
Robust Imitation of a Few Demonstrations with a
Backwards Model

Jung Yeon Park
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

park.jungy@northeastern.edu

Lawson L.S. Wong
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA
lsw@ccs.neu.edu

Abstract

Behavior cloning of expert demonstrations can speed up learning optimal policies
in a more sample-efficient way over reinforcement learning. However, the policy
cannot extrapolate well to unseen states outside of the demonstration data, creating
covariate shift (agent drifting away from demonstrations) and compounding errors.
In this work, we tackle this issue by extending the region of attraction around the
demonstrations so that the agent can learn how to get back onto the demonstrated
trajectories if it veers off-course. We train a generative backwards dynamics
model and generate short imagined trajectories from states in the demonstrations.
By imitating both demonstrations and these model rollouts, the agent learns the
demonstrated paths and how to get back onto these paths. With optimal or near-
optimal demonstrations, the learned policy will be both optimal and robust to
deviations, with a wider region of attraction. On continuous control domains, we
evaluate the robustness when starting from different initial states unseen in the
demonstration data. While both our method and other imitation learning baselines
can successfully solve the tasks for initial states in the training distribution, our
method exhibits considerably more robustness to different initial states.

1 Introduction

While reinforcement learning (RL) has shown remarkable success in many challenging domains
[21, 38, 36], tasks with sparse rewards and long horizons still remain extremely difficult to solve. In
such tasks, a positive reward is only encountered after the RL agent reaches the goal after a long
sequence of actions, meaning that it cannot learn any useful signals until this occurs (typically the
agent must reach the goal several times to learn reliably as well). Furthermore, the learning signal
decreases exponentially with the horizon, which combined with slow gradient-based updates, can
lead to catastrophic forgetting even after the agent learns to reach the goal.

Expert demonstrations can help RL agents solve difficult tasks [30, 43, 22]. These demonstrations
can be used in the supervised setting where the agent imitates the expert’s behavior, termed imitation
learning (IL). However, naive behavior cloning (BC) of the expert’s trajectories suffers from covariate
shift: the agent’s policy drifts away from the expert’s, which leads to compounding errors due to
RL’s sequential nature. Furthermore, the distribution of states given in the demonstrations often has
low-dimensional support with respect to the entire state space. As such, the agent cannot extrapolate
correctly when outside of the demonstration data. Many approaches to solve this issue have been
proposed [33, 39, 16], but such approaches require an interactive expert to query the correct actions.

Another way to use demonstrations is to combine imitation learning with reinforcement learning in a
form of learning from demonstrations (LfD) [35, 13, 9]. In this case, demonstrations do not simply
act as supervised labels and can guide the agent’s exploration, and also act as augmentations to good

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(a) Training (b) Evaluation (c) BC (d) BMIL

Figure 1: (a), (b): Robustness: The policy is trained on a specified set of initial start and goal states
and is evaluated at different start states. (c), (d): BMIL uses generated reverse-time rollouts from
a backwards model (green arrows originating from the demonstration) to learn a wider region of
attraction (green) around the demonstration data (orange) than BC.

data samples. These LfD approaches either use demonstrations to pretrain the policy [35, 9], use an
auxiliary imitation loss in conjunction with the policy update [30, 22], or modify the reward function
such that the agent is rewarded when it imitates the demonstrations [50, 31]. However, these methods
require interactions with the environment whereas we do not assume such access in our setting.

One primary concern of relying on demonstrations is that they are costly to obtain, especially in
real-world applications. Requiring an operator providing corrections in-the-loop to handle covariate
shift is often prohibitive as well. Given only a few offline trajectories demonstrating successful task
completion, an agent ought to be able to replicate the behavior from similar starting conditions, even
if there are small perturbations along the way, and correct itself when necessary. We are primarily
interested in this setting. In this work, we aim to minimize the number of demonstrations necessary
for sparse-reward tasks, while preserving successful task completion. To tackle covariate shift, we
seek an approach that will be robust, in the sense of Figures 1a and 1b: the agent is only trained with
a few demonstrations from a single start state, but at evaluation time, it must generalize its behavior
to a variety of unseen start states. If the agent can successfully complete the task from states adjacent
to the demonstrated trajectory, then it can recover from small deviations from the demonstration.

