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Abstract

We study a Markov matching market involving a planner and a set of strategic
agents on the two sides of the market. At each step, the agents are presented with a
dynamical context, where the contexts determine the utilities. The planner controls
the transition of the contexts to maximize the cumulative social welfare, while the
agents aim to find a myopic stable matching at each step. Such a setting captures a
range of applications including ridesharing platforms. We formalize the problem
by proposing a reinforcement learning framework that integrates optimistic value
iteration with maximum weight matching. The proposed algorithm addresses
the coupled challenges of sequential exploration, matching stability, and function
approximation. We prove that the algorithm achieves sublinear regret.

1 Introduction

Large-scale digital markets play a crucial role in modern economies, and yet the analysis and
design of such ever-changing markets demand powerful instruments beyond economics. An in-depth
understanding of the dynamically changing market environments requires our methods to be adaptive,
scalable, and incentive compatible in the face of significant nonstationarity. In particular, massive
data streams arising from digital markets provide us with a great opportunity to meet such challenges
through learning-based mechanism design. A recent line of work applies modern machine learning
algorithms to classic problems in adaptive mechanism design (Jagadeesan et al., 2021; Liu et al.,
2021; Sankararaman et al., 2021; Basu et al., 2021; Liu et al., 2022), and among which one especially
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consequential aspect of learning-aware market design is that of a matching market, a course of
problems central to microeconomics (Mas-Colell et al., 1995). Existing work focuses primarily on
static matching markets. However, the more challenging yet critically important setting of dynamic
matching markets has been neglected. In this paper, we are going to provide a reinforcement learning
(RL) based solution that enables a data-driven treatment to such dynamic matching market problems.

To begin with, we propose a Markov matching market model with a central planner and a set of
two-sided agents. The market is defined with a time horizon H 2 Z+, and a set of agents Ih [ Jh

enter the market in context Ch at step h 2 [H] with unknown utility functions uh and vh for agents
in Ih and Jh, respectively. We assume that the agents’ utilities uh and vh depend on the context Ch.
Given the utility functions, the agents from both sides seek to achieve a myopic stable matching
with transferable utilities at each step (Shapley and Shubik, 1971). In particular, the contexts Ch are
subject to a Markov transition kernel controlled by the planner’s policy, and the goal of the planner is
to select an optimal policy on the contexts, which together with the stable matching among the agents
maximizes the expected accumulated social welfare.

As an illustration, we may consider the model as a simplified abstraction of a ride-hailing platform,
where the horizon H is set as the time span of a day (Qin et al., 2020; Özkan and Ward, 2020; Hu
and Zhou, 2021). Under such a scenario, the ride-hailing platform acts as the central planner while
the two-sided agents Ih and Jh are the drivers and the riders. The contexts Ch at each time step
may retain an assortment of ride-related metrics such as GPS location, car types, and pricing. The
platform is incentivized to ensure the stability of the matchings between the riders and the drivers
at each step so that they do not prefer alternative matching outcomes. They may leave the platform
otherwise. Moreover, the platform also aims to provide a policy that maximizes the accumulated
social welfare as a measure of the level of satisfaction for both parties.

As illustrated in the ride-hailing platform example, there are several key challenges to achieving
an effective Markov matching market. First, the agents’ utilities and the transition of contexts are
unknown, and we need to perform efficient explorations to collect the required information on the
utilities and the transitions. Second, we need to guarantee the stability of the matching in each
step, and a naive consideration of only the difference in total utilities is insufficient, as discussed in
Jagadeesan et al. (2021). To this end, we adopt a notion of Subset Instability (SI) from Jagadeesan
et al. (2021) as a metric that quantifies the distance between a proposed matching and the optimal
stable matching. This metric has the flavor of Shapley value, comparing the discrepancy between the
total utilities over all subsets of the participating agents while accounting for the utility transfers. For
an efficient estimation, it is also important to take into account the function class of the utilities as
well as the Markov transition kernel, thus demanding a systematic usage of function approximation.

To tackle these challenges, we develop a novel algorithm called Sequential Optimistic Matching

(SOM), which features a combination of optimistic value iteration and max-weight matching. Note
that the planner’s problem can be treated as a standard Markov decision process (MDP) if we regard
the value of the max-weight matching over true utilities as its reward. Inspired by this observation,
on the agents side, our algorithm applies the optimism principle to construct UCB estimates of the
utilities. The algorithm computes the corresponding max-weight matching based on these UCB
estimates, and the values of the resulting matching serve as the surrogate rewards. Although we do not
have access to an unbiased estimate of the rewards, the key property here is that the surrogate rewards
upper bound the true social welfare, thus justifying optimistic planning by the planner. Interestingly,
our framework can readily incorporate any online RL algorithm based on the principle of optimism.

