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In this appendix, we provide the following elements:

1. A complete proof of our main theorem 1 in Section A.

2. Further details about the training process, as well as the implementation of SCONE, in
Section B.

3. Further details about the experiments we conducted in Section C.

Code and data are available on our dedicated webpage: https://github.com/Anttwo/SCONE.

A Proof of Theorem 1

In this section, we keep all notations introduced in the main paper and give further details about the
proof of Theorem 1.

In particular, we start by listing all assumptions we make about the scene’s geometry and discuss
whether they are appropriate or not to real-case scenarios. Then, we present the complete derivations
leading to Theorem 1.

A.1 Main Assumptions

Assumption 1: The surface of the scene consists in a finite collection of bounded watertight
surfaces. To derive Theorem 1, we need the scene to be represented as a closed volume χ, and its
surface as the boundary ∂χ of χ, which is trivially true for a finite collection of bounded watertight
surfaces. Such an assumption is realistic since a real 3D object has a non-zero volume and is actually
made of watertight surfaces. Note that, in practice, the floor is scanned as a plane surface by a depth
sensor. The same observation applies to walls in indoor scenes, as well as all surfaces that delimit
unreachable parts of 3D space (except for the inside of objects). However, these surfaces still delimit
volumes in reality, and an arbitrary thickness can be predicted for them, as it won’t change the result
of the scan.

Following such assumptions, the Signed Distance Function (SDF) fχ : R3 → R of the volume χ is
defined as:

fχ(x) =

{
d(x, ∂χ) if x ∈ χ

−d(x, ∂χ) if x /∈ χ ,
(1)

where d(x, ∂χ) = infy∈∂χ ∥x− y∥2 for any x ∈ χ.

As we never reconstruct infinitely large scenes in practice, we also consider the scene to be bounded.
As a consequence, both χ and ∂χ are compact as they are bounded, closed subsets of R3.
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Figure 1: Example of a C2 approximation of a surface. On the left, a cube mesh with 6 faces and
12 sharp edges. On the right, a smoother C2 approximation of the same cube.

Assumption 2: The boundary ∂χ is C2. We suppose the scene’s surface is regular enough to be,
locally, the image of a C2 embedding of R2 into R3. This is a non-trivial assumption since in theory,
the surface of every object with sharp edges or corners is not a C2 boundary. However, in practice
most of real objects with edges (like a door, a table, etc.) are smoother than they appear, and can be
accurately represented by a C2 boundary. In general, we believe that a C2 approximation of most
realistic non-smooth surface is enough to compute a meaningful NBV anyway, as shown in Figure 1.

Following such assumptions, according to [3], there exists a quantity µ0 > 0 such that
the SDF fχ is twice continuously differentiable on the spherical neighborhood T (∂χ, µ0) :={
p ∈ R3 | ∃x ∈ ∂χ, ∥x− p∥2 < µ0

}
.

In particular, for all x0 ∈ ∂χ, the function fχ satisfies ∇fχ(x0) = N(x0) where N is the inward
normal vector field [3]. Moreover, for all absolutely integrable function g : T (∂χ, µ0) → R, and for
all µ < µ0, the following identity is satisfied [3]:∫

T (∂χ,µ)

g(x)dx =

∫
∂χ

∫ µ

−µ

g(x0 + λN(x0)) det(I − λWx0
) dλ dx0, (2)

where Wx0
is the Weingarten map at x0, that is, the Hessian of fχ, which is continuous on T (∂χ, µ0)

since fχ is C2 on T (∂χ, µ0). The integral on the left of Equation 2 is a volumetric integral on a
spherical neighborhood, while the integral on the right is a surface integral on ∂χ.

Please note that Equation 2 from [3] actually only applies to tubular neighborhoods, which are
specific neighborhoods of submanifolds resembling the normal bundle. However, since the spherical
neighborhoods of C2 watertight surfaces also are tubular neighborhoods, we prefer to use the simpler
definition of spherical neighborhoods.

A.2 Proof of Theorem 1

To derive the theorem, we first prove the following lemma.