Inspired by the notion of “funnels” in robotics [20] and feedback control [2, 19], we introduce
a reverse-time generative model that can generate possible paths leading the agent back onto the
demonstrations. These reverse rollouts provide useful information because every rollout ends within
the support of the demonstration data. Assuming that the demonstrations lead to the goal, imitating
these generated reverse rollouts and the original demonstration data allow the agent to reach the goal
from more starting conditions, including unseen ones. As illustrated in Figures 1c and 1d, typical
behavior-cloning (BC) methods focus learning on the small number of demonstrated states, whereas
our proposed approach, Backwards Model-based Imitation Learning (BMIL), uses the reverse rollouts
to learn a wider region of attraction around the demonstration. We validate our approach on a number
of long-horizon, sparse-reward continuous-control tasks. Even from 5–20 demonstrations, BMIL
provides a significant increase in the region of attraction and robustness on many domains compared
to BC, or to using a forward dynamics model.

We summarize our contributions as follows:

• We propose an imitation learning method that pairs a backwards dynamics model with a policy
and train on both demonstrations and imagined model rollouts.

• In the restrictive setting of an offline expert and no access to environment interactions, we show
that a backwards model can improve robustness over behavior cloning.

• Our experiments on a variety of long-horizon, sparse-reward domains demonstrate that BMIL
can noticeably extend the region of attraction around the demonstration data, even when trained
on very small subsets of the state space.

2 Related Work

Imitation learning has a long history [27, 35] and is well-studied, as documented in various surveys [1,
25, 11]. The challenges of covariate shift and compounding errors are also well-known [27, 32].
Most solutions involve on-policy imitation learning, where environment interaction and interactive
querying of the expert allow for the agent’s distribution to match that of the expert [33, 39]. More
closely related to our approach are methods that modify or augment the demonstrations to increase
robustness. Laskey et al. [16] inject noise into the supervisor’s policy during training to force the

2

demonstrator to provide corrections. Luo et al. [18] learn a dynamics model from demonstrations
to conservatively extrapolate a value function that encourages the agent to return to the expert data
distribution. Generative approaches have also been used in imitation learning [10, 46], but their focus
is not on robustly following a few goal-reaching demonstrations.

Time-reversibility has been explored in RL, often as a form of regularization [41, 23, 49, 29, 34].
Reverse-time dynamics models, also called predecessor models, have also been used in RL [3, 6,
37, 15, 17, 48, 7]. However, in all cases, the reverse-time dynamics model is used as either an
alternative to the forward-time dynamics model or as an auxiliary model in addition to the standard
forward-time dynamics model, in order to mitigate model-compounding errors. The result is that the
reverse-time dynamics model can accelerate RL and enable greater sample-efficiency. In this work,
we take a different perspective where the reverse-time dynamics model is used to generate possible,
unseen paths that can lead back to the expert demonstration and thus to the goal, thereby improving
robustness in following the demonstration. Our work is also similar to [45], where a reverse-time
dynamics model is used to generate possible trajectories; however, their focus is on offline RL, where
the generated trajectories are used to connect distinct sets of states in the offline dataset.

3 Method

3.1 Preliminaries

We model the setting as a Markov Decision Process (MDP) with a continuous state space S and a
continuous action space A. T : S ×A 7→ S is the transition function that defines the distributions of
the next state st+1 ∈ S, given the current state st ∈ S and action at ∈ A taken at timestep t.

The objective of imitation learning is to learn a policy πθ, parameterized by θ, that matches the
expert’s policy πE . We assume that the expert generates demonstrations Ddemo by rolling out its
policy πE in the environment. Note that we consider the more restrictive case of where demonstrations
only consist of transitions (s, a, s′) and not rewards, where s′ is the next state.

Behavior cloning (BC) is a form of imitation learning where the policy πθ learns to imitate expert
actions via supervised learning. The policy learned by behavior cloning is found by minimizing the
negative log-likelihood over the demonstration data

LBC = E(s,a)∈Ddemo
[− log πθ(a | s)] .

Note that BC does not require environment interactions and can be considered to be offline. Further-
more, expert behavior is inferred only from demonstrations without access to the expert policy.

Compounding errors in behavior cloning As pointed out in [32, 44], behavior cloning suffers
from covariate shift, where errors in the policy can compound and lead the agent to states where it
cannot recover. Intuitively, this occurs as states in the training data Ddemo is a small subset of the
entire state space S and it is difficult for the policy πθ to learn the optimal action for states outside of
the training data. If during a rollout, once the policy πθ makes an error and leaves the Ddemo, it may
encounter completely new states, leading to the compounding of errors. Furthermore, as the agent
moves farther away from Ddemo, there is very little hope for it to make the correct action and move
back onto the distribution of the training data.