We show that the suboptimality of the accumulated social welfare for our algorithm consists of two
parts: (1) the planner’s regret in terms of the suboptimality of the policy, and (2) the agents’ regret
in terms of SI. Jagadeesan et al. (2021) proved that SI can be bounded by the sum of the optimistic
bonuses, and we further show that the planner’s regret can also be bounded by the bonus sum. In
this way, we reconcile the seemingly independent learning goals of the planner and the agents, and
thereby provide a unified approach to controlling the suboptimality of the total social welfare. In
particular, based on the above decomposition, we further show that in the case of linear function
approximation, our algorithm enjoys a sublinear regret independent of the size of the context space.

Our results provide a uniform treatment of dynamic matching markets via online RL. In particular,
our framework incorporates a complete matching problem in each time step compared with existing
methods on online RL such as LSVI-UCB (Jin et al., 2020), and our model provides an extension
to a dynamic setup with transitions between contexts, which is also beyond the existing setups of
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matching bandits (Jagadeesan et al., 2021). More importantly, our work lies beyond a straightforward
combination of online RL with matching bandits due to the unique technical challenges to be
discussed in Section 4 and further elaborated in Section C.

Our main contributions are summarized as follows:

(i) We propose a novel Markov matching market model that captures a range of instances of
centralized matching problems.

(ii) We develop a novel algorithm that combines optimistic value iteration with max-weight
matching, such that any online RL algorithm based on optimism can be readily incorporated
into the framework.

(iii) We provide a general analysis framework and show that our proposed algorithms achieve
sublinear regret under proper structural assumptions on the underlying model.

2 Related Work

There is an emerging line of research on learning stable matchings with bandit feedback (Das and
Kamenica, 2005; Liu et al., 2020, 2021; Sankararaman et al., 2021; Cen and Shah, 2021; Basu
et al., 2021) using the mature tools from the bandit literature. Most of them focus on matchings
with non-transferable utilities (Gale and Shapley, 1962), which fails to capture real-world markets
with monetary transfers between agents, e.g., payments from passengers to drivers on ride-hailing
platforms. The study of learning for matchings with transferable utilities is comparably limited, and
our work extends Jagadeesan et al. (2021) to dynamic scenarios in this regime. Broadly speaking, our
work is also related to the research on learning economic models via RL. In particular, Kandasamy
et al. (2020); Rasouli and Jordan (2021) studied VCG mechanisms, and Guo et al. (2021) studied
exchange economies. Although similar in spirit, these models differ from our Markov matching
markets in their mathematical structure, and thus have different solution concepts and planning
methods.

Our model of Markov matching markets is related to the topic of dynamic matching in the economics
literature (Taylor, 1995; Satterthwaite and Shneyerov, 2007; Niederle and Yariv, 2009; Ünver, 2010;
Anderson et al., 2014; Lauermann and Nöldeke, 2014; Leshno, 2019; Akbarpour et al., 2020; Baccara
et al., 2020; Loertscher et al., 2018; Doval and Szentes, 2019). Instead of studying the learning
problem in matching markets, the goal therein is mainly focused on the problem of optimal mechanism
design (Akbarpour et al., 2014) with known utilities or explicit modelling of agents’ arrivals via
queuing models (Zenios, 1999; Gurvich and Ward, 2015). In this work we focus on the notion of
(static) stability of myopic matchings (Shapley and Shubik, 1971). There is also a line of literature on
the notion of dynamic stability for matching markets (Damiano and Lam, 2005; Doval, 2014; Kadam
and Kotowski, 2018; Doval, 2019; Kotowski, 2019; Kurino, 2020; Liu, 2020), and it is an interesting
open problem to study learning for dynamically stable matchings.

Our methodology builds upon recent progress in online RL, where the “optimism in face of un-
certainty” principle has engendered efficient algorithms that are either model-based (Jaksch et al.,
2010; Osband et al., 2016; Azar et al., 2017; Dann et al., 2017) or model-free (Strehl et al., 2006; Jin
et al., 2018; Fei and Xu, 2022; Fei et al., 2021a), and can be combined with function approximation
techniques (Yang and Wang, 2019; Jin et al., 2020; Zanette et al., 2020; Ayoub et al., 2020; Wang
et al., 2020; Fei et al., 2021b; Yang et al., 2020; Zhou et al., 2021; Min et al., 2021a,b; Du et al., 2021;
Jin et al., 2021). We note that these approaches can be incorporated into our framework with proper
modifications on structural assumptions and correspondingly the algorithm. We do not pursue these
extensions here, however, as our regret analysis is already sufficiently challenging given the lack of
an unbiased estimate of the reward, and the additional constraints imposed by the requirements of
matching stability.

