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Abstract

Deep neural networks are susceptible to shortcut learning, using simple features to
achieve low training loss without discovering essential semantic structure. Contrary
to prior belief, we show that generative models alone are not sufficient to prevent
shortcut learning, despite an incentive to recover a more comprehensive representa-
tion of the data than discriminative approaches. However, we observe that shortcuts
are preferentially encoded with minimal information, a fact that generative models
can exploit to mitigate shortcut learning. In particular, we propose Chroma-VAE,
a two-pronged approach where a VAE classifier is initially trained to isolate the
shortcut in a small latent subspace, allowing a secondary classifier to be trained
on the complementary, shortcut-free latent subspace. In addition to demonstrating
the efficacy of Chroma-VAE on benchmark and real-world shortcut learning tasks,
our work highlights the potential for manipulating the latent space of generative
classifiers to isolate or interpret specific correlations.

1 Introduction

As science fiction writer Robert Heinlein quipped in his 1973 novel Time Enough for Love, progress
is made not by “early risers”, but instead by “lazy men trying to find easier ways to do something”.
Indeed, we can accuse modern machine learning models of emulating the same behaviour. There are
notable examples of models that wind up learning the wrong things. For example, images of cows
standing on anything other than grass fields are commonly misclassified because the combination
of cows and grass fields is so prevalent in training data that the model simply learns to rely on the
background as a predictive signal [4]. A more concerning example involves predicting pneumonia
from chest X-ray scans. Hospitals from which training data is collected have differing rates of
diagnosis, a fact that the model easily exploits by learning to detect hospital-specific metal tokens in
the scans rather than signals relevant to pneumonia itself [52].

Deep neural networks can learn brittle, unintended signals under empirical risk minimization (ERM)
[11, 16, 13], a well-known phenomenon observed and studied by various communities. These signals
often possess two key attributes: (i) they are spuriously correlated with the label and are therefore
strongly predictive [6, 50, 31], despite having no meaningful semantic relationship with the label,
and (ii) they are learnt by the neural network as a result of its inductive biases [43, 10]. A recent
unifying effort by Geirhos et al. [10] coins the term shortcut to describe such a signal. Networks that
learn shortcuts fail to generalize to relevant or challenging distribution shifts.

Prior work has sought to alleviate this problem under various formalizations, most commonly in the
settings of group robustness [e.g. 39, 28, 7, 25, 20] or adversarial robustness [e.g. 5, 45]. In this paper,
we motivate a different approach to mitigate undesirable shortcuts, where we seek instead to learn a
shortcut-invariant representation of the data — that is, “everything but the shortcut”.
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Figure 1: A visual representation of Chroma-VAE. The latent space is partitioned into two subspaces,
one of which is incentivized to encode the shortcut under ERM. The complementary subspace learns
a shortcut-invariant representation.

To this end, we first observe empirically that deep neural networks preferentially encode shortcuts as
they are the most efficient compression of the data that is strongly predictive of training labels. This
observation helps to explain why shortcut learning is so prevalent amongst discriminative classifiers.

However, this same preference can be exploited in a generative classifier to learn a shortcut-invariant
compression. Specifically, we consider the Variational Auto-Encoder (VAE) [23], capable of learning
latent representations of the data. Our key insight is to back-propagate the classifier’s loss through a
latent subspace, while reconstructing with the entire latent space. The model minimizes classification
error by encoding the shortcut in this subspace. Since the shortcut representation is isolated, the
complementary subspace is free to learn a shortcut-invariant representation through reconstruction.
The final classifier is then trained on this invariant representation. We dub our approach Chroma-
VAE, inspired by the technique of chromatography, which separates the components of a chemical
mixture travelling through the mobile phase. Figure 1 summarizes our approach. We note that our
pipeline is not in principle restricted to VAEs, and could be used in conjunction with other families of
generative models to compartmentalize a latent representation into a shortcut and semantic structure.

Our contributions are as follows:

• We show empirically that: (i) deep neural networks preferentially encode shortcuts as
the most efficient compression (Section 3.1), and (ii) the shortcut representation can be
sequestered in a latent subspace of a VAE classifier (Section 3.2).

