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A Proofs for Section 3

Proposition 3.1. Let the expert closed-loop system fπ⋆

cl be η-locally δ-ISS for some η > 0. Fix an
imitation gap bound ε > 0, initial condition ξ, and policy π. Then if

max
0≤t≤T−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ) + δ)− π(xπ⋆

t (ξ) + δ)∥ ≤ min{η, γ−1(ε)}, (5)

we have that the imitation gap satisfies ΓT (ξ;π) ≤ ε.

Proof. We do a proof by induction.

Base case t = 0: We trivially have at t = 0:
∥xπ⋆

t (ξ)− xπ
t (ξ)∥ = ∥ξ − ξ∥ = 0 ≤ ϵ.

Induction step: Assume for some k > 0, we have maxt≤k−1 ∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ ε. We set
δ := xπ⋆

k−1(ξ)− xπ
k−1(ξ) such that ∥δ∥ ≤ ε. From Equation (5), we are guaranteed that∥∥π⋆(x

π
k−1(ξ))− π(xπ

k−1(ξ))
∥∥ =

∥∥π⋆(x
π⋆

k−1(ξ) + δ)− π(xπ⋆

k−1(ξ) + δ)
∥∥

≤ max
0≤t≤k−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ) + δ)− π(xπ⋆

t (ξ) + δ)∥

≤ min
{
η, γ−1(ε)

}
.

Since fπ⋆

cl is η-locally δ-ISS, we get from (3)

∥xπ
k (ξ)− xπ⋆

k (ξ)∥ ≤ γ

(
max

0≤s≤k−1
∥π⋆(x

π
s (ξ))− π(xπ

s (ξ))∥
)

≤ γ
(
min

{
η, γ−1(ε)

})
≤ ε,

and thus maxt≤k ∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ ε, completing the induction step.

Theorem 3.1. Fix a test policy π and initial condition ξ ∈ X , and let Assumption 3.1 hold. Let
fπ⋆

cl be η-locally δ-ISS for some η > 0, and assume that the class K function γ(·) in (2) satisfies
γ(x) ≤ O(x1+r) for some r > 0. Choose constants µ, α > 0 such that

2Lπx+ (x/µ)
1

1+r ≤ γ−1(x) for all 0 ≤ x ≤ α. (6)
Provided that the imitation error on the expert trajectory incurred by π satisfies:

max
0≤t≤T−1

µ ∥∆π⋆
t (ξ;π)∥1+r ≤ α, max

0≤t≤T−1
2Lπµ ∥∆π⋆

t (ξ;π)∥1+r
+ ∥∆π⋆

t (ξ;π)∥ ≤ η, (7)

then for all 1 ≤ t ≤ T the instantaneous imitation gap is bounded as

∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ max
0≤k≤t−1

µ ∥∆π⋆

k (ξ;π)∥1+r
. (8)

Proof. In order to leverage Proposition 3.1 we must first find a solution ε to Equation (5). By
Lipschitzness of the policy class,

max
0≤t≤T−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ) + δ)− π(xπ⋆

t (ξ) + δ)∥ ≤ 2Lπε+ max
0≤t≤T−1

∥∆π⋆
t (ξ;π)∥,

and using the lower bound in Equation (6) it is therefore sufficient to find a solution ε ≤ α to

2Lπε+ max
0≤t≤T−1

∥∆π⋆
t (ξ;π)∥ ≤ 2Lπε+ (ε/µ)

1
1+r

⇐⇒ max
0≤t≤T−1

∥∆π⋆
t (ξ;π)∥ ≤ (ε/µ)

1
1+r .

Picking ε = max0≤t≤T−1 µ∥∆π⋆
t (ξ;π)∥1+r and adding the constraint ε ≤ α in order to ensure the

solution is sufficiently small allows use to apply Proposition 3.1 and obtain the final result
∥xπ⋆

t (ξ)− xπ
t (ξ)∥ ≤ max

0≤t≤T−1
µ∥∆π⋆

t (ξ;π)∥1+r.

Provided that
max

0≤t≤T−1
µ∥∆π⋆

t (ξ;π)∥1+r ≤ α, max
0≤t≤T−1

2Lπµ∥∆π⋆
t (ξ;π)∥1+r + ∥∆π⋆

t (ξ;π)∥ ≤ η

Thus completing the proof.
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Theorem 3.2. Let fπ⋆

cl be η-locally δ-ISS for some η > 0, and assume that the class K function γ(·)
in (2) satisfies γ(x) ≤ O(x1/r) for some r ≥ 1. Fix a test policy π and initial condition ξ ∈ X , and
let Assumption 3.2 hold for p ∈ N satisfying p+ 1− r > 0. Choose µ, α > 0 such that

2
L∂pπ

(p+ 1)!
xp+1 + (x/µ)r ≤ γ−1(x), for all 0 ≤ x ≤ α ≤ 1

2
. (10)

Provided the jth total derivatives, j = 0, . . . , p, of the imitation error on the expert trajectory
incurred by π satisfy:

max
0≤t≤T−1

max
0≤j≤p

µ

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/r ≤ α, (11)

max
0≤t≤T−1

max
0≤j≤p

2L∂pπµ
p+1

(p+ 1)!

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥) p+1
r +

2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ η, (12)

then for all 1 ≤ t ≤ T the instantaneous imitation gap is bounded by

∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ max
0≤k≤t−1

max
0≤j≤p

µ

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/r. (13)

Proof. We proceed similarly as in the proof of Theorem 3.1. From Proposition 3.1, we can take the
pth Taylor expansion of the left hand side of Equation (5) and apply the triangle inequality a few
times to yield:

max
0≤t≤T−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ) + δ)− π(xπ⋆

t (ξ) + δ)∥

≤ max
0≤t≤T−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ))− π(xπ⋆

t (ξ))∥

+ ∥π⋆(x
π⋆
t (ξ) + δ)− π⋆(x

π⋆
t (ξ))− (π(xπ⋆

t (ξ) + δ)− π(xπ⋆
t (ξ)))∥

≤ max
0≤t≤T−1

sup
∥δ∥≤ε

∥π⋆(x
π⋆
t (ξ))− π(xπ⋆

t (ξ))∥

+

∥∥∥∥∥∥
p∑

j=1

1

j!
∂j
xπ⋆(x

π⋆
t (ξ)) · δ⊗j −

p∑
j=1

1

j!
∂j
xπ(x

π⋆
t (ξ)) · δ⊗j

∥∥∥∥∥∥+ 2
L∂pπ

(p+ 1)!
∥δ∥p+1

≤ max
0≤t≤T−1

sup
∥δ∥≤ε

p∑
j=0

1

j!