3 Preliminaries

3.1 Markov Matching Markets

We first review basic concepts for matching with transferable utilities (Shapley and Shubik, 1971).
Consider a two-sided matching market where I denotes the set of all side-1 agents (e.g., buyers)
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and J denotes the set of all side-2 agents (e.g., sellers). Given any set of participating agents
I ⇥ J 2 2I ⇥ 2J , a matching X is a set of pairs (i, j) indicating i 2 I is matched with j 2 J ,
and each agent can be matched at most once. For any pair of agents (i, j) 2 I ⇥ J , we denote by
u(i, j) the utility of agent i and v(i, j) the utility of agent j when they are matched. In addition
to the matching X , we also allow transfers between agents, summarized by the transfer function
⌧ : I [ J ! R. For each agent i 2 I [ J , ⌧(i) is the transfer that it receives. We assume that the
transfers are within agents, so

P
i2I[J

⌧(i) = 0.

The overall market outcome is denoted by a tuple (X, ⌧), where X represents the matching and ⌧

represents transfers. For any (i, j) 2 X , the total utilities for agent i and j are u(i, j) + ⌧(i) and
v(i, j)+⌧(j) respectively. Moreover, if no agents prefer any alternate outcome, then we say (X, ⌧) is
stable (see Definition B.1 for details). The stable matching can be found by solving the corresponding
max-weight matching, as will be explained in Section 4.1.

Based on these (classical) definitions, we formulate the notion of a Markov matching market involving
a planner and a set of two-sided agents. Throughout the paper, we focus on matchings with transferable
utilities between two-sided agents, and we may omit such descriptions for convenience.
Definition 3.1 (Markov matching markets). A Markov matching market is denoted by a tuple
M = (C,⌥, {Ih}

H

h=1, {Jh}
H

h=1, {Ph}
H

h=1, {uh}
H

h=1, {vh}
H

h=1). Here C is the set of contexts and ⌥
denotes the set of planner’s actions. At each step h 2 [H], Ih [Jh ⇢ I⇥J is the set of participating
agents, and uh : C ⇥⌥⇥ I ⇥ J ! R and vh : C ⇥⌥⇥ I ⇥ J ! R are utility functions for two
sides of agents respectively. For each h 2 [H], Ph(C 0

| C, e) is the transition probability for context
C to transit to C

0 given action e.

In such Markov matching markets, the learning goal is two-fold: (1) to learn the stable matching in
each step and (2) to maximize the accumulated social welfare.

3.2 A Reinforcement Learning Approach to Markov Matching Markets

We now translate the problem into the language of RL. Given Definition 3.1, we consider an episodic
setting with K episodes where each episode consists of H steps of sequential matchings. Each
episode proceeds in the following way: at each step h 2 [H] under context Ch, a set of agents Ih[Jh
enter the market. The planner takes action eh, implements the matching (Xh, ⌧h), and observes the
noisy feedback of utilities uh(Ch, eh, i, j) and vh(Ch, eh, i, j) for all (i, j) 2 Xh. Then the context
transits according to Ph(· | Ch, eh), and the market proceeds to the next step.

Note that here the implemented matching in each step is myopic and we seek for stability for each
of these matchings. The maximization of the accumulated social welfare is achieved through the
planner’s actions {eh}

H

h=1 that control the transitions of contexts, which together with planner’s
actions determine the optimal values of the matchings. To apply RL techniques to maximize the
accumulated social welfare, let us specify the ingredients of the corresponding RL problem.

States and Actions. The state space is S = C ⇥ 2I ⇥ 2J . The action space is A = ⌥ ⇥ X ⇥ T

where X denotes the set of all matchings and T is the set of all possible transfers among the agents.
For each step h 2 [H], the state sh = (Ch, Ih, Jh) contains the context and participating agents, and
the action ah = (eh, Xh, ⌧h) contains the planner’s action eh and the matching outcome (Xh, ⌧h)
for the agents.

Rewards. At each step h 2 [H], given the state sh = (Ch, Ih, Jh) and the action ah = (eh, Xh, ⌧h),
the immediate reward is the social welfare (i.e. sum of utilities):

rh(sh, ah) :=
X

(i,j)2Xh

[uh(Ch, eh, i, j) + vh(Ch, eh, i, j)]. (1)

Note that the transfer ⌧h 2 T does not appear in the reward since the total transfer sums to zero.

Transition of States. The state consists of the context in C and the sets of agents in 2I ⇥ 2J . The
transition of context at step h follows the heterogeneous transition function Ph(Ch+1 | Ch, eh),
which only depends on the planner’s action eh and is independent of the matching (Xh, ⌧h).

