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A Proofs for Section 3

Proposition 3.1. Let the expert closed-loop system f1* be n-locally 6-1SS for some n > 0. Fix an
imitation gap bound € > 0, initial condition &, and policy . Then if

oS, Sup. 7o (27" (€) + 0) — m(zf* (§) 4+ 6)| < min{n,7 ()}, (5)

we have that the imitation gap satisfies T'p(&;7) < e.
Proof. We do a proof by induction.

Base case t = 0: 'We trivially have at ¢ = O:
[z (&) =27 () = lE =€l =0 <e
Induction step: Assume for some k£ > 0, we have max;<y—1 ||27*(§) — 27 (§)]| < . We set
§:=ap* (&) — xf_, (&) such that ||| < e. From Equation (5), we are guaranteed that
[ (2F-1(€)) = m(@f_1 ()| = [|me(afz, (&) +6) — m(afz, (&) + 0|

< 0<r%1<a]§( ) H?”lp |7 (2 (&) +6) — m(xf*(§) +9)||

< min{n,y~ L ()}
Since f* is n-locally 0-ISS, we get from (3)
o (©) = aF (O < 2, nax | I (a3(0) = (T )]

0<s<k—1

< v(min{n,7"'()})
<g,

and thus max;<y, ||z7* (&) — 27 (€)]| < e, completing the induction step. O

Theorem 3.1. Fix a test policy m and initial condition £ € X, and let Assumption 3.1 hold. Let
[ be n-locally 6-ISS for some 1) > 0, and assume that the class K function ~(-) in (2) satisfies

y(z) < O(x*7) for some r > 0. Choose constants pi, o > 0 such that
2L,rx+(x/u)$ <~y Nx) forall0 < x < a. (6)
Provided that the imitation error on the expert trajectory incurred by w satisfies:
max p|AT(EDT <o, max 2L |AF G|+ ARG <0 D)

0<t<T—1 7 0<<T—-1
then for all 1 <t < T the instantaneous imitation gap is bounded as
* * 1+
IF() —aF @) < max plAT & m)". ®)

Proof. In order to leverage Proposition 3.1 we must first find a solution € to Equation (5). By
Lipschitzness of the policy class,

— < .
2, s (e (€) +0) = n(eF (O + )| < 2Lee+ x| [AF (&

and using the lower bound in Equation (6) it is therefore sufficient to find a solution ¢ < « to
2Lre+ max (AT (& m)|| < 2Lns + (/)™

1
T . <
= Jax A&l < (e/p)™

Picking € = maxo<t<7—1 p||A7* (& 7)||'T" and adding the constraint ¢ < « in order to ensure the
solution is sufficiently small allows use to apply Proposition 3.1 and obtain the final result

27 (&) —2f (Ol < max pl| AT (&)l

0<t<T—1
Provided that
A”* 1+r< 2L AT+ (& 1+r AT (& <
Jmax AT (EmT < a0 max 2Lo AT (Em + AT (G < 1
Thus completing the proof. O
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Theorem 3.2. Let f[* be n-locally §-ISS for some 1 > 0, and assume that the class K function (-)
in (2) satisfies v(z) < O(x'/") for some r > 1. Fix a test policy 7 and initial condition ¢ € X, and
let Assumption 3.2 hold for p € N satisfying p+ 1 — r > 0. Choose p, > 0 such that

Lgv 1
2T Pt 4 (2/p)" <A Nx), forall0 <z < a < —. 10
S /) < 5 @), forall 0 € 0 (10)
Provided the jth total derivatives, j = 0,...,p, of the imitation error on the expert trajectory
incurred by T satisfy:
max —max [ 2 ||8jA”* (&) Ur<a (11)
0<t<T-10<j<p \ g1 727t > -

QopnpPt (2 g1
x ol (2 Josar- e )

max ma,
0<t<T-10<j<p (p+1)!

2\ oiam
T lal@ml<n. a2
then for all 1 <t < T the instantaneous imitation gap is bounded by

a3 () — 27Ol < max maxu( |oIAT (¢ H) 13)

0<k<t—10<j<p

Proof. We proceed similarly as in the proof of Theorem 3.1. From Proposition 3.1, we can take the
pth Taylor expansion of the left hand side of Equation (5) and apply the triangle inequality a few
times to yield:

o1 2, I T (O 0) = (O + O

max  sup ||m(z7*(§)) — w(xr*(€))]]

0<t<T -1 15l <e

+ e (2 () + 0) = mulay (§)) — (w2 (§) +6) — w(ai™ ()

IN

< —m(zf"

S g g, I @)= O
3 Loim o) 0% - Z ln(aT (6) - 0% | 4 22
— j! (r+1)!

< max sup Z HajA”* & 5®jH 19 La» ||5||z>+1

T0<t<T— 1”5H ' - (p+1)'

< max u Ha]Aﬂ* 5 )H E‘:J + 2 Lapw p+1

T 0sisTo1 j! ’ (p+1)!