Lemma 2. Under the previous assumptions, there exists λ0 > 0 such that, for all λ < λ0 and
x0 ∈ ∂χ, the point x0 + λN(x0) is located inside the volume, i.e., fχ(x0 + λN(x0)) ≥ 0.
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Proof. Following our main assumptions, fχ is C2 on the spherical neighborhood T (∂χ, µ0). We
define Γ as the closure of T (∂χ, µ0

2 ). As a bounded, closed subset of T (∂χ, µ0), Γ is compact. Since
the Hessian of fχ is continuous on Γ, it is a bounded function on Γ. We denote by B > 0 a bound
verifying ∥Wx0

∥op ≤ B for all x0 ∈ Γ, with ∥ · ∥op the operator norm.

Then, for a given surface point x0 ∈ ∂χ, we are interested in the sign of fχ(x0 + λN(x0)) for λ > 0.
In this regard, we use the Lagrangian form of the Taylor expansion of fχ at x0: For all λ < µ0

2 , there
exists wx0,λ that lies on the line connecting x0 and x0 + λN(x0) such that

fχ(x0 + λN(x0)) = fχ(x0) + λ∇fχ(x0)
TN(x0) +

λ2

2
N(x0)

TWwx0,λ
N(x0). (3)

Since x0 is located on the surface, f(x0) = 0. As we mentioned in the previous subsection,
∇fχ(x0) = N(x0) so that ∇fχ(x0)

TN(x0) = ∥N(x0)∥22 = 1.

Moreover, wx0,λ ∈ Γ. We apply Cauchy-Schwarz inequality and deduce, by definition of the operator
norm:

|N(x0)
TWwx0,λ

N(x0)| ≤ ∥N(x0)∥2 · ∥Wwx0,λ
∥op · ∥N(x0)∥2

|N(x0)
TWwx0,λ

N(x0)| ≤ B.

Consequently,

fχ(x0 + λN(x0)) = λ+
λ2

2
N(x0)

TWwx0,λ
N(x0)

≥ λ− λ2

2
B.

The polynomial function λ 7→ λ− λ2

2 B being positive on (0, 2
B ), we define λ0 = min( 2

B , µ0

2 ) and
conclude that fχ(x0 + λN(x0)) > 0 for all positive λ < λ0.

Finally, we prove the main theorem.
Theorem 1. Under the previous regularity assumptions on the volume χ of the scene and its surface
∂χ, there exist µ0 > 0 and M > 0 such that for all µ < µ0, and any camera c ∈ C:∣∣∣∣ 1

|χ|V

∫
χ

gHc (µ;x)dx− µ
|∂χ|S
|χ|V

GH(c)

∣∣∣∣ ≤ Mµ2 , (4)

where |χ|V is the volume of χ.

Proof. We keep the notations introduced in the previous lemma and, if needed, we update the value
of µ0 so that µ0 ≤ λ0. Then, we start back from equation (3) of the main paper, where we introduced
a new visibility gain function gHc to adapt the definition of the former visibility gain νHc on spherical
neighborhoods. For any 0 < µ < µ0, we define this function as:

gHc (µ;x) =

{
1 if ∃x0 ∈ ∂χ, λ < µ such that x = x0 + λN(x0) and νHc (x0) = 1,

0 otherwise ,
(5)

where N is the inward normal vector field, which is well defined according to our main regularity
assumptions. Once again, for c ∈ C, µ < µ0, gHc is obviously bounded on the bounded subset
T (∂χ, µ0). Thus, gHc (µ, ·) is absolutely integrable on T (∂χ, µ0). Consequently, we apply the
formula 2 from [3] and find that, for all c ∈ C and µ < µ0:∫

T (∂χ,µ)

gHc (µ;x)dx =

∫
∂χ

∫ µ

−µ

gHc (µ;x0 + λN(x0)) det(I − λWx0
) dλ dx0. (6)

Now, we are going to show that det(I − λWx0
) = 1 + λb(λ, x0) where b is a bounded function on

the compact space [−µ0, µ0]× ∂χ. To this end, we could either develop directly the determinant or
use results about characteristic polynomials to speed up the proof.

We choose the second approach: since Wx0
is a square 3× 3 matrix, there exist polynomial functions

fi : R
3×3 → R, i = 1, ..., 3 such that, for all x0 ∈ ∂χ, the characteristic polynomial of Wx0

verifies

det(XI3 −Wx0
) = X3 + f1(Wx0

)X2 + f2(Wx0
)X + f3(Wx0

).
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Consequently, for all x0 ∈ ∂χ and 0 < λ < µ0,

det(I3 − λWx0
) = λ3 det(

1

λ
I3 −Wx0

)

= λ3

(
1

λ3
+ f1(Wx0

)
1

λ2
+ f2(Wx0

)
1

λ
+ f3(Wx0

)

)
= 1 + λ

(
f1(Wx0) + f2(Wx0)λ+ f3(Wx0)λ

2
)
.