∥∥∂j
x∆

π⋆
t (ξ;π) · δ⊗j

∥∥+ 2
L∂pπ

(p+ 1)!
∥δ∥p+1

≤ max
0≤t≤T−1

p∑
j=0

1

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ εj + 2
L∂pπ

(p+ 1)!
εp+1.

Therefore, it suffices to find an ε small enough such that

max
0≤t≤T−1

2
L∂pπ

(p+ 1)!
εp+1 +

p∑
j=0

1

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ εj ≤ γ−1(ε).

Since we are given γ(x) ≤ O(x1/r), we have γ−1(x) ≥ Ω(xr). This motivates finding a large
enough µ and small enough neighborhood α such that

max
0≤t≤T−1

2
L∂pπ

(p+ 1)!
εp+1 +

(
ε

µ

)
r ≤ γ−1(ε),

for all 0 < ε ≤ α ≤ 1/2. In essence, we want to find a sufficiently small neighborhood α such
that the εp+1 term is dominated by the εr term, while also selecting a µ such that the total sum is
still upper bounded by γ−1(x) ≥ Ω(xr) in this neighborhood. The choice of raising ε/µ to the
r-th power arises from the fact that r is the smallest exponent–thus affecting the imitation gap in
Equation (13) downstream least severely–that ensures µ, α will always exist. Having found such µ, α,
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we now simply have to find
∥∥∂j

x∆
π⋆
t (ξ;π)

∥∥ small enough such that
p∑

j=0

1

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ εj ≤ max
j≤p

1

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ p∑
j=0

εj (21)

≤ max
j≤p

2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ε ≤ α ≤ 1/2

=

(
ε

µ

)
r.

Solving this for ε, we get

ε = max
j≤p

µ

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/r,

as long as ε ≤ α, the neighborhood condition, and 2 L∂pπ

(p+1)!ε
p+1 +

(
ε
µ

)
r ≤ η, the locality for δ-ISS.

These correspond to the conditions (11) and (12), respectively. This completes the proof.

For completeness we present here a stronger variant of Theorem 3.2 for the special case where
p = r ∈ N. In this scenario we are able to remove the dependency of the imitation gap bounds on the
pth order derivative provided it can be made sufficiently small.
Theorem A.1. Let fπ⋆

cl be η-locally δ-ISS for some η > 0, and assume that the class K function γ(·)
in (2) satisfies γ(x) ≤ O(x1/r) for some r ≥ 1. Fix a test policy π and initial condition ξ ∈ X , and
let Assumption 3.2 hold with p = r ∈ N. Choose µ, α > 0 such that

2
L∂pπ

(p+ 1)!
xp+1 + (x/µ)p ≤ γ−1(x), for all 0 ≤ x ≤ α ≤ 1

2
. (22)

Provided the jth total derivatives, j = 0, . . . , p, of the imitation error on the expert trajectory
incurred by π satisfy:

max
0≤t≤T−1

max
0≤j≤p−1

µ

(
4

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/p

≤ α, (23)

max
0≤t≤T−1

max
0≤j≤p−1

2L∂pπµ
p+1

(p+ 1)!

(
4

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥) p+1
p +

4

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ η, (24)

∥∂p
x∆

π⋆
t (ξ;π)∥ ≤ p!

2µp
(25)

then for all 1 ≤ t ≤ T the instantaneous imitation gap is bounded by

∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ max
0≤k≤t−1

max
0≤j≤p−1

µ

(
4

j!

)
1/r
∥∥∂j

x∆
π⋆
t (ξ;π)

∥∥1/r . (26)

Proof. We follow the proof of Theorem 3.2 until Equation (21). We then wish to solve
p∑

j=0

1

j!
∥∂j

x∆
π⋆
t (ξ;π)∥εj ≤

(
ε

µ

)p

.

Since the order of the RHS is p, provided that 1
p!∥∂

p
x∆

π⋆
t (ξ;π)∥ ≤ 1

2
1
µp we can write

p−1∑
j=0

1

j!
∥∂j

x∆
π⋆
t (ξ;π)∥εj ≤ 1

2

(
ε

µ

)p

.

Upper-bounding the polynomial on the LHS using a geometric series and solving for ε we get

ε = max
j≤p−1

µ

(
4

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/p

,

provided that ε ≤ α, 2 L∂pπ

(p+1)!ε
p+1 +

(
ε
µ

)
p ≤ η, and ∥∂p

x∆
π⋆
t (ξ;π)∥ < p!

2µp . These conditions
correspond to that of the theorem, completing the proof.
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Corollary A.1. Consider a δ-ISS fπ⋆

cl system with γ(x) := γx, γ > 0 and η =∞. Let Assumption
3.2 hold with p = 1 and assume without loss of generality γL∂π ≥ 1. Provided

max
0≤t≤T−1

∥∂x∆π⋆
t (ξ;π)∥ ≤ 1

4γ
, max
0≤t≤T−1

∥∆π⋆
t (ξ;π)∥ ≤ 1

16γ2L∂π

then for all 0 ≤ t ≤ T

∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ max
0≤k≤t−1

8γ∥∆π⋆

k (ξ;π)∥.

Proof. Choose α := 1
2γL∂π

and µ := 2γ. Assume γL∂π ≥ 1. Since γ−1(x) = x
γ , for x ≤ α it holds

that
L∂pπx

2 + (x/µ) ≤ x

2γ
+

x

2γ
≤ γ−1(x) :=

x

γ
.

and we can directly apply the p = r = 1 special case of Theorem A.1. Then, if the constraints
described by Equations (23) and (25) are satisfied:

max
0≤t≤T−1

∥∂x∆π⋆
t (ξ;π)∥ ≤ p!

2µp
=

1

4γ
, max

0≤t≤T−1
∥∆π⋆

t (ξ;π)∥ ≤ 0!

4

(
α

µ

)
p =

1

16γ2L∂π
,

it holds for all 1 ≤ t ≤ T

∥xπ⋆
t (ξ)− xπ

t (ξ)∥ ≤ max
0≤k≤t−1

8γ∥∆π⋆

k (ξ;π)∥.

