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A Proof

Theorem 1. Let S and S̃ denote two surfaces of R3; φ : S → S̃ denote a diffeomorphism that
takes a point v in S to point v′ = φ(v) in S̃; and K(·) be the Gaussian curvature of the points. If
|K(v)−K(v′)| < ϵ for any point v, then the surfaces S and S̃ are ϵ-isometric.

Proof. We will prove Theorem 1 in geodesic polar coordinates [1], which are defined as follows.

Definition 1. Choose in the tangent plane Tv(S), a system of polar coordinates (ρ, θ) where ρ is the
polar radius and θ,0 < θ < 2π, is the polar angle, the pole of which is the origin 0 of Tv(S). Set
expv(l) = L, where expv is the exponential map at v and l is the closed half-line which corresponds
to θ = 0. Since expp : Tv(S)− l→ S − L is a diffeomorphism, we may parametrize the points of
S − L by the coordinates (ρ, θ), which are called geodesic polar coordinates.

Lemma 1 (Theorem 4.27 in [3]). Let (ρ, θ) be geodesic polar coordinates. Then the coefficients
E = E(ρ, θ) and F = F (ρ, θ) of the first fundamental form satisfy the conditions E = 1, F = 0.

Remark 1. The geometric meaning of the fact that F = 0 is that in a normal neighborhood the
family of geodesic circles is orthogonal to the family of radial geodesics. This fact is known as the
Gauss lemma.

We can see that the first fundamental form ds2 = dρ2 +Gdθ2 in a polar system by Lemma 1. By
applying the Gauss formula [1],
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Remark 2. The first fundamental form is the expression of how the surface S inherits the natural
inner product of R3. Geometrically, the first fundamental form allows us to make measurements on
the surface (lengths of curves, angles of tangent vectors, areas of regions) without referring back to
the ambient space R3 where the surface lies. The second fundamental form describes the shape of
the surface in the ambient space R3. The Gaussian curvature can be defined by the coefficients of the
first fundamental form and the coefficients of the second fundamental form. The Gauss formula and
the Mainardi-Codazzi equations reveal the relations between the first and second fundamental forms
of a surface. Gauss formula expresses the Gaussian curvature as a function of the coefficients of the
first fundamental form and its derivatives, which is also known as Gauss’ Theorema Egregium.
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the Gaussian curvature K can be written

K = − (
√
G)ρρ√
G

. (A.2)

We state the following lemma to calculate G.

Lemma 2 (Theorem 4.6.3 in [1]). Let (ρ, θ) be geodesic polar coordinates. Then the coefficients
G = G(ρ, θ) of the first fundamental form satisfy the conditions limρ→0 G = 0, limρ→0(

√
G)ρ = 1.

If K > 0, (
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From the conclusion in Lemma 2, we know f(θ) = 0 and g(θ) = 1√
K

. We finally have
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1
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If K = 0, (
√
G)ρρ = 0. Thus,
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From the conclusion in Lemma 2, we know f(θ) = 1 and
√
G = ρ+ g(θ). (A.6)

By reusing Lemma 2, we know g(θ) = 0 and
√
G = ρ. We finally have

ds2 = dρ2 + ρ2 · dθ2. (A.7)

If K < 0, (
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G = 0. The general solution is given by
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From the conclusion in Lemma 2, we know f(θ) = 0 and g(θ) = 1√
−K

. We finally have
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1
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Thus from the condition |K(v)−K(v′)| < ϵ we have

|ds2 − ds̃2| < ρ4

3
· dθ2 · ϵ, (A.15)

where ds is the element of arc length on a curved surface.

Let s(C) = n · ds and s(C̃) = n · ds̃, then we have
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Thus the surfaces S and S̃ are ϵ-isometric.

B Algorithm

We provide the algorithm to solve problem (6) using Bayesian Optimization in Alg. 1. We
choose GP as a surrogate model, which provides a Bayesian posterior distribution to describe
the objective function f (t;Dn) ∼ GP (µ (Dn) ,Σ (Dn, Dn)), where f (t;Dn) is the model-
ing of the unknown function Lce (t(S(Madv)), y

∗) and Dn = {ti,Lce (ti(S(Madv)), y
∗)}ni=1

is the n samples observed so far. µ and Σ are the mean and covariance functions, respec-
tively. We use the expected improvement (EI) [2, 4] acquisition function αEI (t;Dn) =
Ef(t;Dn)∼GP (µ(Dn),Σ(Dn,Dn))

[
max

(
f(t)− f+

Dn, 0
)]

, which measures the expected improvement
of each point with respect to the current best value, where f+

Dn = maxi≤n f (ti) is the best value
observed so far. Then, the target function f is sampled by argmaxt αEI (t;Dn) to better explore the
space of all transformations by selecting the next query point tn+1 in the region where the prediction
is high and the model is very uncertain.

C Supplementary experimental results

We provide more experimental results in this section. All of the experiments are conducted on
NVIDIA 3080 Ti GPUs. The source code is submitted as part of the supplementary material, and will
be released after the review process.