We define b : (λ, x0) 7→ f1(Wx0) + f2(Wx0)λ+ f3(Wx0)λ
2. Since the functions fi are polynomial

and x0 7→ Wx0
is continuous on ∂χ, we deduce that b is bounded on [−µ0, µ0]× ∂χ as a continuous

function defined on a compact space. We denote by M > 0 a bound verifying |b(λ, x0)| ≤ M for all
(λ, x0) ∈ [−µ0, µ0]× ∂χ.

Subsequently, for all x0 ∈ ∂χ, we have by definition gHc (µ;x0 + λN(x0)) = gHc (µ;x0) = νc(x0)
when 0 ≤ λ < µ, and gHc (µ;x0 + λN(x0)) = 0 when −µ < λ < 0. By rewriting equation 6, it
follows that, for every 0 < µ < µ0:∫

T (∂χ,µ)

gHc (µ;x)dx =

∫
∂χ

∫ µ

0

gHc (µ;x0)(1 + λb(λ, x0)) dλ dx0

= µ

∫
∂χ

gHc (µ;x0) dx0 +

∫
∂χ

∫ µ

0

λgHc (µ;x0)b(λ, x0) dλ dx0

= µ|∂χ|SGH(c) +

∫
∂χ

∫ µ

0

λgHc (µ;x0)b(λ, x0) dλ dx0.

(7)

Since the volume is supposed to be opaque, function gHc (µ; ·) is equal to 0 for every point outside
T (∂χ, µ). Moreover, according to lemma 2, for all x0 ∈ ∂χ, µ < µ0, the point x0 + µN(x0) is
located inside the volume χ, such that

∫
T (∂χ,µ)

gHc (µ;x) dx =
∫
χ
gHc (µ;x) dx.

Since |gHc (µ; ·)| ≤ 1 for all c ∈ C and µ < µ0:∣∣∣∣∫
χ

gHc (µ;x)dx− µ|∂χ|SGH(c)

∣∣∣∣ ≤ ∫
∂χ

∫ µ

0

λ
∣∣gHc (µ;x0)b(λ, x0)

∣∣ dλ dx0

≤
∫
∂χ

∫ µ

0

λ |b(λ, x0)| dλ dx0

≤
∫
∂χ

∫ µ

0

λM dλ dx0

≤ Mµ2

2

∫
∂χ

dx0

≤ Mµ2

2
|∂χ|S = |χ|V ·M ′µ2

(8)

with M ′ = M
2

|∂χ|S
|χ|V .

B Training

Motivated by the literature about NBV reconstruction for objects, we trained our model on the simple
case of single, centered object reconstruction (see Next Best View for Single Object Reconstruction),
with meshes from ShapeNetCore v1 [1], following the same training, validation and test distributions
than [11]. Indeed, we wanted our model to learn general geometric prior and compute coverage gain
predictions on various shapes. Since SCONE relies on neighborhood geometric features as well as
proxy point-level information to compute various metrics, we made the assumption that training
only on an object dataset should not prevent the model from scaling to 3D scenes. We confirmed
this hypothesis with an experiment on large 3D structures with free motion on a 5D grid, detailed in
Active View Planning in a 3D Scene.

In theory, the full model could be trained directly in an end-to-end fashion with a single loss.
However, in practice we schedule the process, and train the two modules consecutively. In particular,
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we first train the geometric prediction module alone so that predicted occupancy mappings become
meaningful; then, we use the geometric predictions as an input to train the second module, and make
it learn to predict accurate visibility gains. Indeed, training the entire model from scratch makes
convergence difficult since the second module of the model learns to predict visibility gains from
meaningless geometric reconstructions at the beginning.

B.1 Training the geometric prediction module

Inspired by [5, 9], we follow a simple pipeline to train the geometric prediction model: For each mesh
Mi in a batch (M1, ...,MNmesh), we sample a random number ni of camera poses, capture ni depth
maps from these positions, and compute the corresponding partial point cloud Pi. Then, for each
mesh we sample NX proxy points X(i) = (x

(i)
1 , ..., x

(i)
NX

) and compute their predicted occupancy

probability σ̂(Pi; x
(i)
j ). Finally, we use an MSE loss to compare the predictions with ground truth

occupancy values.

