
A Dataset Licensing Information

• CIFAR-10 [33] is licensed under the MIT license.
• The licensing information of Tiny-ImageNet [34] is not available. However, the data is

available for free to researchers for non-commercial use.

B Additional Experiment Details and Results

We set ↵ = 0.5,� = 1 in equation 1 and equation 3. We also set �k = 5, pinter = 0.01,
pintra = 0.005. We also match different weight sparsity with gradient sparsity for best performance.
We sample 20% data from Split CIFAR-10 training set for validation, and we use grid-search on
this validation set to help us select the mentioned best hyperparameters. We use the same set of
hyperparameters for both datasets. For accurate evaluation, we repeat each experiments 3 times
using different random seeds and report the average performance. During our experiments, we adopt
unstructured sparsity type and uniform sparsity ratio (0.75, 0.90, 0.95) for all convolutional layers in
the models.

B.1 Evaluation Metrics Explanation

Training FLOPs The FLOPs of a single forward pass is calculated by taking the sum of the number
of multiplications and additions in each layer l for a given layer sparsity sl. Each iteration in the
training process is composed of two phases, i.e., the forward propagation and backward propagation.

The goal of the forward pass is to calculate the loss of the current set of parameters on a given batch
of data. It can be formulated as al = �(zl) = �(wl ⇤ al�1 + bl) for each layer l in the model. Here,
w, b, and z represent the weights, biases, and output before activation, respectively; �(.) denotes the
activation function; a is the activations; ⇤ means convolution operation. The formulation indicates
that the layer activations are calculated in sequence using the previous activations and the parameters
of the layer. Activation of layers are stored in memory for the backward pass.

As for the backward propogation, the objective is to back-propagate the error signal while calculating
the gradients of the parameters. The two main calculation steps can be represented as:

�l = �l+1 ⇤ rotate180°(wl)� �0(zl), (4)
Gl = al�1 ⇤ �l, (5)

where �l is the error associated with the layer l, Gl denotes the gradients, � represents Hadamard
product, �0(.) denotes the derivative of activation, and rotate180°(.) means rotating the matrix by 180°
is the matrix transpose operation. During the backward pass, each layer l calculates two quantities,
i.e., the gradient of the activations of the previous layer and the gradient of its parameters. Thus, the
backward passes are counted as twice the computation expenses of the forward pass [20]. We omit the
FLOPs needed for batch normalization and cross entropy. In our work, the total FLOPs introduced by
TDM, DDR, and DGM on split CIFAR-10 is approximately 4.5⇥ 109 which is less than 0.0001% of
total training FLOPs. For split Tiny-ImageNet, the total FLOPs of them is approximately 1.8⇥ 1010,
which is also less than 0.0001% of total training FLOPs. Therefore, the computation introduced by
TDM, DDR, and DGM is negligible.

Memory Footprints Following works [10, 67], the definition of memory footprints contain two parts:
1) activations (feature map pixels) during training phase, and 2) model parameters during training
phase. For experiments, activations, model weights, and gradients are stored in 32-bit floating-point
format for training. The memory footprint results are calculated with an approximate summation of
them.

B.2 Details of Memory Footprint

The memory footprint is composed of three parts: activations, model weights, and gradients. They
are all represented as bw-bit numbers for training.

The number of activations in the model is the sum of the activations in each layer. Suppose that the
output feature of the l-th layer with a batch size of B is represented as al 2 RB⇥Ol⇥Hl⇥Wl , where

16



Ol is the number of channels and Hl ⇥Wl is the feature size. The total number of activations of the
model is thus B

P
l OlHlWl.

As for the model weights, our SparCL training a sparse model with a sparsity ratio s 2 [0, 1] from
scratch. The sparse model is obtained from a dense model with a total of N weights. A higher value
of s indicates fewer non-zero weights in the sparse model. Compressed sparse row (CSR) format is
commonly used for sparse storage, which greatly reduces the number of indices need to be stored for
sparse matrices. As our SparCL adopt only one sparsity type and we use a low-bit format to store the
indices, we omit the indices storage here. Therefore, the memory footprint for model representation
is (1� s)Nbw.

Similar calculations can be applied for the gradient matrix. Besides the sparsity ratio s, additional q
gradients are masked out from the gradient matrix, resulting a sparsity ratio s + q. Therefore, the
storage of gradients can be approximated as (1� (s+ q))Nbw.

Combining the activations, model representation, and gradients, the total memory footprint in SparCL
can be represented as (2B

P
l OlHlWl + (1� s)N + (1� (s+ q))N)bw.

DDR requires store indices for the easier examples during the training process. The number of
training examples for Split CIFAR-10 and Split Tiny-ImageNet on each task is 10000. In our work,
we only need about 3KB (remove 30% training data) for indices storage (in the int8 format) and the
memory cost is negligible compared with the total memory footprint.