We assume that the sequence of agent sets {Ih, Jh}
H

h=1 is generated independently from other
components in this matching market. We also assume the same sequence through all K episodes for
the sake of clarity. Note that Ih and Jh can also be handled as part of the context Ch and covered by
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our current argument with more involved transition dynamics, which is often task-specific. Our minor
simplification serves to build a generic framework and avoid detailed modeling of the agent sets.

Policies and Value Functions. A policy ⇡ is defined as ⇡ = {⇡h}
H

h=1, where for each s 2 S , ⇡h(·|s)
is a distribution on A. The policy consists of two parts: the planner’s part (i.e., choosing e 2 ⌥ to
influence the market context C), and the agents’ part (i.e., determining the matching-transfer (X, ⌧)).
We use ⇧ to denote the set of all such policies.

For any policy ⇡, we define each value function V
⇡

h
(·) as

V
⇡

h
(s) := E⇡

 HX

l=h

rl(sl, al)

���� sh = s; al ⇠ ⇡l(·|sl), sl+1 ⇠ Pl(·|sl, al), 8 h  l  H

�
. (2)

Maximizing the accumulated social welfare is equivalent to maximizing V
⇡

1 over ⇡ 2 ⇧, so the
overall performance over K episodes is evaluated through the regret

R(K) :=
KX

k=1

h
max
⇡2⇧

V
⇡

1 (s1)� V
⇡k

1 (s1)
i
, (3)

where ⇡k denotes the policy in episode k. See Appendix A for detailed definitions of our notation.

4 Method: An Optimistic Meta Algorithm

The dynamic matching problem introduced in Section 3 faces several coupled challenges. Specifically:
1) we study the dynamic setting and therefore the algorithm proposed by (Jagadeesan et al., 2021) for
the bandit setting (i.e., H = 1) does not apply; 2) the dynamic regime also requires us to handle the
propagation of error through H steps in the analysis; 3) compared with standard MDPs in RL, here we
aim to maximize the social welfare and thus the regret involves a new notion called Subset Instability,
which is a nonlinear functional of the rewards of the agents. Regret decomposition involving such a
complex quantity was never considered in previous works (Jaksch et al., 2010; Osband et al., 2016;
Azar et al., 2017; Jin et al., 2020; Ayoub et al., 2020; Wang et al., 2020; Fei et al., 2021b; Yang et al.,
2020; Zhou et al., 2021).

We now introduce an algorithm for the Markov matching market that addresses all these challenges.
This algorithm involves solving a sequence of combinatorial optimization problems to obtain a UCB
estimate (Section 4.1). Moreover, for the purpose of the theoretical analysis, as the regret is in
terms of Subset Instability, we need to connect the suboptimality measured by this metric with the
uncertainty of the value function estimation. We thus incorporate a novel decomposition of the
planner and the agents in the algorithm design (Section 4.2).

In Section 4.3 we summarize our proposed Algorithm 1 which serves as a meta stereotype and can
readily incorporate various existing RL methods.

4.1 Optimistic Estimation of Rewards

Note that we do not directly observe the rewards defined in (1) and have no unbiased estimates of
them, so we cannot explicitly construct their optimistic estimates. However, thanks to the nature of
the stable matching being a max-weight matching, we show that we can still obtain useful optimistic
rewards estimates based on the optimistic estimates of the utilities.

To see this, recall the definition of reward in (1). We know that there exists some stable matching
(Xh, ⌧h) that maximizes rh and can be obtained by solving a linear program and its dual program
(Shapley and Shubik, 1971). Define the following linear program LP(I, J, u, v):

max
w2R|I|⇥|J|

X

(i,j)2I⇥J

wi,j [u(i, j) + v(i, j)]

s.t.
X

j2J

wi,j  1, 8 i 2 I,

X

i2I

wi,j  1, 8 j 2 J,

wi,j � 0, 8(i, j) 2 I ⇥ J,

(4)
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and its dual program DP(I, J, u, v):

min
p:I[J!R+

X

a2I[J

p(a) s.t. p(i) + p(j) � u(i, j) + v(i, j), 8(i, j) 2 I ⇥ J. (5)

Shapley and Shubik (1971) proved that the stable matching (X, ⌧) corresponds to the solution to
the linear program (4) (for X) and its dual program (5) (for ⌧ ). It is clear from (4) that the optimal
value of the objective function is equal to the total social welfare of the stable matching. Now,
suppose we have some optimistic estimates of the utilities, i.e., bu and bv such that bu(·, ·) � u(·, ·) and
bv(·, ·) � v(·, ·). It is easy to see that when substituting (bu, bv) into the linear program (4), the resulting
optimal value will be an upper bound of the original optimal value (see Lemma C.2 and its proof).