• These observations allow us to propose Chroma-VAE (Section 3.3), an approach designed
to learn a classifier on a shortcut-invariant representation of the data. We demonstrate the
effectiveness of Chroma-VAE on several benchmark datasets (Section 5).

Our code is publicly available at https://github.com/Wanqianxn/chroma-vae-public.

2 Background and Notation

Even though shortcuts are present in many domains within deep learning [4, 50, 2, 34, 30, 12], we
restrict our discussion to image classification tasks, as (i) VAEs are widely applied to modeling image
distributions, and (ii) shortcut learning is ubiquitous in the vision domain.

Let Dtr = {xi, yi}Ni=1 denote i.i.d. training data. A variational auto-encoder (VAE) [23] (Eϕ, Dθ)
models x with a latent variable: p(x, z) = p(z)p(x|z). The prior p(z) is typically N (0, I) and the
likelihood p(x|z) is implicitly modeled by the decoder network Dθ(z) =

(
µθ(z), diag

(
σ2
θ(z)

) )
as N

(
x|µθ(z), diag

(
σ2
θ(z)

) )
. Maximizing p(x) directly is intractable due to the integral over z.

Instead, we use an encoder network Eϕ(x) =
(
µϕ(x), diag

(
σ2
ϕ(x)

))
as an (amortized) variational

approximation qϕ
(
z|µϕ(x), diag(σ2

ϕ(x))
)

and maximize the Evidence Lower BOund (ELBO):

ELBO(θ, ϕ,x) := Ez∼qϕ

[
log

pθ(x, z)

qϕ(z|x)

]
(1)

by computing unbiased estimates of its gradients.

2

https://github.com/Wanqianxn/chroma-vae-public


(a) (b) (c) (d) (e)

Figure 2: (Left) (a) Examples of reconstructions by a decoder trained independently on the dis-
criminative model’s hidden layer. The shortcut (blue square) is clearly visible when it is present.
Reconstruction is particularly poor on images with the shortcut — the reconstructed faces seem
to collapse to the same archetype that does not resemble the original images. (Right) Grad-CAM
heatmaps on a CelebA test image. (b) The original image with the shortcut patch. (c)-(e) Averaged
activations across all training epochs on three separate models, with a bottlenecked hidden layer of
sizes 4, 32, and 128 respectively. The smaller the bottleneck, the more likely it is that the model only
focuses on the shortcut patch. With more capacity, the model focuses on other regions of the image.

In a hybrid VAE classifier (Eϕ, Dθ, Cφ), we model Dtr as p(z,x, y) = p(z)p(x|z)p(y|x). p(y|x)
is modeled by a classifier network Cφ that takes the latent mean µϕ(x) as input and outputs class

probabilities, i.e. pφ,ϕ(y|x) = CE
(
y, Cφ

(
µϕ(x)

))
, where CE is the cross-entropy loss. Again,

maximizing p(x, y) directly is intractable and the training objective becomes:

L(θ, ϕ, φ) := −
∑

(x,y)∈Dtr

ELBO(θ, ϕ,x) + λ · log pφ,ϕ(y|x) (2)

where λ is a scalar multiplier widely used in practice to account for the fact that p(x) is typically
magnitudes smaller than p(y|x) on high-dimensional image datasets.

Group Terminology Let s ∈ S denote the shortcut (spurious) label. The group of an input x is
g = (s, y), the combination of its shortcut and true labels. Majority groups refer to examples with the
dominant correlation between s and y on the training data, while minority groups refer to the small
number of examples with the opposite correlation that ERM models typically misclassify. Group
robustness refers to the ability of models to generalize to distribution shifts where shortcuts are no
longer predictive. Methods to improve group robustness can make use of group annotations; however,
our method does not assume access to group labels at train or test time.

3 Chroma-VAE: Separating Shortcuts Generatively

The key intuition behind our approach is to exploit shortcut learning for representation learning, by
using a VAE to learn a shortcut-invariant representation of the data. Two central ideas, supported by
empirical observations, motivate our method: (i) deep neural networks preferentially encode shortcuts
under finite and limited representation capacity, and (ii) the shortcut representation can be sequestered
in a latent subspace of the VAE when jointly trained with a classifier.