B.3 Effect of Cutoff Stage

Table A1: Effect of cutoff.
cutoff 1 2 3 4 5 6 7 8 9

Class-IL (") 71.54 72.38 72.74 73.20 73.10 73.32 73.27 73.08 73.23

To evaluate the effect of the cutoff stage, we use the same setting as in Figure 3 by setting the
sparsity ratio to 0.90. We keep the data removal proportion ⇢ = 30%, and only change cutoff.
Table A1 shows the relationship between cutoff and the Class-IL average accuracy. Note that
from the perspective of efficiency, we would like the cutoff stage as early as possible, so that the
remaining epochs will have less examples. However, from Table A1, we can see that if we set it too
early, i.e., cutoff  3, the accuracy drop is significant. This indicate that even for the “easy-to-learn”
examples, removing them too early results in underfitting. As a balance point between accuracy and
efficiency, we choose cutoff = 4 in our final version.

B.4 Supplementary Ablation Study

Table A2: Ablation study on Split-CIFAR10 with 0.90 sparsity.

TDM DDR DGM Class-IL (") FLOPs Train
⇥1015 (#) Memory Footprint (#)

7 7 7 72.70 13.9 247MB
3 7 7 72.98 1.6 166MB
3 3 7 73.20 1.2 166MB
3 7 3 73.30 1.5 165MB
3 3 3 73.42 1.1 165MB

Similar to Table 3, we show ablation study with 0.90 sparsity ratio in Table A2. Under a larger
sparsity ratio, the conclusion that all components contribute to the final performance still holds.
However, we can observe that the accuracy increase that comes from DDR and DGM is less than
what we show in Table 3. We assume that larger sparsity ratio makes it more difficult for the model
to retain good accuracy in CL. Similar results has also been observed in [67] under the usual i.i.d.
learning setting.
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Table A3: Ablation study of the gradient sparsity ratio on Split-CIFAR10.

weight sparsity gradient sparsity Class-IL (") FLOPs Train
⇥1015 (#) Memory Footprint (#)

0.75 0.78 74.08 3.4 178MB
0.75 0.80 73.97 3.3 177MB
0.75 0.82 73.79 3.3 177MB
0.75 0.84 73.26 3.2 176MB

0.90 0.91 73.33 1.6 166MB
0.90 0.92 73.30 1.5 165MB
0.90 0.93 72.64 1.5 165MB

B.5 Exploration on DGM

We conduct further experiments to demonstrate the influence of gradient sparsity, and the results are
shown in Table A4. There are two sets of the experiments with different weight sparsity settings:
0.75 and 0.90. Within each set of the experiments (the weight sparsity is fixed), we vary the gradient
sparsity values. From the results we can see that increasing the gradient sparsity can decrease the
FLOPs and memory footprint. However, the accuracy performance degrades more obvious when the
gradient sparsity is too much for the weight sparsity. The results indicate that suitable gradient sparsity
setting can bring further efficiency to the training process while boosting the accuracy performance.
In the main results, the gradient sparsity is set as 0.80 for 0.75 weight sparsity, and set as 0.92 for
0.90 weight sparsity.

C On-Mobile Compiler Optimizations and Inference Results

C.1 Compiler Optimizations

Each iteration in the training process is composed of two phases, i.e., the forward propagation and
backward propagation. Prior works [18, 23, 27, 28, 30, 36, 38, 69] have proved that sparse weight
matrices (tensors) can provide inference acceleration via reducing the number of multiplications in
convolution operation. Therefore, the forward propagation phase, which is the same as inference,
can be accelerated by the sparsity inherently. As for backward pass, both of the calculation steps are
based on convolution, i.e., matrix multiplication. Equation 4 uses sparse weight matrix (tensor) as
the operand, thus can be accelerated in the same way as the forward propagation. Equation 5 allows
a sparse output result since the gradient matrix is also sparse. Thus, both two steps have reduced
computations, which are roughly proportional to the sparsity ratio, providing the acceleration for the
backward propagation phase.

Compiler optimizations are used to accelerate the inference in prior works [22, 47, 62]. In this work,
we extend the compiler optimization techniques for accelerating the forward and backward pass
during training on the edge devices. Our compiler optimizations are general, support both sparse
model training and inference accelerations on mobile platforms. The optimizations include 1) the
supports for sparse models; 2) an auto-tuning process to determine the best-suited configurations of
parameters for different mobile CPUs. The details of our compiler optimizations are presented as
follows.

C.1.1 Supports for Sparse Models

Our framework supports sparse model training and inference accelerations with unstructured pruning.
For the sparse (pruned) model, the framework first compacts the model storage with a compression
format called Compressed Sparse Row (CSR) format, and then performs computation reordering to
reduce the branches within each thread and eliminates the load imbalance among threads.