3.2 Problem Setting

We consider the same setting as BC, where we do not assume access to the environment or the expert
policy during training, and only expert demonstrations without rewards are given. Furthermore, we
assume that the expert demonstrations are given in the MDP where the sets of initial states S0 and
goals G are both very small subsets of the entire state space. An example of this scenario is a maze
environment where the agent starts from the same initial state and tries to reach a fixed goal. Formally,
we define the demonstration trajectories τdemo as coming from a probability density

p(τdemo | πE) = p(s0)

T−1∏
t=0

πE(st | at)p(st+1 | st, at),

where s0 ∈ S0, and sT ∈ G. In our experiments, S0 and G consist of a single start or goal state and/or
the ε-ball of its neighborhood. As such, only a few demonstrations are required to learn a stable

3

optimal policy. Note that this is different from domains in previous work [30, 4] which consider
random goal states, requiring many more demonstrations to learn optimal policies. We also assume
that the expert policy is optimal in the sense that all demonstrations successfully reach a goal. While
this is not strictly necessary in our method, our setting does not include rewards in τdemo and thus we
cannot discern whether demonstrations are optimal. This allows us to ignore the issue of modifying
rewards as done in several offline RL algorithms [5, 14]. In order to use task completion success rates
as an evaluation metric in our experiments, we consider only optimal demonstrations.

Our objective is to learn a policy that is robust to policy errors when imitating expert behavior and
can learn to reach the goal from a variety of initial states. This is different than the multi-goal or
multi-task setting, where the agent learns to solve multiple goals or tasks, usually from a small
number of initial states. More formally, the robustness of the policy R(πθ) is defined as

R(πθ) = Es0∈SR
[1{∃t ≤ T, st ∈ G}] ,

where the expectation is taken over SR, where SR is a strict superset of S0. Note that our measure of
robustness is somewhat coarse, in that we do not consider the shortest path to reach the goal from
every start state (which would probably require more information such as diverse trajectories or
environment interactions). Instead, we seek to extend the region of attraction around Ddemo such that
the learned policy can still reach the goal.

As we consider continuous states in our work, we measure the robustness R using samples from SR,
where we randomize either some or all of the state dimensions. For example, in robotic manipulation
domains, we vary the position of the gripper as we are primarily concerned with being able to learn
robustness from a variety of different starting positions. In other domains, we are interested in the
policy’s ability to recover from arbitrary initial states and so we vary not only the agent’s starting
position, but also the initial joint positions and velocities by adding uniformly random noise.

Throughout, we assume that there exists an action a ∈ A that allows the policy to go towards Ddemo

when in a state s ̸∈ Ddemo. This scenario is true for many navigation and physics-based domains if
we ignore rare circumstances such as irrecoverable unsafe states or the breakdown of the agent. We
exclude such cases and assume that state transitions are reversible. We discuss some possible ways to
incorporate irrecoverable states in Section 6.

3.3 Backwards Model-based Imitation Learning

In our work, we use a backwards dynamics model to provide more synthetic training data to the
policy and therefore increase the policy’s robustness. We call our method backwards model-based
imitation learning or BMIL.

Backwards model The backwards model is a probabilistic generative model defined as B =
p(st, at | st+1). This model estimates the conditional distribution of the reverse time dynamics.
It takes in the next state and outputs the previous state and previous action. As we consider only
continuous state and action spaces, we implement B as a conditional Gaussian, parameterized by ϕ.

The backwards model is decomposed into two functions B = BA·BS = p(at | st+1)·p(st | at, st+1),
an action generator and previous state generator. The action generator BA predicts which action was
taken in order to land in the next state. There may be several such actions from different states that
can lead to the next state. Thus the action generator implicitly encodes a backwards policy. It is
important for this backwards policy to closely match the learned forward policy π but be different
enough to generate diverse new rollouts for the policy to train on. The previous state generator BS

predicts the previous state given the next state and previous action taken. The goal of this generator is
to accurately predict the backwards dynamics.

As we consider the setting with no access to the expert or the environment, B is trained only on
Ddemo. The action generator and previous state generator are jointly trained by maximum likelihood

LB =
∑T

t=0
log p(at | st+1) + log p(st | at, st+1), (1)

where st, at, st+1 is the state, action, and next state, respectively, at timestep t.