Based on this observation, let us return to the reward in (1). The previous argument implies that as
long as we have optimistic estimates of the utilities uh and vh, we can get optimistic estimates of the
reward by solving the max-weight matching over the optimistic utilities. Moreover, it is further an
upper bound of the following pseudo-reward:

rh(Ch, Ih, Jh, eh) := max
(Xh,⌧h)2Mh

rh(Ch, Ih, Jh, eh, Xh, ⌧h), (6)

where Mh := M(Ih, Jh, uh, vh, Ch, eh) denotes the set of all myopic stable matching on (Ih, Jh)
with utility functions uh(Ch, eh, ·, ·) and uh(Ch, eh, ·, ·). Finally, the optimistic estimates of the
utilities can be constructed from noisy observations of agents’ utilities via any standard approach in
the online learning literature.

The definition of the pseudo-reward in (6) provides a way to decompose the total regret into the
planner’s regret and the agents’ regret, as will be clear in the next subsection.

4.2 Decomposition of The Planner and The Agents

Recall that we require the matching in each step to be stable, which is an additional constraint apart
from maximizing the social welfare. We need to separate these two entangled goals from each other.
Indeed, we will show that the total regret consists of two parts: 1) the suboptimality of the planner’s
policy over the entire episode, and 2) the distance between the proposed matching and the optimal
myopic stable matching at each step. We identify the former as the planner’s problem and the latter
the agents’ problem.

The Planner’s Problem. The planner’s problem focuses on the transition of the contexts, so we
need to partial out the effects from the actual matching. This has been done in the definition of the
pseudo-reward in (6), and the corresponding pseudo-value function V

⇡

h
for h 2 [H] is defined as

V
⇡

h
(s) := E⇡

 HX

l=h

rl(sl, el)

���� sh = s, el ⇠ ⇡l(·|sl), sl+1 ⇠ Pl(·|sl, el), 8 h  l  H

�
, (7)

where we slightly abuse the notation el ⇠ ⇡l(·|sl). Also note that we can write sh+1 ⇠ P(·|sh, eh)
instead of the more general sh+1 ⇠ P(·|sh, ah) since we condition on (Ih, Jh) and the transition of
Ch only depends on the planner’s action eh as Ch+1 ⇠ Ph(·|Ch, eh).

Clearly, V
⇡

h
is an upper bound of V ⇡

h
and does not depend on the actual matching {Xh, ⌧h}h2[H]

since it has been maximized out. Now, we specify the planner’s problem as trying to maximize the
pseudo-value V

⇡

1 , and define the planner’s regret given the initial state s1 as

R
P (K) :=

KX

k=1

h
max
⇡

V
⇡

1 (s1)� V
⇡k

1 (s1)
i
=

KX

k=1

h
V

?

1(s1)� V
⇡k

1 (s1)
i
. (8)

From a control-theoretic perspective, the planner’s problem can be viewed as learning an MDP with
the same state space S, the action space reduced to ⌥, and reward being the value of the myopic
max-weight matching at each step. The reward cannot be observed, nor do we have an unbiased
estimator. From an economic perspective, the planner’s problem captures only the market context
and not the specific market outcome (i.e. matching). Now, note that

R(K) =
KX

k=1

h
max
⇡2⇧

V
⇡

1 (s)� V
⇡k

1 (s1)
i

| {z }
(Planner’s regret)

+
KX

k=1

h
V

⇡k

1 (s1)� V
⇡k

1 (s1)
i

| {z }
(Utility difference)

,
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where the planner’s regret has been captured in (8), and it remains to control the utility difference on
the agents’ side.

Agents’ Problem. The agents’ problem amounts to controlling the suboptimality of each imple-
mented matching, which boils down to SI proposed by Jagadeesan et al. (2021).
Definition 4.1 (Subset Instability, Jagadeesan et al. 2021). Given any agent sets I, J and utility
functions u, v : I ⇥ J ! R, the Subset Instability SI(X, ⌧ ; I, J, u, v) of the matching and transfer
(X, ⌧) is defined as

max
I0⇥J 0✓I⇥J

h⇣
max
X0

X

i2I0

u(i,X 0(i)) +
X

j2J 0

v(X 0(j), j)
⌘

�

X

i2I0

(u(i,X(j)) + ⌧(i))�
X

j2J 0

(v(X(j), j) + ⌧(j))
i
,

where X(·) and X
0(·) denotes the matched agent in matching X and X

0 respectively.

