center for providing computing resources. This work was partially
supported by Open Philanthropy.

References

[Arj+19] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. “Invariant risk minimization”.
In: arXiv preprint arXiv:1907.02893 (2019).

[Bai+20] H. Bai, R. Sun, L. Hong, F. Zhou, N. Ye, H.-J. Ye, S.-H. G. Chan, and Z. Li. “Decaug:
out-of-distribution generalization via decomposed feature representation and semantic
augmentation”. In: arXiv preprint arXiv:2012.09382 (2020).

[Ban+18] P. Bandi, O. Geessink, Q. Manson, M. Van Dijk, M. Balkenhol, M. Hermsen, B. E.
Bejnordi, B. Lee, K. Paeng, A. Zhong, et al. “From detection of individual metastases
to classification of lymph node status at the patient level: the camelyon17 challenge”.
In: IEEE Transactions on Medical Imaging (2018).

[Bes+18] M. Besserve, A. Mehrjou, R. Sun, and B. Schölkopf. “Counterfactuals uncover the
modular structure of deep generative models”. In: arXiv preprint arXiv:1812.03253

(2018).
[Cai+21] T. Cai, R. Gao, J. D. Lee, and Q. Lei. “A theory of label propagation for subpopulation

shift”. In: arXiv preprint arXiv:2102.11203 (2021).
[CB21] Y. Chen and P. Bühlmann. “Domain adaptation under structural causal models”. In:

Journal of Machine Learning Research 261 (2021).
[Du+20] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. “Few-shot learning via learning

the representation, provably”. In: arXiv preprint arXiv:2002.09434 (2020).
[FXR13] C. Fang, Y. Xu, and D. N. Rockmore. “Unbiased metric learning: on the utilization

of multiple datasets and web images for softening bias”. In: IEEE International Con-

ference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013.
2013.

[FAL17] C. Finn, P. Abbeel, and S. Levine. “Model-agnostic meta-learning for fast adaptation
of deep networks”. In: International Conference on Machine Learning. PMLR. 2017.

[Fuk+07] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. “Kernel measures of conditional
dependence.” In: NIPS. 2007.

[Gon+16] M. Gong, K. Zhang, T. Liu, D. Tao, C. Glymour, and B. Schölkopf. “Domain adaptation
with conditional transferable components”. In: International conference on machine

learning. PMLR. 2016.
[GL21] I. Gulrajani and D. Lopez-Paz. “In search of lost domain generalization”. In: 9th

International Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021. 2021.
[HM21] C. Heinze-Deml and N. Meinshausen. “Conditional variance penalties and domain shift

robustness”. In: Mach. Learn. 2 (2021).
[HDPM18] C. Heinze-Deml, J. Peters, and N. Meinshausen. “Invariant causal prediction for non-

linear models”. In: Journal of Causal Inference 2 (2018).

10



[Ils+20] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling. “Diva: domain invariant variational
autoencoders”. In: Medical Imaging with Deep Learning. PMLR. 2020.

[JV19] Y. Jiang and N. Verma. “Meta-learning to cluster”. In: arXiv preprint arXiv:1910.14134

(2019).
[KPS18] N. Kilbertus, G. Parascandolo, and B. Schölkopf. “Generalization in anti-causal learn-

ing”. In: arXiv preprint arXiv:1812.00524 (2018).
[Koh+21] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M.

Yasunaga, R. L. Phillips, I. Gao, et al. “Wilds: a benchmark of in-the-wild distribution
shifts”. In: International Conference on Machine Learning. PMLR. 2021.

[Lak+11] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. “One shot learning of simple
visual concepts”. In: Proceedings of the annual meeting of the cognitive science society.
33. 2011.

[Li+17] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. “Deeper, broader and artier domain
generalization”. In: Proceedings of the IEEE international conference on computer

vision. 2017.
[Li+18] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao. “Deep domain general-

ization via conditional invariant adversarial networks”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2018.
[Liu+21] C. Liu, X. Sun, J. Wang, H. Tang, T. Li, T. Qin, W. Chen, and T.-Y. Liu. “Learning

causal semantic representation for out-of-distribution prediction”. In: Advances in

Neural Information Processing Systems (2021).
[Loc+20] F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen.

“Weakly-supervised disentanglement without compromises”. In: International Confer-

ence on Machine Learning. PMLR. 2020.
[Lu+21] C. Lu, Y. Wu, J. M. Hernández-Lobato, and B. Schölkopf. “Nonlinear invariant risk

minimization: a causal approach”. In: arXiv preprint arXiv:2102.12353 (2021).
[Lv+22] F. Lv, J. Liang, S. Li, B. Zang, C. H. Liu, Z. Wang, and D. Liu. “Causality inspired

representation learning for domain generalization”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2022.
[Mag+18] S. Magliacane, T. Van Ommen, T. Claassen, S. Bongers, P. Versteeg, and J. M. Mooij.

“Domain adaptation by using causal inference to predict invariant conditional distribu-
tions”. In: Advances in neural information processing systems (2018).