Model rollouts Given expert demonstrations τdemo, we use the backwards model to generate
possible several short reverse rollouts or traces τB , starting from every state in τdemo. As all of these

4

Algorithm 1 Backwards Model-based Imitation Learning (BMIL)

1: for N epochs do
2: Train backwards model parameters ϕ using Eqn. (1).
3: Generate K model traces τB from every state s ∈ Ddemo and store them in DM .
4: for M steps do
5: Sample mini-batch of (s, a) from Ddemo and DM at a fixed ratio.
6: Update policy parameters θ using Eqn. (2).
7: end for
8: end for

traces end on states within the demonstration data s ∈ Ddemo and as all demonstrations reach the goal,
following these traces will eventually lead to the goal. For all s1, . . . , sT in τdemo, we generate K
traces τB in a time-reversed manner, where we start from the last state action pair (sH , aH) ∈ Ddemo

and then predict (st, at) for timesteps t = H − 1, . . . , 1. These traces are collected into a buffer DM .
As we assumed that there are no irrecoverable states in our setting, the rollouts reflect possible paths
that the agent could have taken to reach s ∈ Ddemo. If the reverse time model B is accurate and the
previous action generator BA gives sufficiently diverse actions, the traces τB are then samples from
the region of attraction or “funnels” around every state along the demonstration. As we assume all
demonstrations reach the goal, these samples from the funnels can be used to learn a robust policy πθ,
as it can follow the traces onto the optimal path.

Action selection strategy for BA As the backwards model B is trained only on a limited number
of expert demonstrations, it is likely that B can only learn accurate reverse-time dynamics for states
contained within or close to the demonstration data Ddemo [47]. Thus repeatedly rolling out BA

would only generate traces whose state-action pairs are contained within Ddemo and would not help
with learning robust policies. However, we would like to generate diverse traces with new unseen
state-action pairs in order to robustify the policy. To balance the model misprediction accuracy with
generating plausible state-action pairs, we perturb only the first action generated from BA and not
the subsequent actions and also use short horizon lengths for the traces. Note that we are essentially
choosing a good action selection strategy for BA. Let aE be the action that the expert would take. A
good action selection strategy would place more probability mass closer to the support of the Ddemo,
providing a “cover” of p(aE |s) but with a wider tail to provide diverse rollouts. As our backwards
model B is probabilistic (implemented as a conditional Gaussian with diagonal covariance), we can
easily perturb p(aE |s) by increasing the distribution’s variance.

Let a ∼ N (µ, σ2) be the previous action output by BA. We consider two ways to generate action a:
1) simple scaling of σ and 2) resampling a new action a′ by adding uniform noise, a′ = a+ k, k =
U [−b, b], where b is a fixed hyperparameter. For the scaling strategy, we further scale σ by the entropy
of the probability density as we wish to make the distribution “wider” for peaker distributions.

Algorithm Our method BMIL is outlined in Algorithm 1. Given expert demonstrations with tuples
of the form (st, at, st+1), we train the backwards model using Eqn. 1 to estimate the reverse-time
dynamics p(st, at | st+1). We train our policy πθ on both the demonstration data Ddemo and the
model traces τB by sampling from both at a fixed ratio and using maximum likelihood,

L = pdLBC + (1− pd)E(s,a)∼τB [− log πθ(a | s)] , (2)

where pd is the probability of sampling from Ddemo. As our aim is to learn a robust policy while still
succeeding at the original start states and goals, we sample from the demonstrations at a higher ratio
than the model traces. Note that BMIL does not depend on the type of imitation learning policy. Any
algorithm can be used as long as the policy can be trained with samples of the form (s, a).

4 Experiment Design

4.1 Environments

We validate our approach on several continuous control domains: 1) the Fetch robotics environment
[26], 2) maze navigation with two different agents, and 3) Adroit hand manipulation [30]. Figure 2
shows sample images of some environments. For the Fetch robotics environments, we consider the

5

Fetch-PickAndPlace Maze-AntCorridor7x7 Adroit-Relocate

Figure 2: Sample images of some considered environments.

“Push” and “PickAndPlace” tasks where the objective is to control a Fetch end effector to either push
an object to the goal or pick an object and place it at the target location. For the maze environments,
we consider 3 mazes of increasing difficulty, where an agent must learn to move itself and then reach
the goal. We use both a simple point and a 29-DoF ant agent. For the Adroit environment, we use
the ‘Relocate‘ task, where one must control a 24-DoF Adroit hand to pick up a ball and move it
to a target location. All domains use the MuJoCo simulator [42] for a total of 9 distinct domains.
All environments have sparse reward structures, where either every step has a constant negative
reward until the goal is reached (Fetch) or only the goal has a non-zero reward (Maze, Adroit). In
particular, the Maze and Adroit environments are quite challenging as they both consist of controlling
the agent’s joints to perform locomotion (maze) or dexterous manipulation (Adroit) over a long
horizon. More detailed descriptions of each environment including its observation space are provided
in Appendix A.