C.1 The effects of the penalty parameter λ1

We study the effects of the penalty parameter λ1 of the Gaussian curvature consistency regularization
term in Sec. 4.6. We adjust the value of λ1 to perform quantitative and qualitative experiments. The
qualitative visualization results in Fig. C.1 demonstrate the irregularity of the 3D objects as λ1 is
turned down. Our default value of λ1 = 1 guarantees stealthiness.

C.2 The effectiveness of Bayesian optimization

To investigate the effectiveness of Bayesian optimization to find the initial transformations, we test
the attack success rate for randomly selecting the initial transformation in the MaxOT algorithm. As
shown in Table C.1, the improvement of using Bayesian optimization over random initialization in
the MaxOT algorithm is significant. This confirms the importance of Bayesian optimization methods
in our approach.
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Algorithm 1 Solve problem (6) using Bayesian Optimization

Require: Observation data DK , surrogate model GP (µ (·) ,Σ (·, ·)), objective function
Lce (t(S(Madv)), y

∗), the number of transformations in the MaxOT algorithm S, the num-
ber of gradient descent iterations K, and learning rate ηt.

1: DK = {ti,Lce (ti(S(Madv)), y
∗)}Ki=1

2: for s = 1 to S do
3: Update the surrogate model:

f (t;DsK) ∼ GP (µ (DsK) ,Σ (DsK , DsK)) ;

4: Calculate the acquisition function:

αEI (t;DsK)← Ef(t;DsK)∼GP (µ(DsK),Σ(DsK ,DsK))

[
max

(
f(t)− f+

DsK
, 0
)]

;

5: Select tsK+1 ← argmaxt αEI (t;DsK);
6: for k = 1 to K do
7: Update tsK+1+k with gradient ascent:

tsK+1+k ← tsK+k − ηt · ∇tsK+k
Lce (tsK+k(S(Madv)), y

∗) ;

8: if k = K then
9: t∗s ← tsK+1+k;

10: end if
11: end for
12: Ds ← {tsK+1+k,Lce (tsK+1+k(S(Madv)), y

∗)}K−1
k=0 ;

13: D(s+1)K ← DsK ∪Ds;
14: end for
15: return t∗s, s = 1, · · · , S
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Figure C.1: Qualitative visualization results of the effects of the penalty parameter λ1. When λ1 is turned down,
the naturalness of the adversarial objects is worse. Our default value of λ1 = 1 guarantees stealthiness.

Table C.1: Quantitative results of attacking different models using EOT, MaxOT w/o BO and MaxOT. The
improvement of using Bayesian optimization over random initialization in the MaxOT algorithm is significant.

Model PointNet PointNet++ DGCNN
ASR Dc Dg ASR Dc Dg ASR Dc Dg

EOT 76.20% 0.0074 0.0009 74.28% 0.0094 0.0007 65.72% 0.0068 0.0041
MaxOT w/o BO 80.59% 0.0075 0.0009 81.09% 0.0094 0.0007 70.25% 0.0067 0.0039

MaxOT 82.50% 0.0074 0.0009 84.14% 0.0094 0.0006 72.40% 0.0067 0.0039

C.3 The effectiveness of Gaussian curvature

To investigate the effectiveness of Gaussian curvature, we test the mean curvature [1] as a substitute
for Gaussian curvature. As shown in Fig. C.2, the mean curvature consistency regularization term
does not guarantee naturalness and smoothness. This is because the Gaussian curvature consistency
regularization term theoretically provides a sufficient condition (see Theorem ??) to ensure that two
surfaces are ϵ-isometric, while the mean curvature consistency regularization term is not.
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Figure C.2: Qualitative visualization results of Gaussian curvature and mean curvature. The mean curvature
consistency regularization term does not guarantee naturalness and smoothness, while Gaussian curvature does.

EOT

MaxOT

Figure C.3: Qualitative visualization results of MaxOT and EOT. MaxOT algorithm and EOT algorithm generate
adversarial objects with the same degree of naturalness.

Table C.2: The effect of the penalty parameter λ2. When λ2 is large, the attack success rate decreases rapidly.
Our default value of λ2 = 0.2 give the best result for balancing the attack success rate and stealthiness.

Model λ2 = 0 λ2 = 0.02 λ2 = 0.2 λ2 = 1 λ2 = 2 λ2 = 4

PointNet 98.72% 98.67% 98.45% 94.22% 78.03% 69.45%
PointNet++ 99.69% 99.66% 99.58% 89.25% 79.82% 72.42%

DGCNN 85.13% 84.82% 84.16% 69.76% 60.48% 52.46%

C.4 Qualitative visualization results of MaxOT and EOT

We compare MaxOT to EOT in Sec. 4.3. The qualitative visualization results of MaxOT and EOT
in Fig. C.3 demonstrate the same degree of naturalness, while our proposed MaxOT algorithm
outperforms the EOT algorithm in terms of attack success rate and efficiency.