More exactly, the loss Locc used to train the geometric prediction module of SCONE is the following:

Locc =
1

Nmesh

Nmesh∑
i=1

1

NX

NX∑
j=1

∥σ̂(Pi; x
(i)
j )− σ(x

(i)
j )∥2. (9)

B.2 Training the coverage prediction module

Once the geometric prediction model converges, we start to train the visibility gain IH prediction
module. To this end, we first select a batch of meshes. For each mesh, we capture a random number
of initial depth map observations (up to 10) with a ray-casting renderer and apply SCONE to predict
visibility gain function coordinates in spherical harmonics. Since all cameras are sampled on a sphere
in this setup, they share the same proxy points in their field of view and we can directly and efficiently
compute coverage gains for a dense set of cameras on the sphere from predicted visibility gains, in a
single forward pass.

Since our predicted volumetric gains are not equal to the true coverage gains but only proportional,
we cannot compare directly the predicted values to ground-truth coverage gains but have to normalize
them first. Moreover, we want SCONE not only to select the right NBVs consistently but also
predict an accurate distribution of coverage gains in the volume for further path planning applications.
Consequently, we consider the predicted IH(c) as a distribution on c and compare it to the ground
truth coverage gains using the Kullback-Leibler divergence DKL after a softmax normalization.

More exactly, the training process starts in the same way as the previous one: For each mesh Mi

in a batch (M1, ...,MNmesh), we sample a random number ni of camera poses (which correspond to
the history Hi), capture ni depth maps from these positions, and compute the corresponding partial
point cloud Pi. For each mesh we sample NX proxy points X(i) = (x

(i)
1 , ..., x

(i)
NX

) and compute

their predicted occupancy probability σ̂(Pi; x
(i)
j ).

Then, for each mesh we sample a subset of proxy points according to their occupancy probability;
we concatenate these proxy points with their occupancy values, compute the camera history features
(hHi(x

(i)
1 ), ..., hHi(x

(i)
NX

)) and feed these inputs to the second module of SCONE to predict the
spherical mappings ϕm

l of visibility gains with a single forward pass.

Next, we sample a dense set of Ncam camera poses C(i) = (c
(i)
1 , ..., c

(i)
Ncam

) on a sphere around the

object and compute the predicted coverage gains (IHi
(c

(i)
1 ), ..., IHi

(c
(i)
Ncam

)) for all cameras using
Monte-Carlo integration on the predicted spherical mappings of visibility gains. Finally, we compute
the following loss Lcov to supervise training for the second module of SCONE:

Lcov =
1

Nmesh

Nmesh∑
i=1

DKL(softmax(GHi) || softmax(IHi))

=
1

Nmesh

Nmesh∑
i=1

Ncam∑
j=1

s
(i)
j log

(
s
(i)
j

ŝ
(i)
j

)
,

(10)
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where the softmax normalization is defined as follows:

s
(i)
j =

exp
(
GHi

(c
(i)
j )
)

∑Ncam
k=1 exp

(
GHi

(c
(i)
k )
) and ŝ

(i)
j =

exp
(
IHi

(c
(i)
j )
)

∑Ncam
k=1 exp

(
IHi

(c
(i)
k )
) .

We supervise on the final coverage value (i.e., the value of the Monte-Carlo integration) rather than
per-point visibility gains, since it would be heavier to compute and would require further assumptions.
Indeed, we would have to compute ground truth visibility gains for probabilistic points that may
not be in χ, which needs further hypothesis to handle properly. On the contrary, supervising on
the integral value prevents us from handling directly this problem: it is up to the model to process
information as a volumetric integral, identify which point could be in the spherical neighborhood
in an implicit manner and learn a meaningful per-point visibility gain metric. We can stick to our
volumetric framework and have no need to make further assumptions on geometry or directly extract
surfaces from our predicted probability field, which could lead to inaccurate results.