Therefore, it suffices to find an € small enough such that

orm _ _p+1 ~ 1 i AT J -1

+> 3 < .
Ogrtr?%{_12(p 1)!5 > ;i |02A7 (&m)|| e < v (e)
]:

Since we are given y(z) < O(x!/"), we have y~!(x) > Q(z"). This motivates finding a large
enough p and small enough neighborhood « such that

Lorx_ ps1 | (Z) <o),

max 2
0<t<T-1 (p+1)!

forall 0 < ¢ < « < 1/2. In essence, we want to find a sufficiently small neighborhood « such
that the e”*! term is dominated by the €” term, while also selecting a x such that the total sum is
still upper bounded by v~!(x) > Q(z") in this neighborhood. The choice of raising ¢/ to the
r-th power arises from the fact that r is the smallest exponent—thus affecting the imitation gap in
Equation (13) downstream least severely—that ensures p, o will always exist. Having found such p, o
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we now simply have to find |94 A7 (&; )| small enough such that

P P
Z ‘83A7T* & HEJ <max— HE)]A”* & )HZEJ (21

—0 7 §=0

<max—||8jA”* &; )H e<a<1/2
Y
o)

a—max,u< ||83A”* & H)

J<p

Solving this for €, we get

as long as € < «, the neighborhood condition, and 2 (Lap“),sp“ —+ ( )T < 1, the locality for §-ISS.
These correspond to the conditions (11) and (12), respectively. This completes the proof. O

For completeness we present here a stronger variant of Theorem 3.2 for the special case where
p = r € N. In this scenario we are able to remove the dependency of the imitation gap bounds on the
pth order derivative provided it can be made sufficiently small.

Theorem A.1. Let f5* be n-locally 6-ISS for some 1) > 0, and assume that the class K function (-)
in (2) satisfies y(x) < O(x'/") for some r > 1. Fix a test policy 7 and initial condition ¢ € X, and
let Assumption 3.2 hold with p = r € N. Choose i, « > 0 such that

—_

Lapw

2P (/)P <~y Y (x), forall0 <z < a < -. 22
TS (@/m)? <y~ (2), f Szsasg (22)
Provided the jth total derivatives, j = 0,...,p, of the imitation error on the expert trajectory
incurred by T satisfy:
4 . 1/p
_ ) AT * (¢ <
0<ter—10<j9p-1" (j! 0247 <§’7T)H) = 3)
2Lgp P!
max  max —2mH H(‘)JA“* H H@JA“ & H <mn, (24)
0<t<T-10<j<p—1 (p+1)! ' '
p-
PAT 2
o2A7 € ml < o (5)
then for all 1 < t < T the instantaneous imitation gap is bounded by
T — < 1/r J 71'* , 1/7“.
o (©) =T < gpax | mox () 2T (&) 26)

Proof. We follow the proof of Theorem 3.2 until Equation (21). We then wish to solve
P

S Ljaiar em < ()
GroETE ~\u

Jj=0

Since the order of the RHS is p, provided that % |[02AT* (& )| < %-L we can write

p—1 ,
L 1
Zﬁ“angt (gvﬂ')HEj < 5 (,u) .

=0

Upper-bounding the polynomial on the LHS using a geometric series and solving for € we get

1/p
€= max f ( H(’?JA”* ,7r)||> ,

Jj<p—

provided that & < a, 2£225 er*1 4 (ﬁ)” < 7, and [|9AF* (& 7)|| < 5. These conditions

correspond to that of the theorem, completing the proof. O
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Corollary A.1. Consider a §-1SS f* system with ~y(x) := yx,v > 0 and 1 = cc. Let Assumption
3.2 hold with p = 1 and assume without loss of generality vLg, > 1. Provided

AT (&) .

max [|0: A7 (&7 | < 1642y,

0<t<T—1 = 47 0<t<T 1
then forall0 <t <T

(&) — 27 (Ol < | max  8y[| Az (& 7).

Proof. Choose o :=
that

27La and 1 := 2v. Assume Ly, > 1. Since y~!(z) = %, for x < it holds

x
Lopr o - 1 = —.
orn? + (x/p) < 2 +2Fy_’Y (2) ~
and we can directly apply the p = r = 1 special case of Theorem A.l. Then, if the constraints
described by Equations (23) and (25) are satisfied:

p! 1 0/« 1
T . < - . < — | = P —
10876 < = e 1AT (@l < (%) =
itholds foralll <t < T
2t (€) —2F (Ol < max  8y[|AL (&)

0<k<t—
O
B Proofs for Section 4
B.1 Preliminaries
Let G C R¥ be a set of functions, and let z1,...,T, € X be afixed set of points. We will endow G
with the following empirical L? pseudo-metric space structure:
1 n
d(f,g) = - D (i) = g(xi)?, f,9€G.

i=1
The empirical Rademacher complexity of G is defined as:

sup — Zszg ;)

geg 1 i=1

Rn(9) :=Ec

)

where the {¢;}_, are independent Rademacher random variables. Dudley’s inequality yields a bound
onR,(G) usmg the metric space structure of (G, d).