B Proofs for Section 4

B.1 Preliminaries

Let G ⊂ RX be a set of functions, and let x1, . . . , xn ∈ X be a fixed set of points. We will endow G
with the following empirical L2 pseudo-metric space structure:

d(f, g) :=

√√√√ 1

n

n∑
i=1

(f(xi)− g(xi))2, f, g ∈ G.

The empirical Rademacher complexity of G is defined as:

Rn(G) := Eε

[
sup
g∈G

1

n

n∑
i=1

εig(xi)

]
,

where the {εi}ni=1 are independent Rademacher random variables. Dudley’s inequality yields a bound
onRn(G) using the metric space structure of (G, d).
Lemma B.1 (Dudley’s inequality [cf. 31, Lemma A.3]). Let R := supf∈G d(f, 0) be the radius of
the set G. We have that:

Rn(G) ≤ inf
α∈[0,R]

{
4α+

12√
n

∫ R

α

√
logN(G; d, ε)dε

}
.

Here, N(G; d, ε) denotes the covering number of G in the metric d at resolution ε.

B.2 Generalization bound for the non-realizable setting

We use standard techniques to derive a generalization bound for the non-realizable setting, i.e., where
π⋆ may not necessarily be contained in the hypothesis class Π. Let G ⊂ [0, 1]X be a given function
class. We have the following standard uniform convergence generalization bound [cf. 32, Theorem
4.10]: with probability greater than 1− δ over x1, . . . , xn

i.i.d.∼ D, we have

sup
g∈G
|Ex[g]− En[g]| ≤ 2Ex1:n

[Rn(G)] +
√

log(2/δ)

n
, (27)

where Ex1:n denotes expectation over the randomness of x1, . . . , xn. To establish an upper bound on
Ex1:n

[Rn(G)], we focus on the Lipschitz parametric case, though we note many analogous bounds
can be computed for a plethora of other function classes [32].
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Theorem B.1. Let G ⊂ [0, 1]X be a (Bθ, Lθ, q)-Lipschitz parametric function class. Given δ ∈ (0, 1),
with probability at least 1− δ over the i.i.d. draws x1, . . . , xn ∼ D, the following bound holds:

sup
g∈G
|Ex[g]− En[g]| ≤ 48

√
q log(3BθLθ)

n
+

√
log(2/δ)

n
. (28)

Proof. This argument is fairly standard. Fix a set of points x1, . . . , xn ∈ X . Since G contains only
functions with range [0, 1], the radius of the set G in the empirical L2 metric is:

sup
f∈G

d(f, 0) ≤ 1.

Therefore, Dudley’s inequality (Lemma B.1) yields:

Rn(G) ≤
12√
n

∫ 1

0

√
logN(G; d, ε)dε.

Now using the fact that G is a (Bθ, Lθ, q)-Lipschitz parametric function class, it is not hard to see
that for any ε > 0, an ε/(BθLθ)-cover of Bq

2(1) in the Euclidean metric yields an ε-cover of G in the
d-metric. Hence, for any ε ∈ (0, 1), by a standard volume comparison argument:

logN(G; d, ε) ≤ logN

(
Bq
2(1); ∥·∥ ,

ε

BθLθ

)
≤ q log

(
1 +

2BθLθ

ε

)
≤ q log

(
3BθLθ

ε

)
.

Therefore, we have:∫ 1

0

√
logN(G; d, ε)dε ≤ √q

∫ 1

0

√
log

(
3BθLθ

ε

)
dε

≤
√
q log(3BθLθ) +

√
q

∫ 1

0

√
log(1/ε)dε using

√
a+ b ≤

√
a+
√
b

≤
√
q log(3BθLθ) +

√
q using

∫ 1

0

√
log

(
1

ε

)
dε ≤ 1

≤ 2
√
q log(3BθLθ).

Plugging this back into Dudley’s inequality:

Rn(G) ≤ 24

√
q

n

√
log(3BθLθ).

The claim now follows from the standard uniform convergence inequality (27).

Applying this generalization bound to the (Bθ, B
−1
ℓ,pLℓ,p, q)-Lipschitz parametric function class

B−1
ℓ,p (ℓ

π⋆
p ◦Πθ,p), we get the non-realizable analogue to Corollary 4.1.

Corollary B.1. Let the policy class Πθ,p be defined as in (18). Let the function class ℓπ⋆
p ◦Πθ,p be

defined as in (19), and constants Bℓ,p, Lℓ,p be defined as above. Let π̂TaSIL,p be any empirical risk

minimizer (15). Then with probability at least 1− δ over the initial conditions {ξi}ni=1
i.i.d.∼ Dn,

Eξ

[
ℓπ⋆
p (ξ; π̂TaSIL,p)

]
≤ En[ℓ

π⋆
p (· ; π̂TaSIL,p)] + 48Bℓ,p

√√√√q log
(
3BθB

−1
ℓ,pLℓ,p

)
n

+Bℓ,p

√
log(2/δ)

n
.

(29)
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Inserting the generalization bound in Corollary B.1 in lieu of Corollary 4.1 for the rest of the bounds
seen in Section 4 yields the sample complexity bounds relevant to our problem in the non-realizable
setting. However, we note an important subtlety that manifests in the non-realizable regime. We
note that in Corollary 4.1, due to realizability, the generalization bound monotonically decreases
to 0 with n, whereas in Corollary B.1, we have an additive factor of En[ℓ

π⋆
p (· ; π̂TaSIL,p)]. It is

therefore possible for either small enough n or insufficiently expressive function classes Πθ,p that
the non-zero empirical risk automatically violates the imitation error requirements in Theorems 3.1
and 3.2. Thus, a necessary assumption must be made in the non-realizable setting for the function
class to be expressive enough such that the empirical risk it incurs on sufficiently large datasets
satisfies the imitation error requirements with high probability.

B.3 Proof of Theorem 4.1

Before turning to the proof of Theorem 4.1, we introduce some notation and tools from the local
Rademacher complexity literature [33, 34].
Definition B.1 (Sub-root function). A function ϕ : [0,∞)→ R is said to be a sub-root function if:

a) ϕ is non-negative.

b) ϕ is not the zero function.

c) ϕ is non-decreasing.

d) r 7→ ϕ(r)/
√
r is non-increasing.