4.2 Demonstrations and Implementation Details

To generate demonstrations in the Fetch and Maze domains, we train an expert policy by adding the
goal position to the state, as in goal-oriented learning, and use off-the-shelf RL algorithms [28, 8].
For the Adroit domain, we use a pre-trained policy from [30]. We use 5 demonstrations on the Push
task and 10 on the PickAndPlace task, and 20 demonstrations for all Maze and Adroit environments.

For the policy, we use neural networks with 3 fully connected hidden layers with 256 neurons and
ReLU activations. For the backwards model, we use 4-layer MLPs with 256 hidden units for both
the action predictor BA and previous state predictor BS and use diagonal Gaussian distributions.
To train the policy, we use pd = 0.5 for the Fetch environments, pd = 0.8 ∼ 0.95 for the Maze
environments, and pd = 0.8 for the Adroit environments. We find that higher ratios are necessary
for longer-horizon and more complex domains. For the model rollouts, we use the variance scaling
action selection strategy for the first action only and use increasing rollout lengths for all domains,
similar to [12]. For a more detailed discussion of experiment details, see Appendix B. Our code for
the modified environments, generating expert policies, and running all experiments are available at
https://github.com/jypark0/bmil.

4.3 Evaluation

We evaluate BMIL against behavior cloning (BC) and VINS [18]. VINS specifically aims to learn
value functions robust to perturbations using negative sampling and the induced policy learns self-
corrective behavior. VINS was chosen as it is most relevant to our setting; other methods such as
DART [16] or SQIL [31] require either an online expert or environment interactions.

We use the same number of demonstrations for all methods and also keep the same policy network
architecture and the total number of policy gradient steps equal across all methods. We train both
the policy and backwards model until the backwards model loss converges. Note that our goal is
not to solve the training task faster but rather to robustify the policy using the backwards model.
Additionally, we wish to solve the task at various starting conditions while still being able to succeed
at the original initial start-goal states.

To evaluate the robustness of the learned policy, we vary the initial states and compute task success
rates. For Fetch, we fix the initial gripper, object, and goal position during training and vary the
gripper’s x and y position within the table boundaries during evaluation. We use 10,000 samples

6

https://github.com/jypark0/bmil

Robustness (%) Relative to BC
BC VINS BMIL BC VINS BMIL

FETCH
Push (5 demos) 12.1±0.3 12.8±0.4 14.6±0.6 1 1.06 1.21
PickAndPlace (10 demos) 4.1±0.1 3.4±0.1 17.5±0.9 1 0.84 4.31

MAZE

Point
(20 demos)

UMaze 49.0±1.9 39.5±2.1 47.8±3.5 1 0.81 0.98
Room5x11 36.8±3.4 17.3±2.8 38.6±3.4 1 0.47 1.05
Corridor7x7 33.7±1.5 37.7±1.2 38.9±2.3 1 1.12 1.16

Ant
(20 demos)

UMaze 63.0±1.0 44.7±2.1 64.8±1.5 1 0.71 1.03
Room5x11 33.2±0.9 30.2±0.8 29.1±0.8 1 0.91 0.87
Corridor7x7 21.7±0.6 19.6±0.6 17.6±0.5 1 0.90 0.81

ADROIT Relocate (20 demos) 7.9±0.7 3.8±0.7 13.3±1.0 1 0.48 1.68
Table 1: Robustness evaluation for Fetch, Maze, and Adroit environments over 400, 100, 100 trials,
respectively. The bounds indicate 95% confidence intervals. BMIL improves robustness considerably
over BC in most environments.

during evaluation. For Maze, we initialize the agent to a random start position within a discretized
grid of the maze and also add random uniform noise to the agent joints’ qpos,qvel. We sample
100 initial states for each discrete grid cell and compute the success rate. Sampling points for each
grid cell gives us an idea of which positions are easy for the agent to reach the goal. Intuitively, such
positions would be those near the goal and the demonstrated path. For Adroit, we generate 1,000
random initial states by adding uniform noise to the qpos of the hand.