Lemma B.1 (Dudley’s inequality [cf. 31, Lemma A.3]). Let R := sup;cg d(f,0) be the radius of
the set G. We have that:

Rn(G) < inf {4&4—\1/2%/12 \/logN(g;d,a)da}.

a€0,R)

Here, N(G; d, ) denotes the covering number of G in the metric d at resolution e.

B.2 Generalization bound for the non-realizable setting

We use standard techniques to derive a generalization bound for the non-realizable setting, i.e., where
7, may not necessarily be contained in the hypothesis class IT. Let G C [0, 1]* be a given function

class. We have the following standard uniform convergence generalization bound [cf. 32, Theorem
i.i.d.

4.10]: with probability greater than 1 — § over x1,...,x, ~ D, we have
log(2/6
sup [B.fg] ~ Enlg]] < 2B, (R (6)] + ) B, @)
g€ n
where E,, . denotes expectation over the randomness of x1, . .., z,. To establish an upper bound on

E., ., [Rn(G)], we focus on the Lipschitz parametric case, though we note many analogous bounds
can be computed for a plethora of other function classes [32].
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Theorem B.1. Let G C [0,1]* be a (By, Lo, q)-Lipschitz parametric function class. Given § € (0, 1),
with probability at least 1 — § over the i.i.d. draws x1, ..., x, ~ D, the following bound holds:

sup |E.[g] — E[g]| < 48\/ qlog(8BoLo) | \/ log(2/0) 28)
geg n n

Proof. This argument is fairly standard. Fix a set of points x1, ..., x, € X. Since G contains only
functions with range [0, 1], the radius of the set G in the empirical L? metric is:

supd(f,0) < 1.
feg

Therefore, Dudley’s inequality (Lemma B.1) yields:

12 [t
R (G) < ﬁ/o V1og N(G;d, e)de.

Now using the fact that G is a (By, Lg, ¢)-Lipschitz parametric function class, it is not hard to see
that for any € > 0, an £/(ByLg)-cover of B(1) in the Euclidean metric yields an e-cover of G in the
d-metric. Hence, for any € € (0, 1), by a standard volume comparison argument:

3
. < q .
1OgN(g7dv€) —1OgN(B2(1)a|| Ha BQLQ)

2BgLy
9

< qlog (1 +
3BgLyg
E .

Sqlog(

Therefore, we have:

1 1
/ V1og N(G;d,e)de < \/5/ Hlog(SBgLG)dg
0 0

< V/qlog(3ByLg) + \/6/01 Viog(1/e)de using vVa+b < va+ Vb

Yo
< +V/qlog(3ByLg) + \/q using / log(€>d5 <1
0

S 2 qug(3B9L9).

Plugging this back into Dudley’s inequality:

Rn(9) < 24\/5\/ log(3BgLg).

The claim now follows from the standard uniform convergence inequality (27). O

Applying this generalization bound to the (By, B, ; Ly ,, q)-Lipschitz parametric function class
B, ; (£5+ o1lp ), we get the non-realizable analogue to Corollary 4.1.

Corollary B.1. Let the policy class 11y , be defined as in (18). Let the function class {3+ o Iy ;, be
defined as in (19), and constants By p,, Ly, be defined as above. Let TitasiL p, be any empirical risk

minimizer (15). Then with probability at least 1 — 0 over the initial conditions {&;}7_, g D",

qlog(3By By ) Ly log(2/5
Ee [05* (& TrasiLp)] < Enl[l5* (5 ftasiLp)] + 48Beyp ( i ) + By, %

n
(29)
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Inserting the generalization bound in Corollary B.1 in lieu of Corollary 4.1 for the rest of the bounds
seen in Section 4 yields the sample complexity bounds relevant to our problem in the non-realizable
setting. However, we note an important subtlety that manifests in the non-realizable regime. We
note that in Corollary 4.1, due to realizability, the generalization bound monotonically decreases
to 0 with n, whereas in Corollary B.1, we have an additive factor of E,[(7* (- ; AtasiLp)]. It is
therefore possible for either small enough n or insufficiently expressive function classes Iy ,, that
the non-zero empirical risk automatically violates the imitation error requirements in Theorems 3.1
and 3.2. Thus, a necessary assumption must be made in the non-realizable setting for the function
class to be expressive enough such that the empirical risk it incurs on sufficiently large datasets
satisfies the imitation error requirements with high probability.

B.3 Proof of Theorem 4.1

Before turning to the proof of Theorem 4.1, we introduce some notation and tools from the local
Rademacher complexity literature [33, 34].

Definition B.1 (Sub-root function). A function ¢ : [0,00) — R is said to be a sub-root function if:
a) ¢ is non-negative.
b) @ is not the zero function.
c) ¢ is non-decreasing.
d) v+ ¢(r)/\/r is non-increasing.