3.1 Shortcuts are preferentially encoded under limited representation capacity

Why do shortcuts exist? As Geirhos et al. [10] note, shortcuts arise because the model’s inductive
biases (the sum total of interactions between training objective, optimization algorithm, architecture,
and dataset) favour learning certain patterns over others; e.g., convolutional neural networks (CNNs)
prefer texture over global shape [3, 9].

We consider shortcuts from an information-theoretic perspective. Deep neural networks are commonly
thought of as representation learners that optimize the information bottleneck (IB) trade-off, i.e. they
aim to learn a maximally compressed representation (minimally sufficient statistic) that fits the labels
well [47, 42]. Our key empirical observation is that in datasets where shortcuts exist, they are often
efficiently compressed, and the compressed information is predictive of labels. As such, deep
models preferentially encode shortcuts, especially under limited representation capacity.

We consider an experiment on the CelebA dataset [29], where the task is predicting hair color
(“blonde” or not). We inject a synthetic shortcut in the form of a 10× 10 blue “patch”, superimposed
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Figure 3: (a) Original image containing shortcut. (b) Grad-CAM with µϕ(x)1 gradients. (c) Grad-
CAM with µϕ(x)2 gradients. (d) Partial reconstructions x̃1. (e) Partial reconstructions x̃2. While no
patches are present in samples of x̃2 here, we have observed that they can occur with small probability.
Conversely, across our many repeated samplings, the shortcut patch is always present in samples
of x̃1. Note also that x̃1 samples contain a variety of hair colors, whereas x̃2 samples faithfully
reconstruct the celebrity’s blonde hair.

onto the image with 0.9 probability for the positive class (see Figure 2b). We first train a discriminative
classifier on the labels, and then independently learn a decoder on the (fixed) hidden layer of the
trained discriminative model.

Figure 2a shows the reconstructions of the decoder. The shortcut is accurately replicated in sharp
detail where it exists, but other regions of the reconstructions are not as faithful to the originals.
In particular, note that reconstructions are even less accurate for examples of the positive class
(with the shortcut), where mode collapse has happened. Since the decoder was learned separately,
this observation implies that the classifier’s latent compression primarily encoded for the shortcut’s
presence.

This result is further supported by visualizing the activated regions of the input images during training.
We implement Grad-CAM [41], which computes a linear combination of activation maps weighted
by the gradients of output logits (or any upstream parameters), to produce a heatmap superimposed
on the original image, showing regions of the image with the greatest positive contributions to the
network’s prediction.

In Figures 2b-e, we visualized these heatmaps on models with a bottleneck hidden layer of different
sizes. As we can see, the smaller the bottleneck size, the stronger the activations on the shortcut
patch. With additional model capacity, the model is more likely to encode other relevant (or spurious)
features in addition to the shortcut itself.

From these experiments, we see that deep neural networks tend to compress input data in a shortcut-
preserving manner when such shortcuts are both (i) compressible with little information and (ii)
predictive of training labels. This tendency is exacerbated under limited latent capacity and is the
reason why discriminative classifiers are susceptible to shortcut learning under ERM.

3.2 VAE classifiers can sequester shortcuts into specific latent dimensions

What presents a problem for discriminative modeling can be exploited into an advantage using
a generative model. The key insight here is that we can train a VAE classifier where the latent
space is partitioned into two disjoint subspaces — where only one subspace feeds into a classifier
and is backpropagated through using labels. This subspace encodes the shortcut precisely because
this information maximizes the classifier’s performance (i.e. simultaneously exhibits high mutual
information with the labels and small mutual information with the data). The remaining subspace
therefore encodes a partial representation of the image without the shortcut.

Formally, we modify the standard VAE classifier described in Section 2 as follows: we partition the
latent space as z = (z1, z2). The classifier Cφ uses only z1 as input, i.e. for a given data point x,
the predicted output is Cφ

(
µϕ(x)1

)
. As such, z1 is used for both reconstruction and classification,

whereas z2 is used for reconstruction only.