Overall, our model has 3,650,657 parameters: 2,257,769 for the occupancy probability prediction
module, and 1,392,888 for the visibility gain prediction module. Each module is trained 20 hours on
4 GPUs Nvidia Tesla V100 SXM2 16 Go. We use a linear warmup strategy on the learning rate λ to
make training more stable: λ linearly increases from 0 to its default value λ = 10−4 during the first
1,000 iterations. The learning rate is ultimately decreased to 10−5 after 60,000 iterations for further
improvement.

All experiments were run on a single GPU Nvidia GeForce GTX 1080 Ti. Further details about the
model’s architecture are given in Section Implementation details.

B.3 Implementation details

We implemented and trained our model with PyTorch [6]. In particular, we used ray-casting renderers
from PyTorch3D [7] to generate and use depth maps as inputs to our model.

To compute all spherical mappings involved in our method, we use the orthonormal basis of spherical
harmonics with rank lower or equal to 7, which makes a total of 64 harmonics. In this regard, both
the camera history features hH and the predicted visibility gain functions ϕ are mapped as vectors
with 64 coordinates.

Code and data are available on our dedicated webpage: https://github.com/Anttwo/SCONE.

C Experiments

In this section, we give further details about our experiments: how the dataset is constructed, the
hyperparameters involved in the prediction, and the evaluation metrics. We also provide additional
results.

C.1 Next Best View for Single Object Reconstruction

We first compare the performance of our model to the state of the art on a subset of the ShapeNet
dataset [1].

Dataset. We follow the protocol of [11]: Using the train/validation/test split of [10] for ShapeNet
dataset [1], we sample 4,000 training meshes from 8 categories of objects (Airplane, Cabinet, Car,
Chair, Lamp, Sofa, Table, Vessel), as well as 400 validation meshes and 400 test meshes from the
same categories. Note that the full test set used in [10] contains 1200 meshes. To make sure we
provide a fair comparison with the state of the art, we sampled 10 different test subsets of 400 meshes
among all 1200 meshes, ran the experiment 10 times and averaged the metrics. The results were
really close from one subset to another, and our model systematically provided better coverage values
than other methods in literature.

Following [11], we reconducted the same experiment with subsets of 400 test meshes from 8 categories
unseen during training (Bed, Bench, Bookshelf, Bus, Guitar, Motorbike, Pistol, Skateboard).
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Figure 2: Convergence speed of the covered surface by several methods (NBV-Net [4], Area
Factor [8], Proximity Count [2], PC-NBV [11], ours) on a subset of ShapeNet dataset [1].
Our SCONE method has the highest reconstruction performance in terms of AUC, and performs
significantly better when only a small number of views are available. For this experiment, we
constrain the camera to stay on a sphere centered on the objects in order to compare with previous
methods.

Prediction. All camera poses are sampled on a sphere around the object. For each mesh, we follow
the protocol of [11] and capture a first depth map from a random camera pose, which is reprojected in
3D as a cloud of 1024 points. Then, we use our model to predict coverage gain for all camera poses,
and select the NBV as the pose with the highest gain. We concatenate the partial point cloud captured
from the new position to the previous one, and we iterate the process until we have 10 views of the
object. Note that we reconstruct a small scale object which is entirely contained in the field of view
of every camera, i.e., χc = χ for all camera poses c. Therefore, at each round we compute coverage
gains for all camera poses in a single forward pass thanks to the spherical mappings of visibility gain
functions.

Evaluation metric. Once again, we follow the protocol of [11] to compute ground-truth coverage
scores and evaluate our method. For each mesh, we uniformly sample a cloud P0 of 16,384 points on
the surface, which represent the ground truth surface. Then, the total coverage C(PH) of a partial
point cloud PH obtained by merging depth maps captured from camera poses in H is computed as
follows:

C(PH) =
1

|P0|
∑

p0∈P0

U(ϵ− min
p∈PH

∥p0 − p∥2), (11)

where ϵ is a distance threshold. C(PH) simply evaluates the number of points in P0 that have at
least a neighbor in PH closer than ϵ. For the experiment, we used the same threshold as [11], i.e.,
ϵ = 0.00707m.

Results. We provide additional results for this experiment. In particular, figure 2 illustrates the
evolution of surface coverage during reconstruction for several methods.