[Mit+21] J. Mitrovic, B. McWilliams, J. C. Walker, L. H. Buesing, and C. Blundell. “Representa-
tion learning via invariant causal mechanisms”. In: 9th International Conference on

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 2021.
[MBS13] K. Muandet, D. Balduzzi, and B. Schölkopf. “Domain generalization via invariant fea-

ture representation”. In: Proceedings of the 30th International Conference on Machine

Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. 2013.
[NAS18] A. Nichol, J. Achiam, and J. Schulman. “On first-order meta-learning algorithms”. In:

arXiv preprint arXiv:1803.02999 (2018).
[PBM16] J. Peters, P. Bühlmann, and N. Meinshausen. “Causal inference by using invariant

prediction: identification and confidence intervals”. In: Journal of the Royal Statistical

Society. Series B (Statistical Methodology) (2016).
[PJS17] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and

learning algorithms. 2017.
[Roj+18] M. Rojas-Carulla, B. Schölkopf, R. E. Turner, and J. Peters. “Invariant models for

causal transfer learning”. In: J. Mach. Learn. Res. (2018).
[RRR22] E. Rosenfeld, P. Ravikumar, and A. Risteski. Domain-Adjusted Regression or: ERM

May Already Learn Features Sufficient for Out-of-Distribution Generalization. 2022.
[Rot+21] D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters. “Anchor regression:

heterogeneous data meet causality”. In: Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 2 (2021).
[Sag+19] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. “Distributionally robust neural

networks for group shifts: on the importance of regularization for worst-case general-
ization”. In: arXiv preprint arXiv:1911.08731 (2019).

11



[San+16] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. “Meta-learning
with memory-augmented neural networks”. In: International conference on machine

learning. PMLR. 2016.
[Sch+12] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. M. Mooij. “On

causal and anticausal learning”. In: ICML. 2012.
[Sch+21] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y.

Bengio. “Towards causal representation learning”. In: CoRR (2021).
[Shi+21] Y. Shi, J. Seely, P. H. Torr, N Siddharth, A. Hannun, N. Usunier, and G. Synnaeve.

“Gradient matching for domain generalization”. In: arXiv preprint arXiv:2104.09937

(2021).
[SSS19] A. Subbaswamy, P. Schulam, and S. Saria. “Preventing failures due to dataset shift:

learning predictive models that transport”. In: The 22nd International Conference on

Artificial Intelligence and Statistics. PMLR. 2019.
[TSS16] I. O. Tolstikhin, B. K. Sriperumbudur, and B. Schölkopf. “Minimax estimation of

maximum mean discrepancy with radial kernels”. In: Advances in Neural Information

Processing Systems (2016).
[TJJ21] N. Tripuraneni, C. Jin, and M. Jordan. “Provable meta-learning of linear representa-

tions”. In: International Conference on Machine Learning. PMLR. 2021.
[Vei+21] V. Veitch, A. D’Amour, S. Yadlowsky, and J. Eisenstein. “Counterfactual invari-

ance to spurious correlations: why and how to pass stress tests”. In: arXiv preprint

arXiv:2106.00545 (2021).
[Wal+21] Y. Wald, A. Feder, D. Greenfeld, and U. Shalit. “On calibration and out-of-domain

generalization”. In: Advances in neural information processing systems (2021).
[Wan+18] J. X. Wang, Z. Kurth-Nelson, D. Kumaran, D. Tirumala, H. Soyer, J. Z. Leibo, D. Has-

sabis, and M. Botvinick. “Prefrontal cortex as a meta-reinforcement learning system”.
In: Nature neuroscience 6 (2018).

[Wan+16] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell,
D. Kumaran, and M. Botvinick. “Learning to reinforcement learn”. In: arXiv preprint

arXiv:1611.05763 (2016).
[Wan+21] J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin. “Generalizing to unseen domains: A

survey on domain generalization”. In: Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,

19-27 August 2021. 2021.
[WJ21] Y. Wang and M. I. Jordan. “Desiderata for representation learning: a causal perspective”.

In: arXiv preprint arXiv:2109.03795 (2021).
[Zha+12] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. “Kernel-based conditional indepen-

dence test and application in causal discovery”. In: arXiv preprint arXiv:1202.3775

(2012).
[Zha+13] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang. “Domain adaptation under target

and conditional shift”. In: International Conference on Machine Learning. PMLR.
2013.

[Zhe+21] X. Zheng, X. Sun, W. Chen, and T.-Y. Liu. “Causally invariant predictor with shift-
robustness”. In: arXiv preprint arXiv:2107.01876 (2021).

[Zho+21] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. “Domain generalization: A survey”.
In: CoRR (2021).

[Zhu+20] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. “A compre-
hensive survey on transfer learning”. In: Proceedings of the IEEE 1 (2020).

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

12



• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Causal Setup
	Invariant Prediction
	Causal Decomposition of X
	Rapid Adaptation
	Learning Goals

	Observable Signature
	Causal Regularization

	Learning Algorithm
	Reparameterization
	Bi-Level Optimization
	Practical Algorithm
	Invariant and Adaptive Prediction

	Related Work
	Experiments
	Synthetic Dataset
	Color MNIST
	Camelyon17

	Discussion
	Acknowledgments
	Proofs
	Additional Experiments
	PACS
	VLCS
	Counterexample: When the Data Generating Process Does not Fit Causal Assumptions