Subset Instability has several key properties for learning. Importantly, it can be shown that given
(I, J, u, v), the utility difference between the optimal matching-transfer pair and (X, ⌧) is upper
bounded by SI(X, ⌧ ; I, J, u, v). With a slight abuse of notation, for sh = (Ch, Ih, Jh) and ah =
(eh, Xh, ⌧h), we denote by SI(sh, ah, uh, vh) the SI of (Xh, ⌧h) given Ih, Jh and uh(Ch, eh, ·, ·) and
uh(Ch, eh, ·, ·). We define the regret of the agents as

R
M (K) :=

KX

k=1

E⇡k

h HX

h=1

SI(sh, ah, uh, vh)
i
. (9)

Moreover, SI itself can be bounded by the sum of optimistic bonuses. Therefore, quite surprisingly,
we can control the planner’s regret and the agents’ regret at the same time by bounding the bonus
sums. In this way, the total regret can be controlled due to the following proposition.
Proposition 4.2 (Proof in Appendix D.1). For R(K), RP (K) and R

M (K) defined by (3), (8), (9),
it holds that R(K)  R

P (K) +R
M (K).

4.3 A Meta Algorithm

Now, we are ready to present our meta algorithm as displayed in Algorithm 1. As is clear from the
previous derivations, it suffices to construct optimistic estimates of the utilities, which then induces 1)
matchings of agents and 2) optimistic estimates of the value functions. The latter then enables the
optimistic planning for the planner.

In particular, for the estimation part, Algorithm 1 first constructs the Q-function estimates in a
backward fashion. Using these estimates, Algorithm 1 computes optimistic estimates of utilities by
calling the subroutine UE (utility estimation), which then leads to estimates of the pseudo-reward using
the subroutine RE (reward estimation). Next, optimistic estimates of the Q functions are obtained via
the subroutine QE (Q-function estimation). Next, for the planning part, Algorithm 1 chooses action
in ⌥ greedily and the matching-transfer pair by calling OM (optimal matching). Finally, OM finds a
matching-transfer pair which is stable with respect to the estimated utility functions.

As discussed in Section 4.1, the optimistic estimates of the rewards come from solving the linear
program in (4) and its dual program in (5), which produce the optimal matching given the set of
participating agents and utilities. Therefore, the RE oracle is defined as Algorithm 2, and the OM

oracle is defined as Algorithm 3. The remaining subroutines (UE and QE) are flexible and can be
carefully calibrated for different model assumptions. The modular nature of Algorithm 1 facilitates
incorporation of existing RL algorithms. In particular, we study a special case of linear function
approximation in the next section, where we provide explicit oracles for these subroutines, and show
that the corresponding algorithm enjoys a sublinear regret.

5 Case Study: Markov Matching Markets with Linear Features

In this section, we illustrate the power of our framework under linear function approximation, which
is the simplest case of function approximation, yet still a rich enough model.
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Algorithm 1 Sequential Optimistic Matching (SOM)
1: Require: �,�u,�V

2: Initialize: u
1
h
⌘ 1, v1

h
⌘ 1 and D

0
h
= ;, 8h 2 [H]

3: for episode k = 1, 2, . . . ,K do

4: Receive the initial state s
k

1 = (Ck

1 , I1, J1)

5: Set Q
k

H+1 ⌘ 0
6: for stage h = H,H � 1, . . . , 1 do

7: Estimate utilities (uk

h
, v

k

h
) UE(Dk�1

h
,�u,�)

8: Estimate pseudo-reward r
k

h
 RE(uk

h
, v

k

h
, Ih, Jh)

9: Estimate Q-function Q
k

h
 QE(Dk�1

h
, r

k

h
, Q

k

h+1,�V ,�)
10: end for

11: for stage h = 1 . . . , H do

12: Planner takes action e
k

h
 argmax

e2⌥ Q
k

h
(sk

h
, e)

13: Compute the optimal matching (Xk

h
, ⌧

k

h
) OM(uk

h
, v

k

h
, Ih, Jh, C

k

h
, e

k

h
)

14: Implement matching (Xk

h
, ⌧

k

h
)

15: Observe utilities uk

h
(i, j), vk

h
(i, j) for (i, j) 2 X

k

h

16: Receive next state s
k

h+1 = (Ck

h+1, Ih+1, Jh+1)

17: Update utility dataset Dk

h
= D

k�1
h
[ {C

k

h
, e

k

h
} [ {u

k

h
(i, j), vk

h
(i, j)}(i,j)2X

k

h

18: end for

19: end for

5.1 Model Assumptions

Utility Model. We assume there are known feature mappings : C⇥⌥! Rd and � : I⇥J ! Rd,
such that for any h 2 [H] and (Ch, eh, i, j), the utility functions are

uh(Ch, eh, i, j) = hvec( (Ch, eh)�(i, j)
>),✓hi,

vh(Ch, eh, i, j) = hvec( (Ch, eh)�(i, j)
>),�hi.