C.2 Active View Planning in a 3D Scene

Dataset. Since, to the best of our knowledge, we propose the first supervised Deep Learning method
for free 6D motion of the camera, we created a dataset made of 13 large-scale scenes under the CC
License for quantitative evaluation (3D models courtesy of Brian Trepanier, Andrea Spognetta, and
3D Interiors; all models were downloaded on the website Sketchfab). For each scene, we defined a
bounding box delimiting the main structure to reconstruct.

To scale the geometric prediction module of SCONE to large 3D scenes, we partition the scene in 3D
cells depending on the dimensions of the bounding box: the larger the bounding box, the more cells in
the scene. Then, each point belonging to the partial point cloud PH gathered by the sensor (computed
by reprojecting all depth maps in 3D) is stored in the corresponding cell. To predict the occupancy
probability of each proxy point, we only use the points located in neighboring cells. Therefore, the
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Table 1: AUCs of surface coverage in large 3D scenes by SCONE and our two baselines after
averaging over multiple trajectories, with standard deviations. Despite being trained only on centered
ShapeNet 3D models, the second module of SCONE is able to generalize to complex scenes and
consistently reaches better AUC than the baselines.

Method

3D scene Random Walk SCONE-Entropy SCONE

Dunnottar Castle 0.355 ± 0.106 0.456 ± 0.041 0.739 ± 0.050
Manhattan Bridge 0.405 ± 0.089 0.361 ± 0.065 0.685 ± 0.034
Alhambra Palace 0.384 ± 0.086 0.437 ± 0.047 0.567 ± 0.031
Leaning Tower 0.286 ± 0.122 0.415 ± 0.023 0.542 ± 0.026
Neuschwanstein Castle 0.403 ± 0.032 0.538 ± 0.040 0.653 ± 0.025
Colosseum 0.308 ± 0.061 0.512 ± 0.024 0.571 ± 0.024
Eiffel Tower 0.495 ± 0.062 0.741 ± 0.017 0.762 ± 0.020
Fushimi Castle 0.584 ± 0.078 0.802 ± 0.022 0.841 ± 0.027
Pantheon 0.175 ± 0.065 0.351 ± 0.020 0.396 ± 0.036
Bannerman Castle 0.321 ± 0.121 0.667 ± 0.023 0.642 ± 0.047
Christ the Redeemer 0.600 ± 0.146 0.839 ± 0.038 0.859 ± 0.022
Statue of Liberty 0.469 ± 0.075 0.681 ± 0.018 0.693 ± 0.032
Natural History Museum 0.147 ± 0.024 0.080 ± 0.010 0.177 ± 0.031

Mean 0.380 0.529 0.625

growth of the global partial point cloud does not influence the computation time of the occupancy
probability prediction: We avoid unnecessary computation but keep meaningful predictions since our
geometric prediction model relies on local neighborhood features.

Note that we do not reproject every point of the depth maps to compute the partial point cloud PH .
Indeed, we introduce a distance threshold ϵ to avoid unnecessary large amounts of points in the cells.
Let p be a point belonging to a new depth map computed by the sensor; then, we identify the cell
in which p is located, and add p to the point cloud PH if and only if for all points p0 in the cell,
∥p− p0∥2 > ϵcloud. Therefore, the threshold ϵcloud is a parameter that influence the resolution of the
reconstructed point cloud PH .

Prediction. To evaluate the scalability of our model to large environments as well as free camera
motion in 3D space, we use once again a ray-casting renderer and follow the protocol described in
section Active View Planning in a 3D Scene of the main paper. However, to predict surface coverage
gain in a large 3D scene, we slightly modify the computation of per-point visibility gains.

Indeed, note that the density of points gathered by a depth sensor like a LiDAR decreases with
the distance to the surface, as well as the angle between the surface normal and the direction of
observation. Since SCONE was trained on small scale objects with camera poses sampled on a sphere,
our model learned to predict optimized angle for observation, but did not learn to predict optimized
distance. Actually, the predicted visibility gain of proxy points sampled in space should reflect the
variations in LiDAR density, and decrease inversely with the squared distance to the camera.

To this end, given a camera pose c, we penalize the distance by multiplying the predicted visibility
gain of a proxy point x ∈ χc by a factor 1

η+∥x−cpos∥2
2

. We apply the same strategy to the baseline
SCONE-Entropy, and multiply the Shannon Entropy of a proxy point by the same factor.