For any non-negative function class G, scalar r ≥ 0, and n points x1, . . . , xn ∈ X , define:

Hn(r;x1:n) := {g ∈ G | En[g] ≤ r}.

The following is from Bousquet [34].
Theorem B.2 (Bousquet [34, Theorem 6.1]). Let G ⊂ [0, 1]X , and fix a δ ∈ (0, 1). With probability
at least 1− δ over the i.i.d. draws of x1, . . . , xn, the following holds. Let ϕn be any sub-root function
(cf. Definition B.1) satisfying:

Rn(Hn(r;x1:n)) ≤ ϕn(r), ∀ r > 0.

Let r∗n denote the largest solution to the equation ϕn(r) = r. Then, for all g ∈ G:

Ex[g] ≤ 2En[g] + 106r∗n +
48(log(1/δ) + 6 log log n)

n
.

With these definitions and preliminary results in place, we turn to the proof of Theorem 4.1.
Theorem 4.1. Let G ⊂ [0, 1]X be a (Bθ, Lθ, q)-Lipschitz parametric function class. There exists a
universal positive constant K < 106 such that the following holds. Given δ ∈ (0, 1), with probability
at least 1− δ over the i.i.d. draws x1, . . . , xn ∼ D, for all g ∈ G, the following bound holds:

Ex[g] ≤ 2En[g] +K

(
q log(BθLθn) + log(1/δ)

n

)
. (17)

Proof. Fix a set of points x1, . . . , xn ∈ X . Define Gn(r;x1:n) as:

Gn(r;x1:n) := {g ∈ G | En[g
2] ≤ r}.

For what follows, we often suppress the explicit dependence on x1:n in the notation forHn and Gn.
Observe that since G ⊂ [0, 1]X , we have En[g

2] ≤ En[g] for every g ∈ G, and therefore:

Hn(r) ⊆ Gn(r), ∀ r ≥ 0.

HenceRn(Hn(r)) ≤ Rn(Gn(r)), and it suffices for us to prove an upper bound on the latter.

Proposition B.1. Let G ⊂ [0, 1]X be a (Bθ, Lθ, q)-Lipschitz parametric function class. Fix a set of
points x1, . . . , xn ∈ X . We have that:

Rn(Gn(r;x1:n)) ≤ 24
√
2

√
q

n
min{

√
r, 1}

√
log

(
6BθLθ

min{
√
r, 1}

)
.
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Proof of Proposition B.1. The radius of the set Gn(r) in the empirical L2 metric d is upper bounded
by
√
r by definition. Furthermore, the radius of G in the metric d is upper bounded by one. Hence,

since Gn(r) ⊆ G, the radius of Gn(r) is upper bounded by min{
√
r, 1}.

Dudley’s inequality (Lemma B.1) yields:

Rn(Gn(r)) ≤ inf
α∈[0,min{

√
r,1}]

{
4α+

12√
n

∫ min{
√
r,1}

α

√
logN(G; d, ε/2)dε

}
. (30)

Here, we have used the fact that the inclusion Gn(r) ⊆ G implies N(Gn(r); d, ε) ≤ N(G; d, ε/2) by
Vershynin [35, Exercise 4.2.10].

Since G is (Bθ, Lθ, q)-Lipschitz, for any ε > 0, an ε-covering of G in the d-metric can be constructed
from an ε/(BθLθ)-covering of Bq

2(1) in the Euclidean metric. Therefore, for any ε ∈ (0, 1), by the
standard volume comparison bound:

logN(G; d, ε) ≤ logN

(
Bq
2(1); ∥·∥ ,

ε

BθLθ

)
≤ q log

(
1 +

2BθLθ

ε

)
≤ q log

(
3BθLθ

ε

)
.

Putting R := min{
√
r, 1},∫ R

0

√
logN(G; d, ε/2)dε

≤ √q

[
R
√

log(6BθLθ) +

∫ R

0

√
log(1/ε)dε

]
using

√
a+ b ≤

√
a+
√
b

=
√
q

[
R
√

log(6BθLθ) +R

∫ 1

0

√
log

(
1

Rε

)
dε

]
change of variables ε← ε/R

≤ √q

[
R
√

log(6BθLθ) +R

√
log

(
1

R

)
+R

]
using

∫ 1

0

√
log

(
1

ε

)
dε ≤ 1

≤ R
√
q

[√
log(6BθLθ) + 2

√
log

(
1

R

)]

≤ 2
√
2R
√
q

√
log

(
6BθLθ

R

)
using

√
a+
√
b ≤
√
2
√
a+ b.

The claim now follows.

We complete the proof by upper bounding r∗n and invoking Theorem B.2. First, observe that by
Cauchy-Schwarz, the inequality En[g

2] ≤ En[g] for g ∈ G, and Jensen’s inequality:

Rn(Hn(r)) ≤ sup
g∈Hn(r)

√
En[g2]Eε

√√√√ 1

n

n∑
i=1

ε2i ≤
√
r.

This bound holds for any r ≥ 0. Hence, when r ≤ 1/n2:

Rn(Hn(r)) ≤ 1/n.

On the other hand, when r > 1/n2, by Rn(Hn(r)) ≤ Rn(Gn(r)), Proposition B.1, and the
inequalities 1/n < min{

√
r, 1} ≤

√
r:

Rn(Hn(r)) ≤ 24
√
2

√
q

n

√
r
√

log(6BθLθn).
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Hence, the function ϕn defined as:

ϕn(r) := max

{
24
√
2

√
q log(6BθLθn)

n

√
r,

1

n

}
,

satisfies Rn(Hn(r)) ≤ ϕn(r) for all r ≥ 0. It is also not hard to see that ϕn is a sub-root function
(cf. Definition B.1). Therefore, there is a unique solution r∗n satisfying ϕn(r

∗
n) = r∗n. Now, for any

positive constants A,B, the root of r = max{A
√
r,B} is upper bounded by max{A2, B}. Hence,

r∗n ≤ 1152
q log(6BθLθn)

n
.

Theorem 4.1 now follows by Theorem B.2.