Here {✓h,�h}Hh=1 are unknown parameters in Rd
2

. We further define the vectorized feature vector:

�(Ch, eh, i, j) := vec( (Ch, eh)�(i, j)
>) 2 Rd

2

.

Then the immediate reward defined in (1) can be written as

rh(sh, ah) =

⌧ X

(i,j)2Xh

�(Ch, eh, i, j),✓h + �h

�
.

Transition Model. Conditioning on the agents’ sets {Ih, Jh}Hh=1, the state transition reduces to that
of the contexts. We assume a linear transition model (Jin et al., 2020):

Ph(Ch+1|Ch, eh) := h (Ch, eh),µh(Ch+1)i, (10)

for all h 2 [H], where µh : C ! Rd is some unknown measure.

Next, we introduce some standard assumptions for matching and linear MDPs (Jin et al., 2020;
Jagadeesan et al., 2021).
Assumption 5.1. We assume WLOG that for any h 2 [H], kuh(·)k, kvh(·)k  1. Assume that for
any (Ih, Jh) 2 2I ⇥ 2J , there exists Wh > 0 such that for any context C 2 C and action e 2 ⌥,
the max-weight (possibly unstable) matching on (Ih, Jh) with utility functions uh(C, e, ·, ·) and
vh(C, e, ·, ·) has total utility upper bounded by Wh.

The quantities {Wh}
H

h=1 can be viewed as a measure of complexity of the matching problem, and
indeed

P
H

h=1 Wh determines the magnitude of V ⇡
?

1 . Assumption 5.1 implies a trivial upper bound
that Wh  min{|Ih|, |Jh|}, but when the max-weight matching involves only a subset of the agents,
Wh can be much smaller. Therefore, we regard {Wh}

H

h=1 as instance-dependent parameters.
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Algorithm 2 Reward Estimation (RE)
Input: u, v, I, J

Output: br(C, I, J, e) as the solu-
tion to the LP(I, J, u, v), for any
(C, e) 2 C ⇥⌥

Algorithm 3 Optimal Matching (OM)
Input: u, v, I, J, C, e

Output: (X, ⌧) as the solution of the primal-dual
program defined by
(4): LP(I, J, u(C, e, ·, ·), v(C, e, I, J)), and
(5): DP(I, J, u(C, e, ·, ·), v(C, e, I, J)).

Assumption 5.2. We assume WLOG that k (C, e)k2  1 and k�(i, j)k2  1, implying
k�(C, e, i, j)k2  1, for any (C, e, i, j). We assume that for any h 2 [H], k✓hk2  d, k�hk2  d

andkµh(·)k2 
p
d. Moreover, assume that maxh2[H] k

R
C f(C)dµh(C)k2 

p
d for any function

f : C ! R such that sup |f |  1.
Assumption 5.3. We assume that the observed utilities of matched pairs are the true utilities plus
independent 1-subgaussian noise.

5.2 Algorithms

Based on previous model assumptions, we now present explicit computation oracles for Algorithm 1.

Utility Estimation. At the beginning of episode k, for any h 2 [H], denote the available data by
D

k�1
h

which consists of {ut

h
(i, j)}

(i,j)2X
t

h

t2[k�1] and {v
t

h
(i, j)}

(i,j)2X
t

h

t2[k�1] , where by default D0
h
= ;. For

the linear case, each u
t

h
(i, j) = h�(Ct

h
, e

t

h
, i, j),✓hi + noise, and similar for vt

h
(i, j). So we can

estimate ✓h and �h by ridge regression:

✓k
h
= (⌃k

h
)�1

k�1X

t=1

X

(i,j)2X
t

h

�(Ct

h
, e

t

h
, i, j)ut

h
(i, j),

�k

h
= (⌃k

h
)�1

k�1X

t=1

X

(i,j)2X
t

h

�(Ct

h
, e

t

h
, i, j)vt

h
(i, j), (11)

⌃k

h
= �Id2 +

k�1X

t=1

X

(i,j)2X
t

h

�(Ct

h
, e

t

h
, i, j)�(Ct

h
, e

t

h
, i, j)>.

We then add a bonus to ensure optimism in the utility function estimates and apply the truncation:

u
k

h
(C, e, i, j) =

�
h�(C, e, i, j),✓k

h
i+ �uk�(C, e, i, j)k(⌃k

h
)�1

�
[�1,1]

,

v
k

h
(C, e, i, j) =

�
h�(C, e, i, j),�k

h
i+ �uk�(C, e, i, j)k(⌃k

h
)�1

�
[�1,1]

.
(12)

The UE for the linear case is summarized in Algorithm 4.