For any non-negative function class G, scalar r > 0, and n points x1, ..., x, € X, define:
Ho (75 T1:0) 1= {9 €g| ]En[g] < 7"}.

The following is from Bousquet [34].

Theorem B.2 (Bousquet [34, Theorem 6.1]). Let G C [0,1]%, and fix a § € (0, 1). With probability
at least 1 — § over the i.i.d. draws of x1, . .., Xy, the following holds. Let ¢, be any sub-root function
(cf. Definition B.1) satisfying:
Rn(Hn(T;xlzn)) < ¢7L(T)v Vr>0.
Let v}, denote the largest solution to the equation ¢, (r) = r. Then, forall g € G:
48(log(1/9) + 6loglogn)

E.[g] < 2E,[g] 4 1067, + - :

With these definitions and preliminary results in place, we turn to the proof of Theorem 4.1.

Theorem 4.1. Let G C [0,1]* be a (By, Ly, q)-Lipschitz parametric function class. There exists a
universal positive constant K < 10° such that the following holds. Given & € (0, 1), with probability
at least 1 — 6§ over the i.i.d. draws x1, . ..,x, ~ D, forall g € G, the following bound holds:

qlog(BgLgn) + log(1/5)> .

n

E.[g] < 2E,[g] + K ( (17)

Proof. Fix a set of points 1, ..., z, € X. Define G, (r; x1.,) as:
gn(r;xl:n) = {g €g | En[QQ] < T}~

For what follows, we often suppress the explicit dependence on 1., in the notation for H,, and G,,.
Observe that since G C [0, 1], we have E,,[¢?] < E,,[g] for every g € G, and therefore:

Hn(r) € Gn(r), Vr>0.
Hence R, (H, (1)) < Rn(Gn(r)), and it suffices for us to prove an upper bound on the latter.

Proposition B.1. Let G C [0,1]* be a (Bg, Ly, q)-Lipschitz parametric function class. Fix a set of
points x1,...,x, € X. We have that:

Rn(gn(r;xl;n))§24\@\/gmin{\/?,1}\/log( 6B4Lo )

min{/r, 1}
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Proof of Proposition B.1. The radius of the set G, (r) in the empirical L? metric d is upper bounded
by /7 by definition. Furthermore, the radius of G in the metric d is upper bounded by one. Hence,
since G, (r) C G, the radius of G,,(r) is upper bounded by min{,/r, 1}.

Dudley’s inequality (Lemma B.1) yields:

Ro(Ga(r) f 2 e NG e
n(Gn(r)) < in da+ — og ;d,e/2)de p . 30)
a€[0,min{/7,1}] \/ﬁ a

Here, we have used the fact that the inclusion G,,(r) C G implies N (G, (r);d,e) < N(G;d,e/2) by
Vershynin [35, Exercise 4.2.10].

Since G is (By, Ly, q)-Lipschitz, for any € > 0, an e-covering of G in the d-metric can be constructed
from an e/(ByLg)-covering of B2(1) in the Euclidean metric. Therefore, for any ¢ € (0, 1), by the
standard volume comparison bound:

&
log NG d.e) < Tox ¥ (B4 1] 5 -

2BgLy
9

< qlog<1 +

ByL
< qug(3 . 9>~
e

Putting R := min{,/r, 1},

/R Veg N(G;d,e/2)de
0

< V/q | R\/log(6ByLg) + /OR \/log(l/s)ds] using vVa + b < va+ Vb

[ 1
=./q | R\/log(6BgLg) + R/ log<R1€)d5] change of variables ¢ < ¢/R
o
[ [ (1 Ll
< /q |R+/log(6BgLg) + R log<R) +R using / log<€>de <1
0

1
< R.\/q |v/log(6BgLg) + 2 log<R>
6By Ly .
< 2\/§R\/§ log 7 using v/a + Vb < vV2va + b.
The claim now follows. O

We complete the proof by upper bounding 7, and invoking Theorem B.2. First, observe that by
Cauchy-Schwarz, the inequality E,,[¢?] < E,[g] for g € G, and Jensen’s inequality:

Rn(Hn(r)) < sup : V ]En[92]Es

gEH (T

1 n
o 25% <V
i—1

This bound holds for any r > 0. Hence, when r < 1/ n?:
Rn(Hn(r)) < 1/n.