B.4 Proof of Corollary 4.1

Lemma B.2. Let Bℓ,p := 2
p+1

∑p
j=0 Bj and Lℓ,p := BX

p+1

∑p
j=0 Lj . Then B−1

ℓ,p (ℓ
π⋆
p ◦ Πθ,p) is a

(Bθ, B
−1
ℓ,pLℓ,p, q)-Lipschitz parametric function class

Proof. It suffices to show that

max
0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥
is 2Bj-bounded and BXLj Lipschitz with respect to Θ. By definition, we immediately get∥∥∂j

x∆
π⋆
t (ξ;π)

∥∥ =
∥∥∂j

xπ⋆(x
π⋆
t (ξ))− ∂j

xπ(x
π⋆
t (ξ))

∥∥
≤ 2 sup

∥x∥≤BX ,∥θ∥≤Bθ

∥∥∂j
xπ(x, θ)

∥∥
= 2Bj .

To bound the Lipschitz constant, we iteratively apply the Fundamental Theorem of Line Integrals:

∂j
xπ(x; θ1)− ∂j

xπ(x; θ2) =

∫ θ1

θ2

∫ x

0

∂j+2π

∂xj+1∂θ
(z ⊗ ω) dzdω

=

∫ θ1

θ2

(∫ 1

0

∂j+2π

∂xj+1∂θ
(αx⊗ ω) dα

)
x dω

=

(∫ 1

0

∫ 1

0

∂j+2π

∂xj+1∂θ
(αx⊗ (θ2 + β(θ1 − θ2))) dαdβ

)
x⊗ (θ1 − θ2).

Taking norms on both sides, we get∥∥∂j
xπ(x; θ1)− ∂j

xπ(x; θ2)
∥∥ ≤ sup

∥x∥≤BX ,∥θ∥≤Bθ

∥∥∥∥ ∂j+2π

∂xj+1∂θ

∥∥∥∥ ∥x∥ ∥θ1 − θ2∥

≤ BXLj ∥θ1 − θ2∥ ,

which establishes that
∥∥∂j

x∆
π⋆
t (ξ;π)

∥∥ is BXLj-Lipschitz. Recalling that

ℓπ⋆
p (ξ;π) := 1

p+1

∑p
j=0 max0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ,
it follows that ℓπ⋆

p (ξ;π) is 2
p+1

∑p
j=0 Bj-bounded and BX

p+1

∑p
j=0 Lj-Lipschitz.

Corollary 4.1. Let the policy class Πθ,p be defined as in (18), and assume that π⋆ ∈ Πθ,p. Let the
function class ℓπ⋆

p ◦ Πθ,p be defined as in (19), and constants Bℓ,p, Lℓ,p be defined as above. Let
π̂TaSIL,p be any empirical risk minimizer (15). Then with probability at least 1− δ over the initial

conditions {ξi}ni=1
i.i.d.∼ Dn,

Eξ

[
ℓπ⋆
p (ξ; π̂TaSIL,p)

]
≤ O(1)Bℓ,p

q log
(
BθB

−1
ℓ,pLℓ,pn

)
+ log(1/δ)

n
. (20)

Proof. This follows by directly applying the constants derived in Lemma B.2 to Theorem 4.1, and
using the assumption that π⋆ ∈ Πθ,p such that En

[
ℓπ⋆
p (· ; π̂TaSIL,p)

]
= 0.
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B.5 Proofs of Theorem 4.2 and Theorem 4.3

Before proceeding to the proofs of the main sample complexity bounds, we introduce the following
lemma for inverting functions of the form log n/n, adapted from Simchowitz et al. [36, Lemma A.4].

Lemma B.3. Given n ∈ N, n ≥ b log(cn) as long as n ≥ 2b log(2bc), where we assume b, c ≥ 1.

Proof. We observe by derivatives that n − b log(cn) is strictly increasing for n ≥ b. Therefore, it
suffices to show b log(cn) ≤ n when n = 2b log(2bc).

b log(2bc log(2bc)) = b log(2 log(2)bc+ 2bc log(bc))

≤ b log
(
(2 log(2) + 2)(bc)2

)
bc ≥ 1

= 2b log
(√

2 log(2) + 2bc
)

< 2b log(2bc).

Theorem B.3 (Full version of Theorem 4.2). Assume that π⋆ ∈ Πθ,0 and let the assumptions of
Theorem 3.1 hold for all π ∈ Πθ,0. Let Equation (6) hold with constants µ, α > 0, and assume
without loss of generality that α/µ ≤ 1, Lπµ ≥ 1/2. Let π̂TaSIL,0 be an empirical risk minimizer of

ℓπ⋆
0 over the policy class Πθ,0 for initial conditions {ξi}

i.i.d.∼ Dn. Fix a failure probability δ ∈ (0, 1),
and assume that

n ≥ O(1)max

{
Bℓ,0

κα

δ
log

(
καBθB

−1
ℓ,0Lℓ,0

δ

)
, Bℓ,0

κη

δ
log

(
κηBθB

−1
ℓ,0Lℓ,0

δ

)}
,

where κα := q(µ/α)
1

1+r , κη := qLπµ/η. Then with probability at least 1 − δ, the imitation gap
evaluated on ξ ∼ D (drawn independently from {ξi}ni=1) satisfies

ΓT (ξ; π̂TaSIL,0) ≤ O(1)µ

1

δ

Bℓ,0q log
(
BθB

−1
ℓ,0Lℓ,0n

)
n

1+r

.

Proof. Applying Corollary 4.1 to the (Bθ, Bℓ,0, q)-Lipschitz parametric function class
B−1

ℓ,0 (ℓ
π⋆
0 ◦Πθ,0), we get that with probability at least 1− δ/2 over i.i.d. initial conditions ξi ∼ Dn,

Eξ

[
max

0≤t≤T−1
∥∆π⋆

t (ξ; π̂TaSIL,0)∥
]
≤ O(1)Bℓ,0

q log
(
BθB

−1
ℓ,0Lℓ,0n

)
+ log(1/δ)

n
.

Applying Markov’s inequality to maxt ∥∆π⋆
t (ξ; π̂TaSIL,0)∥, for a new draw ξ ∼ D, with probability

greater than 1− δ/2,

max
0≤t≤T−1

∥∆π⋆
t (ξ; π̂TaSIL,0)∥ ≤

2

δ
Eξ

[
max

0≤t≤T−1
∥∆π⋆

t (ξ; π̂TaSIL,0)∥
]
.