Q-function Estimation. By the assumption on the context transition, for any function f , the function
Phf is linear in features  , which induces the commonly used LSVI-type algorithms (Jin et al.,
2020). Together with the reward estimates, we can estimate the Q-function using Bellman equation
via backward ridge regression. For each (k, h), denote the estimate of the Q-function by Q

k

h
and

the value function by V
k

h
. Given Q

k

h+1, maximizing over e 2 ⌥ yields V
k

h+1, then we solve the
following ridge regression:

wk

h
= argmin

w2Rd

k�1X

t=1

h
V

k

h+1(C
t

h+1)� (C
t

h
, e

t

h
)>w

i2
+ �kwk22,

which further yields the estimated expectation of V
k

h+1:

bPhV
k

h+1(·, ·) =  (·, ·)
>wk

h
+ �V k (·, ·)k(⇤k

h
)�1 , (13)

where ⇤k

h
=

P
k�1
t=1  (C

t

h
, e

t

h
) (Ct

h
, e

t

h
)> + �Id. Finally, we estimate Q

k

h
using the Bellman

equation. These steps are summarized in Algorithm 5.
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Algorithm 4 Utility Estimation (UE)
Input: D

k�1
h

, �u, �
if D

k�1
h

is empty then

Output: uk

h
⌘ 1 and v

k

h
⌘ 1, 8h 2 [H]

end if

Compute ✓k
h

, �k

h
by (11)

Estimate utility functions with u
k

h
and v

k

h

by (12)
Output: the functions uk

h
and v

k

h

Algorithm 5 Q-function Estimation (QE)

Input: D
k�1
h

, rk
h

, Q
k

h+1, �V , �
V

k

h+1(C, Ih, Jh) = maxe Q
k

h+1(C, e, Ih, Jh)

Compute bPhV
k

h+1 by (13)
Q

k

h
(C, Ih, Jh, e) = (rk

h
(C, Ih, Jh, e) +

bPhV
k

h+1(C, e))[0,
P

H

l=h
Wl]

Output: function Q
k

h

5.3 Theoretical Results

In this section, we present our theoretical results, with the proofs deferred to Appendix D. We start
with the main theorems on the agents’ regret and the planner’s regret.
Theorem 5.4 (Agents’ Regret). With probability at least 1� 2�, the agents’ regret can be bounded

as R
M (K)  O(d2(

P
H

h=1 min{|Ih|, |Jh|})
p
K) where  = log (dKmin(|I|, |J |)/�).

Comparing this result with Theorem 5.3 in Jagadeesan et al. (2021), which proves the regret of
their MatchLinUCB algorithm designed for the linear utility class under H = 1, and ignoring the
logarithmic term, we see that both have a linear dependence on the cardinality of the agents’ set,
while we have an extra summation over the horizon H due to the sequential setting. It might seem
that their d-dependence is O(d) while ours is O(d2), but this is because their feature is in Rd while
our feature � is d2-dimensional. Therefore, the dominant term in our regret bound matches that of
Jagadeesan et al. (2021), and our result can be viewed as an extension.
Theorem 5.5 (Planner’s Regret). Under Assumption 5.1, 5.2, assuming KH > 32, there exists a

problem-independent constant ⌘ > 0, such that for any � > 0, setting � = 1, �V = ⌘d
2
�P

H

h=1 Wh

�
·

p
◆ where ◆ = log(dKHmin{|I|, |J |}/�) and �u as given in Lemma C.1, the planner’s regret is

bounded by R
P (K)  O(⌘d5/2H(

P
H

h=1 Wh)◆
p
K) with probability at least 1� �.

Combining the above two theorems, we have shown that we find the optimal policy for both the
planner and agents at sublinear rates, and accordingly for the total regret. Notably, the regret upper
bound only depends on the size of the market through {Wh}

H

h=1, which is instance-dependent.
Due to the sublinear regret, our algorithm can be further adapted to a PAC algorithm (cf. Jin et al.,
2018). We also remark that our result with LSVI-type estimation can be naturally extended to Eluder
dimension (Wang et al., 2020; Ayoub et al., 2020).

The key step in our analysis is to show that the estimated pseudo-reward function r
k

h
satisfies optimism,

i.e., rk
h
� rh, and we need to ensure that rk

h
is not too far away from rh (Lemma C.2). Due to

space limit, we refer interested readers to Appendix C for a proof sketch of the main theory and an
introduction of all the key technical lemmas. The full proof is presented in Appendix D.

6 Conclusion

We propose a novel Markov matching market model and a general framework that incorporates
max-weight matching and RL algorithms for efficient online learning. We prove that our proposed
algorithms achieve sublinear regret under proper structural assumptions on the structural model.
Overall, our algorithm addresses the coupled challenges of sequential exploration, matching stability,
and function approximation.
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