On the other hand, when 7 > 1/n?, by R,,(Hn(r)) < R, (Gn(r)), Proposition B.1, and the
inequalities 1/n < min{\/r,1} < /7

Rn(Hn(r)) < 24\/5\/3\/?\/10g(6B9L9n).
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Hence, the function ¢,, defined as:

¢n(7') ‘= max {24\6\/ L log(ﬁfeLen) \/Fa Tll} )

satisfies R, (Hn (1)) < ¢, (r) for all » > 0. It is also not hard to see that ¢,, is a sub-root function
(cf. Definition B.1). Therefore, there is a unique solution 7 satisfying ¢,,(r;) = r. Now, for any
positive constants A, B, the root of r = max{A,/r, B} is upper bounded by max{ A2, B}. Hence,

1 ByoL
r;*l <11 52M.
n
Theorem 4.1 now follows by Theorem B.2. O
B.4 Proof of Corollary 4.1
memBZLmBM::ﬁ%Ziﬂ&awLmzzfﬁ o Lj. Then By ) ({7 oTly,) is a

(By, B, L; ps @)-Lipschitz parametric function class

Proof. 1t suffices to show that
max ||8JA”* & )H

0<t<T-1

is 2B;-bounded and Bx L; Lipschitz with respect to ©. By definition, we immediately get

|27 (& m)|| = (|92 (aF (€)) — Bdm(a7 (€))]
<2 sup |02 (,0)|
lz||<Bx,||01I<Be
—92B,.

To bound the Lipschitz constant, we iteratively apply the Fundamental Theorem of Line Integrals:

01 rr Hit2.
Hr(x;01) — Fr(x;0) / ; 6xﬂ+189(z®w) dzdw

01 1 oit2
= / ( i 8zﬂ+169(a$®w) da)x dw
2
(/ / 927100 (ax @ (02 + B(01 — 62))) dadﬁ)z@(@l —6s).
Taking norms on both sides, we get
2

||6'g{7r(x; 01) — aiﬁ(x; 92)” < sup 927190

llz]|<Bx,[10]|< B
< BxL;j |61 — 6],

which establishes that Haj AT (& H is Bx L;-Lipschitz. Recalling that
éﬂ-* (57 ) . p+1 Z —o MaXp<t<T~1 ||833LA;T* (57 7T) H s

it follows that £7+ (&; ) is m S i—o Bj-bounded and 1% ?:o L;-Lipschitz. O

] 161 — B2]]

Corollary 4.1. Let the policy class 1y ,, be defined as in (18), and assume that w, € Iy ,. Let the
function class {3+ o Ily ;, be defined as in (19), and constants By p, Ly, be defined as above. Let

TTasiL,p be any empirical risk minimizer (15). Then with probability at least 1 — § over the initial

conditions {&; 1, b pn,

qlog (BgB w pn) + log(1/9)

n

Ee [07 (& firasiLp)] < O(1) By, (20)

Proof. This follows by directly applying the constants derived in Lemma B.2 to Theorem 4.1, and
using the assumption that 7, € Ily j, such that E,, [ég* (- s 7rasiLp) ] = 0. O
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B.5 Proofs of Theorem 4.2 and Theorem 4.3

Before proceeding to the proofs of the main sample complexity bounds, we introduce the following
lemma for inverting functions of the form log n/n, adapted from Simchowitz et al. [36, Lemma A.4].

Lemma B.3. Givenn € N, n > blog(cn) as long as n > 2blog(2bc), where we assume b,c > 1.

Proof. We observe by derivatives that n — blog(cn) is strictly increasing for n > b. Therefore, it
suffices to show blog(cn) < n when n = 2blog(2bc).

blog(2bclog(2bc)) = blog(2log(2)be + 2bclog(be))
< blog((21og(2) + 2)(bc)?) be > 1

::2blog(x/210g(2)4—2bc)
< 2blog(2bc).
O

Theorem B.3 (Full version of Theorem 4.2). Assume that m, € Ilg o and let the assumptions of
Theorem 3.1 hold for all m € Ilyo. Let Equation (6) hold with constants p,« > 0, and assume
without loss of generality that o/ p < 1, Lrp > 1/2. Let TtasiL 0 be an empirical risk minimizer of
05+ over the policy class g o for initial conditions {&; } W pr Fix a failure probability 6 € (0, 1),
and assume that

KaBoB; L tnBoB 3 L
L i e R M Ee i

1
where ko = q(p/a) 147, Ky == qLrp/n. Then with probability at least 1 — §, the imitation gap
evaluated on & ~ D (drawn independently from {&;}_, ) satisfies

147
1 Beoglog (BHBZ(}LLOTO

L7 (&5 FrasiLo) < O(1)p 5 -

Proof. Applying Corollary 4.1 to the (B, Beo,q)-Lipschitz parametric function class
Bzol (£5* oIy o), we get that with probability at least 1 — /2 over i.i.d. initial conditions &; ~ D",

o qlog(BgBZ&Lg’on> +log(1/9)
Be|, nax | 14T (€ sl < OB . .