Thus applying a union bound over the two events, we have with probability greater than 1− δ that

max
0≤t≤T−1

∥∆π⋆
t (ξ; π̂TaSIL,0)∥ ≤ O(1)Bℓ,0q

1

δ

log
(
BθB

−1
ℓ,0Lℓ,0n

)
+ log(1/δ)

n
, (31)

where we absorb numerical constants into O(1). We want maxt ∥∆π⋆
t (ξ; π̂TaSIL,0)∥ to satisfy the

conditions in (7); that is,

max
0≤t≤T−1

µ ∥∆π⋆
t (ξ; π̂TaSIL,0)∥1+r ≤ α,

max
0≤t≤T−1

2Lπµ ∥∆π⋆
t (ξ; π̂TaSIL,0)∥1+r

+ ∥∆π⋆
t (ξ; π̂TaSIL,0)∥ ≤ η.
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For notational convenience, we further require maxt ∥∆π⋆
t (ξ; π̂TaSIL,0)∥ ≤ 1, so that

max
t
∥∆π⋆

t (ξ; π̂TaSIL,0)∥1+r ≤ max
t
∥∆π⋆

t (ξ; π̂TaSIL,0)∥ .

By assumption, since α/µ ≤ 1, satisfying the first condition above implies
maxt ∥∆π⋆

t (ξ; π̂TaSIL,0)∥ ≤ 1. We observe that for n ≥ δ−1 log(1/δ) we have log n ≥ 2 log(1/δ),
thus it suffices to absorb the log(1/δ) term into log n. Inserting the generalization bound (31) and
shifting n to the right-hand side of the above conditions, we have the following requirements on n:

n ≥ O(1)max

{(µ
α

)
1/1+rBℓ,0q

1

δ
log
(
BθB

−1
ℓ,0Lℓ,0n

)
,(

Lπµ

η

)
Bℓ,0q

1

δ
log
(
BθB

−1
ℓ,0Lℓ,0n

)}
=: O(1)max

{
Bℓ,0κα

1

δ
log
(
BθB

−1
ℓ,0Lℓ,0n

)
,

Bℓ,0κη
1

δ
log
(
BθB

−1
ℓ,0Lℓ,0n

)}
,

where we define κα = q(µ/α)
1

1+r and κη = qLπµ/η. Therefore, applying Lemma B.3 on each
of the arguments of the maximum, setting b = Bℓ,0καq/δ (respectively b = Bℓ,0κηq/δ) and
c = BθB

−1
ℓ,0Lℓ,0, we get the following sample complexity bounds. For n satisfying

n ≥ O(1)max

{
Bℓ,0

κα

δ
log

(
καBθLℓ,0

δ

)
, Bℓ,0

κη

δ
log

(
κηBθLℓ,0

δ

)}
,

we have with probability greater than 1− δ

ΓT (ξ; π̂TaSIL,0) ≤ O(1) µ

Bℓ,0q
1

δ

log
(
BθB

−1
ℓ,0Lℓ,0n

)
n

1+r

.

This completes the proof.

Theorem B.4 (Full version of Theorem 4.3). Assume that π⋆ ∈ Πθ,p, and let the assumptions of
Theorem 3.2 hold for all π ∈ Πθ,p. Let Equation (10) hold with constants µ, α > 0, and without loss
of generality let

(
α
µ )

rp! ≤ 2. Let π̂TaSIL,p be an empirical risk minimizer of ℓπ⋆
p over the policy class

Πθ,p for initial conditions {ξi}
i.i.d.∼ Dn. Fix a failure probability δ ∈ (0, 1), and assume

n ≥ O(1)max
j≤p

max

{
Bj

κα,j

δ
log

(
κα,jBθB

−1
j BXLj

δ

)
, Bj

κη,j

δ
log

(
κη,jBθB

−1
j BXLj

δ

)}
,

where κα,j :=
(
µ
α

)r pq
j! and κη,j :=

(
L∂pπ

(p+1)!
µp+1

(j!)
p+1
r

+ 1
j!

)
pq
ηδ . Then with probability at least 1 − δ,

the imitation gap evaluated on ξ ∼ D (drawn independently from {ξi}ni=1) satisfies

ΓT (ξ; π̂TaSIL,p) ≤ O(1)µmax
j≤p

(
p

j!δ

Bjq log
(
BθB

−1
j BXLjn

)
n

)1/r

.

Proof. Let us first define the following losses on a specific partial:

hπ⋆
j (ξ;π) := max

0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ .
We observe that by definition, hπ⋆

j ◦Πθ,p is 2Bj bounded, and hπ⋆
j is BXLj-Lipschitz with respect

to Θ for j ≤ p, such that 0.5B−1
j

(
hπ⋆
j ◦Πθ,p

)
is a (Bθ, 0.5B

−1
j BXLj , q)-Lipschitz loss class. We

note that since π⋆ ∈ Πθ,p, we have for any dataset {ξi} ⊂ X

En

[
ℓπ⋆
p (· ; π̂TaSIL,p)

]
=:

1

p+ 1

p∑
j=0

max
0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ = 0,
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which therefore implies En

[
hπ⋆
j (· ; π̂TaSIL,p)

]
= 0 for j ≤ p. We now apply the same proof structure

in Theorem 4.2 to each 0.5B−1
j

(
hπ⋆
j ◦Πθ,p

)
, where we have with probability greater than 1− δ

2(p+1)

that

Eξ

[
max

0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ; π̂TaSIL,p)

∥∥] ≤ O(1)Bj

q log
(
BθB

−1
j BXLjn

)
+ log

(
2(p+1)

δ

)
n

.

Applying Markov’s inequality at level δ
2(p+1) , we get with total probability greater than 1− δ

p+1 over
a new initial condition ξ ∼ D that π̂TaSIL,p satisfies the generalization bound

max
0≤t≤T−1

∥∥∂j
x∆

π⋆
t (ξ; π̂TaSIL,p)

∥∥ ≤ O(1)Bj
p+ 1

δ

q log
(
BθB

−1
j BXLjn

)
+ log

(
p+1
δ

)
n

. (32)

For each partial, we want to satisfy the constraints outlined in (11):

max
0≤t≤T−1

max
0≤j≤p

µ

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/r ≤ α,

max
0≤t≤T−1

max
0≤j≤p

2L∂pπµ
p+1

(p+ 1)!