Evaluation metric. To compute ground-truth total surface coverage for evaluation, we use the same
approach than the previous experiment detailed in subsection C.1. In particular, we sample 100,000
points on the surface to obtain a ground-truth cloud P0. Moreover, we use ϵcloud, the parameter that
defines the resolution of the reconstructed point cloud PH , to compute the total surface coverage
following equation 11.

C.3 Ablation study

In this subsection, we provide further analysis about both prediction modules of SCONE.
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(a) Average on all 13 scenes (b) Dunnottar Castle (c) Manhattan Bridge

(d) Alhambra Palace (e) Leaning Tower, Pisa (f) Neuschwanstein Castle

(g) Colosseum (h) Eiffel Tower (i) Fushimi Castle

(j) Pantheon (k) Bannerman Castle (l) Christ the Redeemer

(m) Statue of Liberty (n) Natural History Museum

Figure 3: Convergence speed of the covered surface in large 3D scenes by SCONE and our
two baselines. The first image shows the average on all scenes. For each scene, surface coverage is
averaged on several trajectories starting from different camera poses. Standard deviations are shown
on the figures. Despite being trained only on centered ShapeNet 3D models, the second module of
SCONE is able to generalize to complex scenes and consistently reaches better coverage than the
baselines.
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Architecture Mean Squared Error Continuous IoU IoU

Base Architecture 0.0397 0.777 0.843
No Neighborhood Feature 0.0816 0.611 0.702
With Camera History 0.0386 0.782 0.844

(a) MSE and IoU after training (b) Training loss (MSE)

Figure 4: (a) Comparison of Mean Squared Error and IoU for variations of our occupancy
probability prediction model after training. (b) Comparison of training losses (MSE) for
variation of our model. Without the multi-scale neighborhood features, the occupancy probability
prediction module of SCONE suffers from a large decrease in performance. On the contrary, using
camera history as an input feature only offers a marginal increase in performance.

Occupancy probability. As we explained in the main paper, the lack of neighborhood features
causes a huge loss in performance. On the contrary, using the spherical mappings hH(x) of camera
history H as an additional feature offers a marginal increase in performance.

In this appendix, we develop our analysis and provide not only the values of the MSE at the end of
training but also IoU and training losses that support our conclusions in figure 4. In particular, we
compute a Continuous IoU which extends the definition of IoU to a non-binary occupancy probability
field. More exactly, we keep notations from subsection B.1, and define the continuous IoU for the ith

mesh of the test dataset as

IoUcontinuous =

∑NX

j=1 σ̂(Pi; x
(i)
j ) · σ(x(i)

j )∑NX

j=1 σ̂(Pi; x
(i)
j ) + σ(x

(i)
j )− σ̂(Pi; x

(i)
j ) · σ(x(i)

j )
(12)

We also compute a more conventional IoU by thresholding occupancy probability: We define the set
of predicted occupied points as the set of all points with a predicted occupancy probability above 0.5.
Then, we compute the IoU with the set of ground truth occupied points.

Visibility gain. We provide in figure 5 additional results supporting the observations we made in
the main paper: the geometric prediction computed in a volumetric framework greatly increases
performance for computing an accurate distribution of coverage gains for all camera poses in the
scene, as the Kullback-Leibler divergence loss suggests. On the contrary, using spherical mappings
hH of camera history as an additional input only offers a marginal increase in performance for
computing the distribution of coverage gains. However, camera history features drastically improve
the identification of the maximum of the distribution of coverage gains (i.e., the selection of a single
NBV), as shown by the evolution of surface coverage during reconstruction.
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(a) Training loss (b) Validation loss (c) Surface coverage

Figure 5: Comparison of (a) training losses, (b) validation losses, and (c) surface coverage for
variations of our visibility gain prediction model. The surface coverage is computed during a
reconstruction process that follows the protocol presented in section C.1. The validation loss
is plotted with exponentially weighted moving average over 10 epochs. For surface coverage, the
first round of reconstruction is not plotted since all curves start from the same point. Thanks to its
volumetric approach, the full model predicts a better distribution of coverage gains on the whole
space as it is indicated by the KL Divergence training loss, which is convenient for full path planning
and trajectory computation in a 3D scene. Moreover, the full model does not suffer from a loss
of performance in coverage when selecting a single NBV—i.e., identifying the maximum of the
coverage gain distribution—compared to the version that uses directly the dense surface points, which
is generally the case when working with volumetric approaches.
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