Applying Markov’s inequality to max; || A7 (§; TTasiL,0)
greater than 1 — /2,

, for a new draw ¢ ~ D, with probability

2
T (€7 < Z T (¢ A ]
OSItnSaqz(_l AT (& Trasio) || < 6E5 |:0§Itn§a’1¥—1 [IA (gwaaS””O)”}

Thus applying a union bound over the two events, we have with probability greater than 1 — § that

o 1log(Bngng70n> + log(1/9)
oI AT (&5 Trasio0) || < O(l)Be,oq5 - ; (31)

where we absorb numerical constants into O(1). We want max, ||A7* (§; Arasi0)|| to satisfy the
conditions in (7); that is,

e A 1
omax pl| A7 (& Trasio)| T <a,

o 2Lap |AT (& Frasio)l T+ AT (€ Frasio)ll < 9
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For notational convenience, we further require max; ||A7* (&; AasiL0)]| < 1, so that
max [|AF (& rrasiLo)ll T < max [|AF* (& rasi,o) || -

By assumption, since «/p < 1, satisfying the first condition above implies
max; |A7* (& frasio)|| < 1. We observe that for n > ' log(1/8) we have logn > 2log(1/4),
thus it suffices to absorb the log(1/4) term into log n. Inserting the generalization bound (31) and
shifting n to the right-hand side of the above conditions, we have the following requirements on n:

n > O(1) max { (g) VHTBz,Oq% log(BgBZéLg,on),

L. 1 B
( “>Be,0qlog<BgB£§Lg70n)}
n 4 ’
1
5

=: O(1) max {B&Ona log (B@BZ&L@)On),

1 _
Byotiy log (BQBLOILZ,On) }

1
where we define K, = q(p/a) 1+ and k,, = qLrp/n. Therefore, applying Lemma B.3 on each
of the arguments of the maximum, setting b = By okaq/d (respectively b = By or,q/d) and
c= ByB, é Ly o, we get the following sample complexity bounds. For n satisfying

a aBoL ByL
n>0(1) max{BLOI{(S 10g</€§e,0>7 Be,o% log(W) }’

we have with probability greater than 1 — §

1+r
 log (BQBZ(}Lmn)
Lr(& rasito) < O(1) p BZ,UCIS

n

This completes the proof. O

Theorem B.4 (Full version of Theorem 4.3). Assume that 7, € Ilg ,, and let the assumptions of
Theorem 3.2 hold for all m € 1lg ,,. Let Equation (10) hold with constants 1, o« > 0, and without loss

of generality let (%)Tp! < 2. Let TrasiL,p be an empirical risk minimizer of £+ over the policy class

Iy, for initial conditions {&; } W pn pix a failure probability § € (0,1), and assume

; Ka,jBoB; ' BxL; , kin;Bo B 'Bx L,
n>(’)(1)maxmax{BjKa’] log< J0T5 PX ]>’ BJﬁ””log( njPob; DX ])}7

- i<p o J o ]
(AT . ( Lopy pPt? 1 . 7.
where kq j = (£) B and k., j = ((pfl)! (7’0@ + ﬁ)%. Then with probability at least 1 — §,

the imitation gap evaluated on & ~ D (drawn' independently from {&;}1_,) satisfies

_ 1/r
ﬁqulog(BgBj 'BxL;n)
516 n '

L7 (& TrasiLp) < O(1)pmax
J<p

Proof. Let us first define the following losses on a specific partial:

hjt(§m) = | max |02AT (&m)]|-

We observe that by definition, h}r* o Iy p is 2B; bounded, and h;-r* is Bx L;-Lipschitz with respect

to © for j < p, such that 0.5ij1 (h;-r* o Hg,p) is a (B, 0.5ijlBXLj, q)-Lipschitz loss class. We
note that since 7, € Ily ,, we have for any dataset {£;} C X

1 & ,
max ||0JAT (& 7)|| =0,

Tx (o 4 = —
E, [ép ( ,WTaSIL,p)] .p+1 . Oogth—l
j=
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which therefore implies E,, [h;r* (- frTaS“_’p)} = 0 for j < p. We now apply the same proof structure

in Theorem 4.2 to each 0.5B; ! (k" o Il ), where we have with probability greater than 1 — %
that
' qlog(BgB 'BxL;n) —|—log( (pH))
I AT« (&0 4 < .
Ee |, Jnax  [[07A7 (€ frasiy ||| < O(1)B; -
Applying Markov’s inequality at level 5 (p 1y We get with total probability greater than 1 — m over
anew initial condition § ~ D that 1,51, Satisfies the generalization bound
—1 p+1
, . p+1qlog(ByB; 'BxLjn) +log(2)
¥ T x . < . J .
oHax | |0LAT (& FrasiLp)|| < O(1)B; 3 - (32)
For each partial, we want to satisfy the constraints outlined in (11):
max —max f 2 |’<9jA7r*(§'7r)|| Ur <o
0<t<T—10<j<p  \ jl 7ot > - (33)
2Lgp Pt 2
max max — 2l || IAT (& m)|| )5 + = |0IAT (&) < m,
0<t<T-10<j<p (p+1)! J!
By assumption, we have (% )"p! < 2, and thus the first condition 1mphes max, [|[0IAT (& m)|| <1
for all j < p; in particular, this conveniently ensures H@J AT (& || = H@;Af* s || Plugging