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥) p+1
r +

2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ η,

(33)

By assumption, we have
(
α
µ

)r
p! ≤ 2, and thus the first condition implies maxt

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ 1

for all j ≤ p; in particular, this conveniently ensures
∥∥∂j

x∆
π⋆
t (ξ;π)

∥∥ p+1
r ≤

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥. Plugging
the earlier generalization bound (32) into the above constraints and shifting n to the RHS, and
observing like earlier we may absorb the log(1/δ) term into the log n term, we get:

n ≥ O(1)max

{(µ
α

)
r 1

j!
Bj

p

δ
q log

(
BθB

−1
j Ljn

)
,(

L∂pπ

(p+ 1)!

µp+1

(j!)
p+1
r

+
1

j!

)
Bj

p

δ
q log

(
BθB

−1
j Ljn

)}
=: O(1)max

{
Bj

κα,j

δ
log
(
BθB

−1
j Ljn

)
, Bj

κη,j

δ
q log

(
BθB

−1
j Ljn

)}
,

where we define κα,j =
(
µ
α

)
r pq
j! , κη,j =

(
L∂pπ

(p+1)!
µp+1

(j!)
p+1
r

+ 1
j!

)
pq
ηδ . Therefore applying Lemma B.3,

setting b = Bj
κα,j

δ (respectively b = Bj
κη,j

δ ) and c = BθB
−1
j Lj , for n satisfying:

n ≥ O(1)max

{
Bj

κα,j

δ
log

(
κα,jBθLj

δ

)
, Bj

κη,j

δ
log

(
κη,jBθLj

δ

)}
,

we have with probability greater than 1 − δ
p+1 that the conditions (33) are satisfied. To finish the

proof, since we have with probability 1− δ
p+1 that each jth partial difference satisfies the necessary

conditions, we union bound over 0 ≤ j ≤ p, such that we take a maximum over j for the sample
complexity and the resulting imitation gap. This gets us with probability greater than 1− δ, for n
satisfying

n ≥ O(1)max
j≤p

max

{
Bj

κα,j

δ
log

(
κα,jBθLj

δ

)
, Bj

κη,j

δ
log

(
κη,jBθLj

δ

)}
,

that the following bound on the imitation gap holds

ΓT (ξ; π̂TaSIL,p) ≤ O(1)max
j≤p

µ

(
p

j!δ

Bjq log
(
BθB

−1
j BXLjn

)
n

)1/r

.

This completes the proof.

25



C Using finite-differencing to approximate derivatives

C.1 Satisfying Conditions (11) and (12) with approximate derivatives

We recall the closeness conditions on the partials along expert trajectories that guarantee bounds on
the imitation gap:

max
0≤t≤T−1

max
0≤j≤p

µ

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥)1/r ≤ α, (11)

max
0≤t≤T−1

max
0≤j≤p

2L∂pπµ
p+1

(p+ 1)!

(
2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥) p+1
r +

2

j!

∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ η. (12)

If we have access to approximate derivatives of the expert ∂̂j
xπ⋆(x) such that∥∥∥∥∂̂j

xπ⋆(x)− ∂j
xπ⋆(x)

∥∥∥∥ ≤ b < 1

for all x ∈ Rd, then it suffices to tighten the constraints by some function of b such that minimizing
with respect to the approximate partial derivatives will still result in the deviation from the true
derivatives satisfying the requisite bounds. Let us define

∂̂j
x∆

π⋆
t (ξ;π) := ∂j

xπ(x
π⋆
t (ξ))− ∂̂j

xπ⋆(x
π⋆
t (ξ)),

such that ∥∥∂j
x∆

π⋆
t (ξ;π)

∥∥ ≤ ∥∥∥∥∂̂j
x∆

π⋆
t (ξ;π)

∥∥∥∥+ ∥∥∥∥∂̂j
xπ⋆(x

π⋆
t (ξ))− ∂j

xπ⋆(x
π⋆
t (ξ))

∥∥∥∥
≤
∥∥∥∥∂̂j

x∆
π⋆
t (ξ;π)

∥∥∥∥+ b.

Therefore, it suffices to match the approximate partial derivatives such that

max
0≤t≤T−1

max
0≤j≤p

µ

(
2

j!

∥∥∥∥∂̂j
x∆

π⋆
t (ξ;π)

∥∥∥∥)1/r ≤ α̂,

max
0≤t≤T−1

max
0≤j≤p

2L∂pπµ
p+1

(p+ 1)!

(
2

j!

∥∥∥∥∂̂j
x∆

π⋆
t (ξ;π)

∥∥∥∥) p+1
r +

2

j!

∥∥∥∥∂̂j
x∆

π⋆
t (ξ;π)

∥∥∥∥ ≤ η̂,

where, provided
∥∥∥∥∂̂j

x∆
π⋆
t (ξ;π)

∥∥∥∥ < 1:

α̂ :=

(
αr − 2µr

j!
b

)
1/r, η̂ := η −

(
2L∂pπµ

p+1

(p+ 1)!

(
2

j!

)
p+1
r +

2

j!

)
b.

A similar bound holds if we also do not have access to the exact derivatives of the learned policy. In
practice, these bounds tell us qualitatively that if a sufficiently precise estimate of the derivatives is
used, such as through finite differencing, then the imitation gap bounds in Theorem 3.2 still hold.

C.2 Practical approaches for approximating derivatives

Minimizing
∑k

j=1 ∥∂j
x∆

π⋆
t (ξ;π)∥ can be approximated provided π⋆ can be evaluated at points

{xt(ξ) + δi}Ni=1 by minimizing the finite difference loss:

ℓp,FD(ξ;π, {δi}Ni=1) := max
1≤i≤N

∥π⋆(xt(ξ) + δi)− π⋆(xt(ξ))− (π(xt(ξ) + δi)− π(xt(ξ))∥,

where the {δi} are chosen such that the Taylor expansion
p∑

j=1

1

p!
∂j
x∆

π⋆
t (ξ;π) · δ⊗j

i = π⋆(xt(ξ) + δi)− π⋆(xt(ξ))

− (π(xt(ξ) + δi)− π(xt(ξ)))−
Rp+1(δi)

(p+ 1)!
, ∀ 1 ≤ i ≤ N,
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forms a linearly independent system of equations in the derivative parameters. Here, Rp+1(δi) denotes
the Taylor remainder, which satisfies the inequality ∥Rp+1(δi)∥ ≤ 2L∂pπ∥δi∥p+1 by Assumption 3.2.