C.5 The effects of the penalty parameter λ2 and λ3

To investigate the effect of the penalty parameter λ2 and λ3, we adjust the value of λ2 and λ3 to
perform quantitative and qualitative experiments.

As shown in Table C.2 and Table C.3, when λ2 or λ3 is tuned high, the attack success rate decreases
rapidly. As shown in Fig. C.4, when λ2 is adjusted lower, 3D objects show local unevenness and
minor self-intersection. When λ3 is adjusted lower, 3D objects show large areas of self-intersection.
Our default value of λ2 = 0.2 and λ3 = 0.8 give the best result for balancing the attack success rate
and stealthiness.
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Table C.3: The effect of the penalty parameter λ3. When λ3 is large, the attack success rate decreases rapidly.
Our default value of λ3 = 0.8 give the best result for balancing the attack success rate and stealthiness.

Model λ3 = 0 λ3 = 0.08 λ3 = 0.8 λ3 = 4 λ3 = 8 λ3 = 16

PointNet 99.02% 98.86% 98.45% 89.29% 78.42% 63.01%
PointNet++ 99.73% 99.70% 99.58% 86.56% 80.47% 71.96%

DGCNN 87.28% 86.89% 84.16% 65.92% 56.92% 42.35%

�2 = 0.02 �2 = 0.2 �3 = 0 �3 = 0.08 �3 = 0.8�2 = 0 �2 = 0.02 �2 = 0.2 �3 = 0 �3 = 0.08 �3 = 0.8�2 = 0

Figure C.4: Qualitative visualization results of the effects of the penalty parameter λ2 and λ3. When λ2 is
adjusted lower, 3D objects show local unevenness and minor self-intersection. When λ3 is adjusted lower,
3D objects show large areas of self-intersection. Our default value of λ2 = 0.2 and λ3 = 0.8 guarantees
stealthiness.

Table C.4: The transfer-based attack success rates on three models by various attacks. Our ϵ-ISO attack has
much higher success rates than the baselines.

White-box Target Model Attacks Black-box Victim Model
PointNet PointNet++ DGCNN

KNN - 11.1% 10.7%
PointNet GeoA3 - 11.5% 2.5%

ϵ-ISO - 47.6% 35.8%
KNN 6.4% - 7.9%

PointNet++ GeoA3 9.4% - 19.7%
ϵ-ISO 32.9% - 51.2%
KNN 7.2% 32.2% -

DGCNN GeoA3 12.4% 24.2% -
ϵ-ISO 55.4% 62.7% -

C.6 Evaluation on the Transferability

We conduct experiments on the transfer-based attacks. We generate 3D adversarial examples against
one white-box model and evaluate the black-box attack success rates on the other black-box victim
models. As shown in Table C.4, our ϵ-ISO attack has much higher success rates than the baselines.
This is because our ϵ-ISO retains the geometric properties of the 3D objects well, without local
outliers or anomalous deformations. Thus the crafted adversarial examples more transferable across
different models.

D Proof of nu ∧ nv = Kru ∧ rv

The Weingarten mapW is defined by

W :
TPS → TPS
v = λru + µrv →W(v) = − (λnu + µnv)

(D.1)

Thus, W (ru) = −nu,W (rv) = −nv. The coefficient matrix of the Weingarten map W is[
a b
c d

]
, whereW (ru) = −nu = aru+ brv,W (rv) = −nv = cru+drv . Take the dot product
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of each of these equations with ru and rv . This gives

⟨−nu, ru⟩ = a ⟨ru, ru⟩+ b ⟨rv, ru⟩
⟨−nu, rv⟩ = a ⟨ru, rv⟩+ b ⟨rv, rv⟩
⟨−nv, ru⟩ = c ⟨ru, ru⟩+ d ⟨rv, ru⟩
⟨−nv, rv⟩ = c ⟨ru, rv⟩+ d ⟨rv, rv⟩

(D.2)

Since ru and rv are tangent vectors to the surface, ⟨ru,n⟩ = 0, ⟨rv,n⟩ = 0. Differentiating these
equations with respect to u and v gives

⟨ruu,n⟩ = ⟨ru,−nu⟩
⟨ruv,n⟩ = ⟨ru,−nv⟩ = ⟨rv,−nu⟩
⟨rvv,n⟩ = ⟨rv,−nv⟩

(D.3)

This gives
L = aE + bF, M = cE + dF,
M = aF + bG, N = cF + dG.

(D.4)

These four scalar equations are equivalent to the single matrix equation[
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]
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Thus we can derive
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= (ad− bc)ru ∧ rv

= det

([
L M
M N

] [
E F
F G

]−1
)
ru ∧ rv

=

det

([
L M
M N

])
det

([
E F
F G

]) ru ∧ rv

=
LN −M2

EG− F 2
ru ∧ rv

= Kru ∧ rv

(D.6)

References
[1] Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated second edition.

Courier Dover Publications, 2016.

[2] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[3] Wolfgang Kühnel. Differential geometry, volume 77. American Mathematical Soc., 2015.

[4] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for seeking the
extremum. Towards global optimization, 2(117-129):2, 1978.

7