In Figure 3, we visualize the results of this experiment in two ways: (i) Grad-CAM, where we use
gradient weights both of µϕ(x)1 and of µϕ(x)2, and (ii) sampling partial reconstructions x̃ from
the VAE: given an encoding µϕ(x), we replace each half µϕ(x)i with standard Gaussian noise and
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Algorithm 1 Chroma-VAE

Input: data Dtr, VAE classifier (Eϕ, Dθ, Cφ), z2-classifier C(2)
φ′ , optimization hyperparameters

// Training initial VAE classifier
initialize (θ, ϕ, φ)
using Adam, minimize Equation (2), noting that Cφ only takes µϕ(x)1 as input
// Training z2-classifier
initialize φ′

compute the (fixed) input µϕ(x)2 using Eϕ

using Adam, minimize L(φ′) = CE
(
y, C

(2)
φ′

(
µϕ(x)2

))
return C

(2)
φ′

sample from the decoder:

x̃1 ∼ Dθ

(
[µϕ(x)1 N(0, I)]

⊤
)

(3)

x̃2 ∼ Dθ

(
[N(0, I) µϕ(x)2]

⊤
)

(4)

We use the same predictive task and synthetic shortcut as described in Section 3.1. As can be seen
from Figures 3b-c, Grad-CAM shows that µϕ(x)1 is most sensitive to pixels around the blue patch,
whereas µϕ(x)2 is sensitive to pixels spread out in other regions of the image (including certain
regions of the celebrity’s blonde hair). The representation of the patch is largely isolated in z1.

Partial reconstructions in Figures 3d-e support this observation. In Figure 3d, where µϕ(x)1 is fixed
and we sample only z2 ∼ N(0, I), the decoded samples x̃1 represent a variety of faces that do not
resemble the original image. However, all samples contain the shortcut patch in the bottom-right
corner. Conversely, in Figure 3e where µϕ(x)2 is fixed, the reconstructed samples x̃2 greatly resemble
the original image, but may or may not contain the shortcut. In other words, µϕ(x)1 is strongly
correlated with the shortcut’s presence, whereas µϕ(x)2 is uncorrelated with the shortcut.

Together, Grad-CAM and the partial reconstructions suggest that the latent representation of the
shortcut patch has largely been sequestered into z1. This result is intuitive — as the classification
loss on Cφ only back-propagates through z1, it will learn representations that are most useful for
prediction. This representation is dominated by the shortcut patch, as we showed in Section 3.1.
Since the model is also simultaneously learning to reconstruct the image, most other information
describing the image is partitioned into z2, resulting in x̃2 samples being very similar to the original.

3.3 Chroma-VAE

These results suggest a simple approach: we only need to train a separate, secondary classifier C(2)
φ′

on z2 after the initial VAE classifier (Eϕ, Dθ, Cφ) has been trained, i.e. z2 is a fixed input into C
(2)
φ′

that is not back-propagated through to x. Section 3.2 shows that the initial VAE classifier learns z2
in a way that minimizes shortcut representation but contains other salient features (by virtue of z2
learning to reconstruct). As such, C(2)

φ′ will be shortcut-invariant while remaining predictive.

We name this approach Chroma-VAE. We provide a full description of the training procedure in
Algorithm 1 and a corresponding diagram in Appendix A. From here on, we will refer to Cφ as the
z1-classifier (z1-clf; not used for prediction) and C

(2)
φ′ as the z2-classifier (z2-clf; shortcut-invariant

classifier used for prediction).

Chroma-VAE enables high flexibility with respect to the z2-classifier. Since z2 is a latent vector, the
z2-classifier need not be a deep neural net. Indeed, we will see in our experiments that simpler models
like k-nearest neighbors can perform better on smaller datasets. Furthermore, instead of training
C