5 Results

Our experiments aim to answer the following questions: 1) how robust of a policy does BMIL learn?
and 2) what components of BMIL are important to improve robustness?

5.1 Robustness evaluation

The robustness results are shown in Table 1. We note that the absolute robustness percentages are
generally low for all methods because of the difficulty in extrapolating from limited demonstrations
(5 − 20) with a single pair of initial start and goal states. We therefore also include the relative
improvement over BC.

In the Fetch environments, BMIL substantially increases robustness over BC and VINS. In particular,
our method has an approximately 20% and 330% improvement over BC on Push and PickAndPlace,
respectively. VINS on the other hand performs similarly to BC. We see a similar pattern on the harder
Adroit environment, where BMIL improves robustness over BC by 68%. For the Maze environments,
BMIL generally outperforms BC for the Point agent, while the robustness is decreased for the Ant
agent. Somewhat surprisingly, BC performs quite well on the long-horizon Maze domains. It may be
that BC has some built-in extrapolation capabilities or that the backwards model may need better
latent representations with more powerful networks.

Empirically, we can see that having short reverse rollouts from the backwards model and using only
slight perturbations still helps to increase robustness, even though the traces contain some model
misprediction errors. We hypothesize that these traces do not necessarily need to be accurate in
order to benefit the policy and simply need to be plausible paths that lead to the demonstrations. It
may be that having the general correct direction contained in the traces is sufficient for the policy to
eventually reach states in the demonstration data.

The success rates during training are shown in Table 5 in Appendix C.1. BMIL achieves success rates
close to 1 for most domains, suggesting that increased robustness does not necessarily come at the
cost of decreased performance on demonstrated start-goal states. On the other hand, VINS cannot
consistently succeed during training, even though its robustness is similar to BC.

Visualization of robustness Figure 3 shows which starting positions succeed during the robustness
evaluation for Fetch. The green points correspond to successful episodes. We can see that both BC
and BMIL succeed more frequently when starting from nearby the demonstration data (approximately

7

BC BMIL

(a) Push

BC BMIL

(b) PickAndPlace

Figure 3: Visualization of robustness on Fetch for BC and BMIL. We vary the gripper’s x, y position
to evaluate robustness. The green and gray points denote successful and unsuccessful initial positions.
The red, orange, and blue points denote the initial start, object, and goal during training. BMIL learns
a much larger region of attraction along the path from the initial start (red) to the goal position (blue)
and even succeeds in some other areas much farther away.

BC BMIL

(a) PointRoom5x11

BC BMIL

(b) PointCorridor7x7

Figure 4: Visualization of robustness on PointRoom5x11 and PointCorridor7x7 for BC and BMIL.
The maze is discretized into a grid and 100 random states are sampled from each grid positions
(each random state also adds noise to the agent’s initial joint positions/velocities). Bright yellow
corresponds to 100% success rate while dark purple corresponds to 0%. The regions of attraction for
both BC and BMIL are similar but BMIL succeeds more often within its region of attraction.

a straight line from the start (red) to goal (blue)). However, we can see that BMIL learns a much
larger region of attraction over BC and even succeeds at points that are much farther away from
Ddemo. We hypothesize that instead of perturbing a single state within Ddemo as done in VINS,
learning a short reverse rollout from this state allows BMIL to learn optimal paths from states much
farther away from Ddemo, leading to higher robustness values. Figure 4 shows a similar visualization
for some Point maze environments where the agent’s position is discretized into a grid. BMIL learns
a region of attraction that is either slightly bigger or similar in size to that of BC but has a higher rate
of success at each cell.

5.2 Additional Experiments

Forward vs Backward Dynamics We first analyze the utility of a backwards vs a forward dynamics
model. On the Fetch environments, we train BMIL with a forward dynamics model p(s′ | s, a)
and compare against the original backwards model p(s, a | s′). The forward model is implemented
nearly identically to other n-step model-based RL algorithms (e.g. [12]), with the exception of no
environment interactions. As with the backwards model, we generate rollouts from the forwards
model starting from demonstrated states and train the policy on both the demonstrations and traces.

Robustness (%) Relative to BC

BC BMIL
(Forwards)

BMIL
(Backwards) BC BMIL

(Forwards)
BMIL

(Backwards)

Push (5 demos) 12.1±0.3 12.4±0.6 14.6±0.6 1 1.03 1.21
PickAndPlace (10 demos) 4.1±0.1 4.1±0.2 17.5±0.9 1 1.03 4.31
Table 2: Forwards (p(s′ | s, a)) vs Backwards (p(s, a | s′)) dynamics model: The forwards dynamics
model performs similarly to BC and does not increase robustness.