A row reordering optimization is also included to further improve the regularity of the weight matrix.
After this reordering, the continuous rows with identical or similar numbers of non-zero weights
are processed by multi-threads simultaneously, thus eliminating thread divergence and achieving
load balance. Each thread processes more than one rows, thus eliminating branches and improving
instruction-level parallelism. Moreover, a similar optimization flow (i.e., model compaction and
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computation reorder and other optimizations) is employed to support all compiler optimizations for
sparsity as PatDNN [47].

C.1.2 Auto-Tuning for Different Mobile CPUs

During DNN sparse training and inference execution, there are many tuning parameters, e.g., matrix
tiling sizes, loop unrolling factors, and data placement on memory, that influence the performance.
It is hard to determine the best-suited configuration of these parameters manually. To alleviate
this problem, our compiler incorporates an auto-tuning approach for sparse (pruned) models. The
Genetic Algorithm is leveraged to explore the best-suited configurations automatically. It starts the
parameter search process with an arbitrary number of chromosomes and explores the parallelism
better. Acceleration codes for different DNN models and different mobile CPUs can be generated
efficiently and quickly through this auto-tuning process.

C.2 Inference Acceleration Results On Mobile

Figure 5: Inference results of sparse models obtained from SparCL under different sparsity ratio compared with
dense models obtained from traditional CL methods (sparsity ratio 0.00).

Besides accelerating the training process, SparCL also possesses the advantages of providing a sparse
model as the output for faster inference. To demonstrate this, we show the inference acceleration
results of SparCL with different sparsity ratio settings on mobile in Figure 5. The inference time is
measured on the CPU of an off-the-shelf Samsung Galaxy S20 smartphone. Each test takes 50 runs
on different inputs with 8 threads on CPU. As different runs do not vary greatly, only the average
time is reported. From the results we can see that the obtained sparse model from SparCL can
significantly accelerate the inference on both Split-CIFAR-10 and Tiny-ImageNet dataset compared
to the model obtained by traditional CL training. For ResNet-18 on Split-CIFAR-10, the model
obtained by traditional CL training, which is a dense model, takes 18.53ms for inference. The model
provided by SparCL can achieve an inference time of 14.01ms, 8.30ms, and 5.85ms with sparsity
ratio of 0.75, 0.90, and 0.95, respectively. The inference latency of the dense ResNet-18 obtained by
traditional CL training on Tiny-ImageNet is 39.64 ms. While the sparse models provided by SparCL
with sparsity ratio settings as 0.75, 0.90, and 0.95 reach inference speed of 33.06ms, 20.37ms, and
15.49ms, respectively, on Tiny-ImageNet.

D Comparison with Buffer Selection Methods

In this section, we compare DDR and GSS [3] or Loss-Aware Reservoir Sampling (LARS) [9].

DDR aims at removing training examples for efficiency, while GSS and LARS put the focus on
selecting more informative examples that are saved in the buffer. Technically, DDR removes less
informative training examples at certain epochs (and thus indirectly affects samples saved in the
buffer), while GSS and LARS directly replaces less informative buffered examples in the buffer. Thus,
the original GSS and LARS are not directly comparable to DDR. However, we can actually use the
example importance criteria used in GSS and LARS to remove less informative training examples as
well. We replace the misclassification rate in DDR by the gradient-based (GSS) and loss-based criteria
(LARS) objectives and get two variants of our approach, DDR-GSS and DDR-LARS, respectively.
For fair comparison, we fix all other parameters used in DDR the same for all methods (sparisity
0.75, remove 30% training data, with TDM only). Since all variants of DDR already remove training
examples for efficiency, we mainly focus on their accuracy performance here. The final results on
Split-CIFAR10 is shown in the table below:
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Table A4: Comparison with Buffer Selection Methods.
Method Importance Accuracy

DDR Misclassification 73.80
DDR-GSS Gradient 73.45

DDR-LARS Loss 73.67

E Exploration on Pruning Pattern

In this work, we conduct uniform pruning (i.e., each layer has the same pruning ratio) across different
CONV layers as mentioned before in experimental details. The usage of uniform pruning ratio
is to match the single-instruction multiple-data (SIMD) [47] architecture of embedded CPU/GPU
processors for efficient hardware accelerations.

To observe the pruning pattern, we also experimented with setting an overall pruning ratio as 95% for
the entire network, allowing each layer to have different pruning ratios by ranking CWI for the whole
model. According to the results, earlier CONV layers tend to have a smaller pruning ratio, which is
only around 25%� 30%, while the pruning ratios for the latter CONV layers can reach 99%. The
results are reasonable, as latter layers are more redundant with a larger amount of parameters. In
addition, the weights in earlier layers might be more important for keeping high accuracy, but take a
large portion of the computation. Therefore, though slightly improving the accuracy performance
to 72.45% compared to the uniform pruning ratio setting, allowing different pruning ratios across
different layers yields worse acceleration (drop to 2.2⇥ compared with 3.1⇥ when adopting the
uniform pruning ratio) on the hardware. As our purpose is to facilitate the efficiency of the CL-system,
we adopt the uniform pruning ratio setting.
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