(2)
φ′ on z2, we can generate partial reconstructions x̃2 and train a classifier directly in X -space. This

procedure allows us to exploit deep models since the inputs are now images. We term this latter
approach the x̃2-classifier (x̃2-clf).
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Hyperparameters and Group Labels Our method has two hyperparameters: the dimensionality
of z, dim(z), and the partition fraction, zp = dim(z1)

dim(z1)+dim(z2)
∈ (0, 1), which controls the relative

sizes of z1 and z2. Compared to existing work, Chroma-VAE does not require training group labels.
While validation group labels are technically necessary for hyperparameter tuning, we empirically
found that it is possible to tune Chroma-VAE without needing them, for two key reasons: (a) In
most domains, where the shortcut is known a priori (e.g. image background), we can generate and
visually inspect partial reconstructions for hyperparameter tuning, by selecting dim(z) to ensure
good reconstruction, and zp to confirm that the shortcut has been isolated in z1. (b) Even where the
shortcut is unknown, worst-group accuracy is far less sensitive to Chroma-VAE hyperparameters
than for existing methods such as [28]. This insensitivity is likely because most small values of zp
typically suffice to isolate the shortcut in z1. Table 1 summarize the group label requirements.

Example Group-DRO [38] JTT [28] Chroma-VAE

Group Labels on Train Data ✓ ✗ ✗
Group Labels on Validation Data ✓ ✓ ✓/✗

Table 1: Comparison of group label requirements. While Chroma-VAE can be tuned using validation
worst-group accuracy, we found that partial reconstructions and average accuracy typically suffice.

4 Related Work

Generative Classifiers Depending on how we decompose pθ(x, y), generative classifiers can
be divided into two categories: (i) class-conditional models pθ(y)pθ(x|y) or (ii) hybrid models
pθ(x)pθ(y|x). The majority of previous work on deep generative classifiers [e.g. 40, 54] focus on
the former category, e.g. for semi-supervised learning [24, 19] or adversarial robustness [40]. The
most notable work in the latter category is Nalisnick et al. [32], which applies hybrid models to OOD
detection and semi-supervised learning. Our work uses VAEs as the deep generative component,
since we require explicit latent representation. We only focus on hybrid models as we desire a single
model that learns the shortcut representation across all classes.

Group Robustness Out-of-distribution (OOD) generalization is a broad area of study [e.g. 8, 14,
37], depending on what assumptions are made on the relationship between train and test distributions
as well as the information known at train time. In this work, we primarily consider distribution
shifts arising from the presence of shortcuts or spurious correlations, where signals predictive in
the train distribution are no longer correlated to the label in the test distribution. Prior work has
generally approached this from the group robustness perspective, where the objective is to maximize
worst-group accuracy (typically the minority groups) while retaining strong average accuracy. To the
best of our knowledge, Chroma-VAE is the first method to tackle shortcut learning from a supervised
representation learning approach using generative classifiers.

Methods in this space can be distinguished by the assumptions they make. Some work rely on having
group labels for training data [1, 38, 53, 39], for example, Sagawa et al. [38] optimize worst-group
accuracy directly. However, as group annotations can be expensive to acquire, other approaches
relax this requirement [28, 7, 44, 51, 33]. For example, Liu et al. [28], which we compare to, treat
misclassified examples by an initial model as a proxy for minority groups; these samples are up-
weighted when training the final model. However, their approach is brittle to hyperparameter choices,
requiring group labels on validation data (from the test distribution) for hyperparameter tuning.

5 Experiments

In Section 5.1, we present results on the ColoredMNIST benchmark, a proof-of-concept which we
use to highlight some key observations and comparisons. In Section 5.2, we apply Chroma-VAE to
two large-scale benchmark datasets (CelebA and MNIST-FashionMNIST Dominoes), as well as a
real-world problem involving pneumonia prediction using chest X-ray scans. Appendix C.1 contains
further results on the CelebA synthetic patch proof-of-concept that was presented earlier in Section 3.
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Method Din Dout

Theoretical UB 75 75
Invariant 60.8 65.6

Naive-Class 87.8 17.8
Naive-VAE-Class 89.0 13.2

Naive-Independent 89.7 11.4
JTT 63.2 63.8

Chroma-VAE (z1-clf) 89.0 14.5
Chroma-VAE (z2-clf) 72.5 72.4

Table 2: Predictive accuracies on Din

and Dout. Chroma-VAE (z2-clf) is the
best-performing classifier. Our strongest
z2-classifier uses k-nearest neighbor
classifier (k =

√
N ) rather than a MLP.