For the case p = 1, we can stack the {δi} into a matrix S, the finite differences into a matrix M and
the remainders into a matrix R to write

∂j
x∆

π⋆
t (ξ;π)S = M −R.

Provided the {δi} are chosen such that S is invertible, the operator norm of ∂j
x∆

π⋆
t (ξ;π) can be

upper bounded

∥∂j
x∆

π⋆
t (ξ;π)∥ = ∥MS−1 −RS−1∥

≤ ∥S−1∥(∥M∥+ ∥R∥)
≤ ∥S−1∥(∥M∥+ L∂pπ∥S∥2).

For instance, using a standard basis S = εI as the finite difference perturbations yields the following
bound on the operator norm:

∥∂j
x∆

π⋆
t (ξ;π)∥ ≤ 1

ε
∥M∥+ εL∂2π,

where M is the stacked error matrix at the finite differences. Therefore by ensuring sufficiently small
ε and finite difference loss, the bound on the Jacobian error can be made arbitrarily small.

Alternatively, if the finite differences δi are sampled from a uniform distribution on a sphere of radius
ε for each evaluation of ℓ1,FD (i.e, the expert can be cheaply queried during training), Woolfe et al.
[37, Theorem 3.15] shows that

∥∂i
x∆

π⋆
t (ξ;π)∥ ≤ 0.8

√
d

ζ1/N

(
1

ε
ℓp,FD(ξ;π, {δi}Ni=1) + εL∂2π

)
,

with probability 1− ζ, where d is the dimensionality of the state space. This suggests that provided
the expert can be requeried each iteration, N ≪ d finite differencing terms can be used.

C.3 Experimental results
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Figure 3: Mean normalized reward for vanilla Behavior Cloning, Behavior Cloning with TaSIL loss, and
Behavior Cloning with finite-differencing based TaSIL. The average across 5 random seeds is shown.

We perform several experiments using finite differencing to approximate minimizing the higher order
derivatives. Figure 3 shows configurations with 1, 5, 10, and 50 difference vectors across different
MuJoCo environments. The different vectors drawn from a uniform distribution over a sphere of
radius 0.01. The difference vectors were drawn once for each state-action pair and did not change
during training. This was done to simulate the effect of getting progressively closer to using the full
standard basis with additional finite differencing terms.

For Walker2d and HalfCheetah with a state dimension of 17, finite difference with a single random
vector is sufficient to achieve performance on par with TaSIL using the explicit Jacobians. Humanoid
and Ant with higher dimensional observation spaces (376 and 111 dimensions respectively) also
show significant improvements the more finite differences are used.

27



D Additional information for stability experiments

Theorem D.1. For η ∈ [0, 1), the system

xt+1 = ηxt + (1− η) · γ(∥h(xt) + ut∥)
∥h(xt) + ut∥

(h(xt) + ut), (34)

is δ-ISS around π⋆(x) = −h(x) with class K function γ.

Proof. We use the shorthand xt(ξ1) := xt(ξ1, {uk}t−1
k=0) and xt(ξ2) := xt(ξ2, {0}t−1

k=0). We can
prove this directly using

∥xt+1(ξ1)− xt+1(ξ2)∥

=

∥∥∥∥η(xt(ξ1)− xt(ξ2)) + (1− η) · γ(∥h(xt) + ut∥)
∥h(xt) + ut∥

(h(xt) + ut)

∥∥∥∥
≤ η∥xt(ξ1)− xt(ξ2)∥+ (1− η)γ(∥h(xt) + ut∥).

Since x0(ξ1) = ξ1 and x1(ξ2) = ξ2, repeated composition of this upper bound yields

∥xt(ξ1)− xt(ξ2)∥ ≤ ηt∥ξ1 − ξ2∥+
t−1∑
k=0

ηt−1−k(1− η)γ(∥h(xk) + uk∥)

≤ ηt∥ξ1 − ξ2∥+ max
0≤k≤t−1

γ(∥h(xk) + uk∥)

= ηt∥ξ1 − ξ2∥+ γ

(
max

0≤k≤t−1
∥h(xk) + uk∥

)
.

Experiment details The expert MLP has two hidden layers of 32 units each with GELU activations
while the learned policy has three hidden layers of 64 units and GELU activations. A tanh nonlinearity
was applied to obtain the final policy output. Expert weights were initialized using Lecun Normal
initialization LeCun et al. [38] for the kernels and drawn form a normal distribution with Σ = 0.1I
for the biases. The learned policy weights are initialized using orthogonal intialization for the kernels
and zeros for the bias.

For all stability experiments we train on 20 trajectories of length T = 100. Initial states were sampled
from a standard normal distribution. The state-action pairs are shuffled independently into batches of
size 100 and weight updates were performed using the Adam optimizer with β1 = 0.9, β2 = 0.999,
and ε = 1× 10−4. The training rate was decayed with a cosine learning rate decay using an initial
rate of α = 1×10−3. We additionally employed ℓ2 weight regularization with λ = 0.01. All training
is run for 4500 iterations on our internal cluster.

To weight the various derivative terms for the different TaSIL losses we use λ0 = 1, λ1 = 1, and
λ2 = 10.

E Additional information for MuJoCo experiments

We use a β-decay-rate of p = 0.5 for DAgger and α = TTr[Σk] for DART, the same parameters used
by Laskey et al. [7] for their Mujoco experiments. For DART, we use an independent sample of 5
trajectories to update the noise statistics. The same optimization setup from the stability experiments
was used, with a batch size of 100, Adam optimizer with β1 = 0.9, β2 = 0.999, ε = 1 × 10−4,
cosine learning rate scheduling with an initial learning rate of 1 × 10−3 decaying over the entire
training duration of 4500 epochs, and ℓ2 weight regularization with λ = 0.01.

We train over 4500 epochs for all experiments with a training and test trajectory length of T = 300.
All TaSIL losses use λ0 = 1. λ1 = 0.01 is used for the jacobian term in the 1-TaSIL loss.

Similar to Laskey et al. [7], DAgger rollout policies and DART noise statistics were updated sparsely
rather than after every trajectory. We performed updates after 1, 5, 20, and 30 trajectories.
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