the earlier generalization bound (32) into the above constraints and shifting n to the RHS, and
observing like earlier we may absorb the log(1/4) term into the log n term, we get:

n > O(1) max { (g)’” 1 6qlog(BgB 'Lin),

( Loy Mp+1

1
(p+1) ()ﬁ"‘ A > 5q10g(BgB L n)}

=: O(l)maX{Bj Iig’j log(BgBj*len),B 6’7q10g(BgB 'L n)}

_ r — | Lorx Pl 1
where we define rq,; = (5)" 5, fy,j = ((pil)! (;?)Tfl + j.> P4 Therefore applying Lemma B.3,

setting b = B; =% (respectively b = B;~%<) and ¢ = BgB; L;, for n satisfying:

n > O(1) max {Bj = 1og(*%’%> B, 10g<’wf5%Lj> }

we have with probability greater than 1 — —= that the conditions (33) are satisfied. To finish the

proof, since we have with probability 1 — —$— that each jth partial difference satisfies the necessary

conditions, we union bound over 0 < j g p, such that we take a maximum over j for the sample
complexity and the resulting imitation gap. This gets us with probability greater than 1 — 4, for n

satisfying
i wiBoL; . BoL:
n > O(1) maxmax{Bjﬁ - log(f€ J 20 j),Bj Fon.j log<nn’j o j)},

i<p ) ) ) 1)

that the following bound on the imitation gap holds

_ 1/r
p Bjqlog(BeB; ' BxLjn)
310 n '

T (& TrasiLp) < O(1) max p
J<p

This completes the proof. O
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C Using finite-differencing to approximate derivatives

C.1 Satisfying Conditions (11) and (12) with approximate derivatives

We recall the closeness conditions on the partials along expert trajectories that guarantee bounds on
the imitation gap:

max — max ,u(jl [lo2AT (f;w)”)l/r < a, (11)

0<t<T—-10<5<p

2L ptl o
max max % = HaiA?* (5777)}’ pr
o<t<T-10<<p (p+1)! \J!

—

If we have access to approximate derivatives of the expert o 7. (2) such that

'Haﬂm*g, o <n (12

A (x) — Fm (x)|| <b<1

for all z € R, then it suffices to tighten the constraints by some function of b such that minimizing
with respect to the approximate partial derivatives will still result in the deviation from the true
derivatives satisfying the requisite bounds. Let us define

P —

RAT (&) = dm(af (€)) — dima(a (€)),

such that
|01 AT (6 ¢|<\aW*<e, ) +\55;2@:*(&))—61@@?*(5»”
aj\A?*(g;n) +b.

OLAT (&)

max max ,u<|
J2¢

0<t<T—10<j<p
2Lgp P! (2

max max
0<t<T-10<j<p (p+1)!

Therefore, it suffices to match the approximate partial derivatives such that

)1/7‘ S d,
p+1 2
e
J¢
OLAT (&)

&= <o/' — Wb) 1r ni=n-— (2L9p7rup+1 (2> e + 2)b.
j! ’ (p+1! \J! J!

ORRAT (&)
A similar bound holds if we also do not have access to the exact derivatives of the learned policy. In
practice, these bounds tell us qualitatively that if a sufficiently precise estimate of the derivatives is
used, such as through finite differencing, then the imitation gap bounds in Theorem 3.2 still hold.

< 1:

where, provided ‘

C.2 Practical approaches for approximating derivatives

Minimizing Zf L |103AT* (& 7)|| can be approximated provided , can be evaluated at points
{x(&) + 6;}¥.; by minimizing the finite difference loss:

bpro(&m {Gi}E,) = max [|m(24(§) +0i) — me(@e(€)) — (m(2e() + 05) — m(@(E))l;

where the {6} are chosen such that the Taylor expansion

Z 8JA”* i) 057 = (@ (€) + 8;) — ma(we(€))

— (m(24(8) + 6;) — w4 (€))) — 2L
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forms a linearly independent system of equations in the derivative parameters. Here, R, 11(d;) denotes
the Taylor remainder, which satisfies the inequality || Rp+1(d;)|| < 2Lar||d:||PT! by Assumption 3.2.

For the case p = 1, we can stack the {J; } into a matrix S, the finite differences into a matrix M and
the remainders into a matrix R to write

HAT(&m)S =M — R.

Provided the {4;} are chosen such that S is invertible, the operator norm of 92A7* (&; ) can be
upper bounded

JoAT- (& m)ll = |MS~ — RS
< S + IRI)
< S IIM] + Lows[IS]2).

For instance, using a standard basis S = <[ as the finite difference perturbations yields the following
bound on the operator norm:

- 1
10247 (& )l < Z (1M + eLozr,

where M is the stacked error matrix at the finite differences. Therefore by ensuring sufficiently small
¢ and finite difference loss, the bound on the Jacobian error can be made arbitrarily small.