Note that the best that a classifier rely-
ing only on digit can do is 75% since
pd = 0.75 by construction.

(a) (b)

(c)

Figure 4: (a) Original image. (b) Partial reconstructions x̃1 (top row) and x̃2 (bottom row). All
samples of x̃1 preserve the color of the original image but not the digit. Conversely, samples of x̃2

preserve digit but can be variably green or red. (c) Plot of absolute differences between µ(x) of Dtr

and D′
tr (the latent means) against dimension. Dimensions of z2 have smaller differences than z1.

Detailed experimental setups can be found in Appendix B. In considering baselines, we avoid
comparing to methods that rely on group labels [38, 36], multiple training environments [1], or
counterfactual examples [46]. We select the following baselines:

1. Naive discriminative classifier (Naive-Class): standard ERM classifier

2. Naive VAE classifier (Naive-VAE-Class): standard VAE classifier

3. Naive VAE + classifier (Naive-Independent): standard VAE is first trained on unlabelled
data {xi}Ni=1, the classifier is then separately trained on the latent projection {µϕ(x), y}Ni=1

4. Just Train Twice (JTT) [28]: classifier is trained with a limited number of epochs, mis-
classified training points are upweighted and a second classifier is trained again

5.1 ColoredMNIST

Setup. Following Arjovsky et al. [1], (i) first we binarize MNIST [26] labels as ŷ (with digits 0-4
and 5-9 as the two classes), (ii) we then obtain actual labels y (used to train and evaluate) by flipping
ŷ with probability pd = 0.25, and finally (iii) we obtain color labels c by flipping y with variable
probability pc. c is used to color each image green or red. In the training distribution Din, pc = 0.1,
hence c is more strongly correlated to y than ŷ is, and color becomes the shortcut. In the adversarial
OOD test distribution Dout, pc = 0.9, i.e. every digit is more likely to be shaded the other color.
Table 2 shows that the “invariant” classifier (trained on black-and-white images) performs similarly
on both Din and Dout, hence degraded performance on Dout is solely due to shortcut learning.

The main takeaway from our results in Table 2 is that Chroma-VAE vastly outperforms all other
methods under the adversarial distribution Dout. We want to demonstrate that the z2-classifier
is learning from a largely shortcut-invariant representation of the data in attaining this performance.
First, we observe that the shortcut is heavily present in z1, as the z1-classifier performs just as poorly
as the naive ERM approaches. Furthermore, to show that the shortcut representation is isolated in
z1, we can sample and inspect partial reconstructions. We plot one input example in Figure 4b; we
provide further examples in Appendix C.2. We observe that samples of x̃1 are color-invariant whereas
samples of x̃2 are digit-invariant, suggesting that the bulk of color representation has been isolated in
z1. As yet further evidence, we create D′

tr, a dataset that is identical to the training set Dtr except
that every image has its color flipped. We then measure |µ(x)(i) − µ(x)′(i)| for every dimension i of
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zp = 1/4 zp = 1/2 zp = 3/4

dim(z) = 4

dim(z) = 8

dim(z) = 16

dim(z) = 32

Table 3: Partial reconstructions for varying choices of dim(z) and zp. In each cell, the top row
contains x̃1 samples and the bottom row contains x̃2 samples. The original image is a green
“6”. Increasing zp relaxes the bottleneck such that x̃2 samples less resemble the original image,
and increasing dim(z) allows more information for higher fidelity reconstructions. The optimal
hyperparameters that produced our results in Table 2 are dim(z) = 32 and zp = 1

4 .

Din Dout

β = 100 50.6 49.4
β = 10 63.1 62.8
β = 5 69.8 70.3
β = 1 72.5 72.4
β = 0.5 72.9 71.2

Table 4: Test accuracies of the z2-classifier on the same ColoredMNIST setup, where Chroma-VAE
is trained using different values of β in the ELBO objective (β = 1 recovers standard Chroma-VAE).
Choosing β > 1 leads to degraded performance, worsening with higher values of β. Choosing β < 1
does not have significant impact on the test accuracies.

the latent mean, averaged across all inputs x in the dataset. In Figure 4c, observe that the dimensions
corresponding to z2 have smaller differences than dimensions of z1, suggesting color (shortcut) is
minimally contained in z2.