8

(a) Action selection strategy (b) No. of demonstrations

Figure 5: (a) Action selection strategy: effect of no perturbation (None), resampling (RS), and scaling
(SC) on robustness on PickAndPlace. The numbers in the brackets indicate coefficients. We see that
perturbing the first action is beneficial compared to the no perturbation (None) method and allows the
backwards model to generate diverse traces. (b) Number of demonstrations on PickAndPlace: more
demonstrations increase robustness for BC and BMIL, but BC plateaus at a much lower level.

To generate model rollouts from demonstration states, we use the action from the policy a = πθ(s).
The total number of parameters is kept approximately constant for the forwards and backwards
models. As shown in Table 2, the forwards model offers little to no benefit over BC for both Push
and PickAndPlace, suggesting that the backwards model is required to produce a robust policy.

Action selection strategy We test different action selection strategies in trace generation in Fig-
ure 5a (and Figure 10 in Appendix C.2). Compared to no perturbation (None), we see that either
action selection strategy improves robustness as it can lead to more diverse trajectories unseen
within the support of the demonstrations. We use the variance scaling strategy SC(30) for all Fetch
experiments as it was more stable than SC(50).

Number of demonstrations We also study our method’s performance with varying numbers of
demonstrations. As shown in Figure 5b, both BC and BMIL improve in robustness with more
demonstrations, but BC plateaus at a much lower level. On the other hand, BMIL requires slightly
more (10) demonstrations than needed (3 demonstrations are sufficient for BC to succeed during
training) in order to train the backwards model (Figure 11 in Appendix C.2).

Computation budget As BMIL trains both the policy and the backwards model, it requires more
total gradient updates than BC. On Fetch domains, BMIL uses approximately 5x more computation
than BC. We train BC for more steps to match or exceed BMIL’s computation budget, as shown in
Figure 6 (BC is given 1x–20x computation budget). However, more training for BC does not improve
robustness and seems to have a harmful effect on robustness.

Training model first and then the policy As an offline method, BMIL does not require the
backwards model to be trained in a single loop along with the policy. We can first train the model first
and then train the policy. We compare training the model first and then the policy with the process
outlined in Algorithm 1. We find there are no noticeable differences when using this model first
approach on the Fetch domains, as seen in Table 6.

Push PickAndPlace

Figure 6: Computation budget: we increase the number of gradient steps for BC by 1− 20x for Fetch.
BMIL has roughly 5 times more total gradient steps than BC(1x) due to the backwards model update.
More BC gradient steps do not increase robustness.

9

6 Discussion

This work proposes a method to tackle the issue of covariate shift in imitation learning. We consider
the restrictive setting where the expert is offline, where its behavior can only be inferred from
demonstrations, and no access to additional environment interactions. Specifically, we show that
pairing a generative backwards model with behavior cloning can allow a policy to learn a wider
region of attraction around the demonstration data. By rolling out imagined traces from states within
the demonstration and perturbing actions to generate diverse traces, BMIL learns a wider funnel than
naive BC. Through experiments on several long-horizon, sparse-reward, continuous control domains,
BMIL noticeably improves robustness when trained on a narrow set of initial start and goal states and
evaluated at random starting positions.

There are many possible extensions for future work. BMIL does not necessarily preclude the use of
image observations as we only assume that slightly perturbing an action will lead to new next states
close to the original next state. However, to handle images, our approach likely requires an additional
encoder and possibly more complex network architectures and augmentation techniques. Another
interesting avenue could be to quantify how an increasing coverage of state space contained within
the demonstration data affects robustness for both BC and BMIL. Finally, one could consider the
setting of irrecoverable states and either resample rollouts containing such unsafe states or incorporate
a measure of safety within the backwards model when generating model rollouts.

Acknowledgments and Disclosure of Funding

This material is based upon work supported by the National Science Foundation under Grant No.
2107256. This work was completed in part using the Discovery cluster, supported by Northeastern
University’s Research Computing team.

References
[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN
0921-8890.

[2] Robert R. Burridge, Alfred A. Rizzi, and Daniel E. Koditschek. Sequential composition of
dynamically dexterous robot behaviors. The International Journal of Robotics Research, 18(6):
534–555, 1999.