Alternatively, if the finite differences J; are sampled from a uniform distribution on a sphere of radius
¢ for each evaluation of ¢; rp (i.e, the expert can be cheaply queried during training), Woolfe et al.
[37, Theorem 3.15] shows that

- 0.8Vd (1
e aF (sl < S (Htprol6im (820) + eLone ).

with probability 1 — (, where d is the dimensionality of the state space. This suggests that provided
the expert can be requeried each iteration, N < d finite differencing terms can be used.

C.3 Experimental results

Ant Walker2d HalfCheetah Humanoid
< 1.00-
g
':9-2 0.75-
3
S050-
E
£ 0251
Z I
0.00- ' ’ : ' . w ' . . ' . w
o 15 30 45 15 30 45 15 30 45 15 30 45
— BC — TaSIL - 1-FD TaSIL ~ ------ 5-FD TaSIL 10-FD TaSIL 50-FD TaSIL

Figure 3: Mean normalized reward for vanilla Behavior Cloning, Behavior Cloning with TaSIL loss, and
Behavior Cloning with finite-differencing based TaSIL. The average across 5 random seeds is shown.

We perform several experiments using finite differencing to approximate minimizing the higher order
derivatives. Figure 3 shows configurations with 1, 5, 10, and 50 difference vectors across different
MuJoCo environments. The different vectors drawn from a uniform distribution over a sphere of
radius 0.01. The difference vectors were drawn once for each state-action pair and did not change
during training. This was done to simulate the effect of getting progressively closer to using the full
standard basis with additional finite differencing terms.

For Walker2d and HalfCheetah with a state dimension of 17, finite difference with a single random
vector is sufficient to achieve performance on par with TaSIL using the explicit Jacobians. Humanoid
and Ant with higher dimensional observation spaces (376 and 111 dimensions respectively) also
show significant improvements the more finite differences are used.
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D Additional information for stability experiments

Theorem D.1. Forn € [0,1), the system

Y(IA(z:) + )
([P (2) +

is 0-1SS around 7, (x) = —h(x) with class K function ~.

i1 =0+ (1—mn) - (h(z¢) + ut), (34)

Proof. We use the shorthand x4(&1) = 24(&1, {ur }o_p) and 24(&2) = 24(&a, {0}, _4). We can
prove this directly using

[ze41(61) — 21 (&)l
YR (xe) + uell)
n(@e(§1) — z¢(&2)) + (1 —n) - e + ]

Snllee(€a) =z (&)l + (L= (lh(ze) + wl))-

Since zo(&1) = & and x1(&2) = &2, repeated composition of this upper bound yields

(h(we) + ur)

t—1

lze(€1) = ze(€)ll < n'lléx = Eall + D 0" (1 = m)y(lIa(ar) + ul])
k=0

<nll6 = &l +  max y(|[A(wx) + ukll)

= llr = &l o, pae  Tnto) + el )

0<k<t—

O

Experiment details The expert MLP has two hidden layers of 32 units each with GELU activations
while the learned policy has three hidden layers of 64 units and GELU activations. A tanh nonlinearity
was applied to obtain the final policy output. Expert weights were initialized using Lecun Normal
initialization LeCun et al. [38] for the kernels and drawn form a normal distribution with > = 0.1
for the biases. The learned policy weights are initialized using orthogonal intialization for the kernels
and zeros for the bias.

For all stability experiments we train on 20 trajectories of length 7" = 100. Initial states were sampled
from a standard normal distribution. The state-action pairs are shuffled independently into batches of
size 100 and weight updates were performed using the Adam optimizer with 8; = 0.9, 83 = 0.999,
and ¢ = 1 x 10~%. The training rate was decayed with a cosine learning rate decay using an initial
rate of v = 1 x 1073, We additionally employed ¢? weight regularization with A = 0.01. All training
is run for 4500 iterations on our internal cluster.

To weight the various derivative terms for the different TaSIL losses we use \g = 1, A; = 1, and
Ao = 10.

E Additional information for MuJoCo experiments

We use a S-decay-rate of p = 0.5 for DAgger and o = T'Tr[X] for DART, the same parameters used
by Laskey et al. [7] for their Mujoco experiments. For DART, we use an independent sample of 5
trajectories to update the noise statistics. The same optimization setup from the stability experiments
was used, with a batch size of 100, Adam optimizer with 81 = 0.9, 2 = 0.999, ¢ = 1 X 1074,
cosine learning rate scheduling with an initial learning rate of 1 x 103 decaying over the entire
training duration of 4500 epochs, and ¢? weight regularization with A\ = 0.01.

We train over 4500 epochs for all experiments with a training and test trajectory length of 7' = 300.
All TaSIL losses use \g = 1. A; = 0.01 is used for the jacobian term in the 1-TaSIL loss.

Similar to Laskey et al. [7], DAgger rollout policies and DART noise statistics were updated sparsely
rather than after every trajectory. We performed updates after 1, 5, 20, and 30 trajectories.
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