Next, the poor performance of the naive baselines highlight our finding that generative models
alone are insufficient for avoiding shortcuts. Neither the VAE classifier (Naive-VAE-Class) nor
the independent VAE + classifier (Naive-Independent) improved on the ERM model (Naive-Class).
While our work motivated VAEs specifically from observations about the information bottleneck, we
note that the community at-large has hoped [10] that simply having a generative component might
incentivize the model to learn a comprehensive representation of the data-generating factors, and
not just the minimum compression necessary for small training loss. Our results show that this is
not true. This failure is not limited to hybrid models — further results in Section C.1 show that
class-conditional generative classifiers fare just as poorly.

Ablations for hyperparameters dim(z) and zp. Table 3 shows partial reconstructions as a function
of varying dim(z) and zp. As we expect, reconstructions are poor when dim(z) is small but improve
as latent capacity increases. For sufficiently large dim(z), smaller values of zp are successful at
isolating the shortcut color representation in z1, ensuring that samples of x̃2 are color-invariant but
retain the digit shape. As zp increases, z1 learns both color and digit, resulting in samples of x̃1 that
closely resemble the original image. As such, we will expect the z2-classifier to perform poorly since
z2 no longer contains meaningful representations for prediction. These results suggest that hyper-
parameters should be tuned by first tuning dim(z) to ensure sufficient capacity for reconstruction,
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CelebA MF-Dominoes Chest X-Ray
Blond/Gender Attractive/Smiling

Method Ave Worst Ave Worst Ave Worst Ave Worst

Naive-Class 64.2 29.4 62.5 21.5 50.4 0.61 85.0 10.3

JTT 65.3 28.3 64.7 30.0 50.6 0.81 64.2 52.3

Chroma-VAE 82.0 54.4 66.9 53.1 78.5 73.8 59.9 57.8

Table 5: Average and worst-group test accuracy for the various large-scale benchmark tasks. Chroma-
VAE beats all baselines on worst-group accuracies, demonstrating that it is effective at mitigating
shortcut learning at scale.

(a)
(b)

Figure 5: Partial reconstruction samples for the large-scale enchmark datasets. (a) CelebA example.
The original example is Attractive but not Smiling. All samples of x̃1 (top right) are not smiling,
whereas samples of x̃2 (bottom right) may or may not be smiling, suggesting that z2 learns “smile-
invariance”. (b) MNIST-FashionMNIST example. All samples of x̃1 (top right) contain the shortcut
(“1” digit), whereas samples of x̃2 (bottom right) retain the core feature (shirt image) but can have
variable digit.

before tuning zp to ensure that the shortcut is learnt by z1, but not the true feature. As we observe in
our experiments, small values of zp typically work well.

Ablations for β. Our method relates to a thread of research aimed at learning (unsupervised)
disentangled latent representations using VAEs. The main intuition behind these methods is enforcing
independence between dimensions of the marginal distribution qϕ(z) := Ex∼pDtr

[qϕ(z|x)]. One
such approach is β-VAE [15], which sets the hyperparameter β > 1 (the coefficient on the Kullback-
Liebler (KL) divergence term in (1)) to encourage this independence. Table 4 shows the ablation
where we train Chroma-VAE with different values of β. Counterintuitively, increasing β > 1 results
in degraded performance on Dout. We postulate that unlike the original β-VAE, the VAE here is
trained jointly with supervision. As such, the latent factors in the data (color and digit) are both highly
correlated with the label, and therefore with each other, so they cannot be disentangled by β-VAE.