[3] Ashley D. Edwards, Laura Downs, and James C. Davidson. Forward-backward reinforcement
learning, 2018.

[4] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[5] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062,
2019.

[6] Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey
Levine, Hugo Larochelle, and Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. In International Conference on Learning Representations, 2019.

[7] Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. There is
no turning back: A self-supervised approach for reversibility-aware reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. 2017.

[9] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan
Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou,
Joel Z. Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In AAAI, 2018.

10

[10] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, 2016.

[11] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Comput. Surv., 50(2), apr 2017. ISSN 0360-0300.

[12] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing Systems,
2019.

[13] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from
limited demonstrations. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[14] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[15] Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu. Bidirectional model-based policy opti-
mization. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 5618–5627. PMLR, 13–18 Jul 2020.

[16] Michael Laskey, Jonathan Lee, Roy Fox, Anca D. Dragan, and Ken Goldberg. DART: noise
injection for robust imitation learning. In 1st Annual Conference on Robot Learning, CoRL
2017, Mountain View, California, USA, November 13-15, 2017, Proceedings, volume 78 of
Proceedings of Machine Learning Research, pages 143–156. PMLR, 2017.

[17] Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware
dynamics model for generalization in model-based reinforcement learning. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 5757–5766. PMLR,
13–18 Jul 2020.

[18] Yuping Luo, Huazhe Xu, and Tengyu Ma. Learning self-correctable policies and value func-
tions from demonstrations with negative sampling. In International Conference on Learning
Representations, 2020.

[19] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion
planning. The International Journal of Robotics Research, 36(8):947–982, 2017.

[20] Matthew T. Mason. The mechanics of manipulation. In IEEE International Conference on
Robotics and Automation, 1985.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[22] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[23] Suraj Nair, Mohammad Babaeizadeh, Chelsea Finn, Sergey Levine, and Vikash Kumar. Trass:
Time reversal as self-supervision. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 115–121, 2020.

[24] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-
conditioned policies. In NeurIPS, pages 14814–14825, 2019.

[25] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan
Peters. An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,
7(1-2):1–179, 2018. ISSN 1935-8253.

11

[26] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request
for research, 2018.

[27] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky,
editor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann,
1989.

[28] Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

[29] Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, and Yoshua Bengio. Learning
the arrow of time for problems in reinforcement learning. In International Conference on
Learning Representations, 2020.

[30] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018.

[31] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. In International Conference on Learning Representations, 2020.

[32] Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye
Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 661–668, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[33] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[34] Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained Markov decision processes via
backward value functions. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 8502–8511. PMLR, 13–18 Jul 2020.

[35] Stefan Schaal et al. Learning from demonstration. Advances in neural information processing
systems, pages 1040–1046, 1997.

[36] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[37] Yannick Schroecker, Mel Vecerik, and Jon Scholz. Generative predecessor models for sample-
efficient imitation learning. In International Conference on Learning Representations, 2019.

[38] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529:484–503, 2016.

[39] Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, and J. Andrew Bagnell. Deeply
AggreVaTeD: Differentiable imitation learning for sequential prediction. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 3309–3318. PMLR, 06–11
Aug 2017.

[40] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine, 36(1):
42–47, Feb 2011.

12

https://github.com/DLR-RM/rl-baselines3-zoo

[41] Pierre Thodoroff, Audrey Durand, Joelle Pineau, and Doina Precup. Temporal regularization
for markov decision process. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[42] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[43] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

[44] Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Improving multi-step prediction of
learned time series models. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, page 3024–3030. AAAI Press, 2015. ISBN 0262511290.

[45] Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang.
Offline reinforcement learning with reverse model-based imagination. Advances in Neural
Information Processing Systems, 34:29420–29432, 2021.

[46] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[47] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. arXiv
preprint arXiv:2009.11848, 2020.

[48] Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvir-
tual: Augmenting cycle-consistent virtual trajectories for reinforcement learning. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[49] Shangtong Zhang, Vivek Veeriah, and Shimon Whiteson. Learning retrospective knowledge
with reverse reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
19976–19987. Curran Associates, Inc., 2020.

[50] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvu-
nakool, János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement
and imitation learning for diverse visuomotor skills. In Proceedings of Robotics: Science and
Systems, Pittsburgh, Pennsylvania, June 2018.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

13

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Descriptions of
the implementation are provided in the main text and supplementary material and the
code and data are released as a public repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Briefly in Section 4, and in full in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Section 4.2 for the code repository URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