5.2 Large-Scale Benchmarks

Setup. We consider two benchmark CelebA tasks: (1) predicting Blond where Gender is the
spurious feature [38, 28], and (ii) predicting Attractive where Smiling is the spurious feature [27].
We also consider the MF-Dominoes dataset [35], where input images consist of MNIST digits (0 or
1) concatenated with FashionMNIST objects (coat or dress), with the FashionMNIST object being
the true label. For both of these datasets, we use the harder setting from Lee et al. [27], where the
spurious feature is completely correlated with the label at train time (by filtering out the two minority
groups). Chroma-VAE is naturally suited for this regime, as complete correlation allows the spurious
feature to be simultaneously compressible and highly discriminative.

In addition, as an example of a real-life domain where shortcut learning happens, we consider the
prediction of pneumonia from frontal chest X-ray scans [52, 36, 21]. The shortcut is the background
of the image, which contains artifacts specific to the machine that took the X-ray. As different
hospitals use different machines and have differing rates of diagnosis, the background becomes
spuriously correlated with the label. There is no benchmark dataset for this problem and different
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authors have created their own datasets from existing public or private X-ray repositories. Likewise,
we make a training set (N = 20K) with roughly equal numbers of X-rays from the National Institutes
of Health Clinical Center (NIH) dataset [48] and the Chexpert dataset [18], such that 90% of NIH
images are from the negative class and 90% of Chexpert images are from the positive class.

Table 5 summarizes the results. On CelebA and MF-Dominoes, Chroma-VAE has the highest
average and worst-group accuracies. Figure 5 shows the corresponding partial reconstructions,
which visually confirm that the desired invariances have been learnt and the shortcuts correctly
isolated. JTT underperforms in this complete correlation setting (no minority groups) as it is
unable to leverage misclassification of minority examples to train the final model. This experiment
highlights a significant difference between group robustness methods and Chroma-VAE. Methods
like JTT perform poorly when there are fewer minority examples, as they rely on these examples to
approximate the test distribution and implicitly teach the model what features are most useful. In
contrast, Chroma-VAE learns explicit representations of the shortcut and true features. Chroma-VAE
performs better when the correlation between the shortcut and label is stronger, as the shortcut is
then more likely to be the minimal encoding that is predictive of the label.

On the Chest X-ray dataset, Chroma-VAE has the highest worst-group accuracy; however, we
note that it suffers from lower average accuracy. The fact that Chroma-VAE improves on worst-group
accuracy shows that the model works correctly to avoid shortcut learning by isolating the shortcut in
z1. However, the trade-off against average accuracy also highlights one limitation of our approach,
which is the reliance on VAE architecture to model the data distribution well. To the best of our
knowledge, we are the first to attempt to model Chest X-ray data with a deep generative model,
as existing work for Chest X-ray shortcut learning rely on discriminative models — specifically,
pre-trained ResNets [e.g. 36]. As the VAE is unlikely to model the X-ray dataset perfectly, some
meaningful predictive features will not be well-captured, resulting in poorer performance of the
z2-classifier despite being shortcut-free. Reconstruction examples for the Chest X-ray dataset can be
found in Appendix C.3.

6 Discussion

We empirically observe that shortcuts — being the most efficient and predictive compression of the
data — are often preferentially encoded by deep neural networks. Inspired by this result, we propose
Chroma-VAE, which exploits a VAE classifier to learn a latent representation of the image where the
shortcut is abstracted away. This representation can be used to train a classifier that generalizes well
to shortcut-free distributions. We demonstrate the efficacy of Chroma-VAE on several benchmark
shortcut learning tasks.

A limitation of our work is the reliance on VAEs to model the underlying data distribution well, which
can be challenging for many natural image datasets. Extending Chroma-VAE to incorporate stronger
deep generative models, such as diffusion-based models, could lead to stronger performance on many
real-life datasets. Indeed, in principle our pipeline is not anchored to the VAE, and could be used
with other families of deep generative models.

Moreover, many spurious correlations may not be easily described with low information. For example,
the spurious feature can be the entire background (such as water or land in the Waterbirds dataset
[38]), which can contain a relatively large amount of information. In the future, it would be exciting
to generalize Chroma-VAE to learn richer latent representations that compartmentalize different types
of features in the inputs, rather than simply segmenting low-information shortcuts from the rest of
the image. This outcome could possibly be achieved by introducing priors that explicitly encourage
different subspaces of z to correspond to different features.
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