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Abstract

Variational autoencoders (VAEs) are one of the most powerful unsupervised learn-
ing frameworks in NLP for latent representation learning and latent-directed gener-
ation. The classic optimization goal of VAEs is to maximize the Evidence Lower
Bound (ELBo), which consists of a conditional likelihood for generation and a
negative Kullback-Leibler (KL) divergence for regularization. In practice, opti-
mizing ELBo often leads the posterior distribution of all samples converging to
the same degenerated local optimum, namely posterior collapse or KL vanishing.
There are effective ways proposed to prevent posterior collapse in VAEs, but we
observe that they in essence make trade-offs between posterior collapse and the
hole problem, i.e., the mismatch between the aggregated posterior distribution and
the prior distribution. To this end, we introduce new training objectives to tackle
both problems through a novel regularization based on the probabilistic density gap
between the aggregated posterior distribution and the prior distribution. Through
experiments on language modeling, latent space visualization, and interpolation,
we show that our proposed method can solve both problems effectively and thus
outperforms the existing methods in latent-directed generation. To the best of our
knowledge, we are the first to jointly solve the hole problem and posterior collapse.

1 Introduction

As one of the most powerful likelihood-based generative models, variational autoencoders (VAEs) [21,
32] are designed for probabilistic modeling directed by continuous latent variables, which are
successfully applied in many NLP tasks, e.g., dialogue generation [45, 14], machine translation [34,
12], recommendation [10], and data augmentation [43, 39]. One of the major advantages of VAEs is
the flexible latent representation space, which enables easy manipulation of high-level semantics on
corresponding representations, e.g., guided sentence generation with interpretable vector operators.

Despite the attractive theoretical strengths, VAEs are observed to suffer from a well-known problem
named posterior collapse or KL vanishing [21, 24], an optimum state of VAEs when the posterior
distribution contains little information about the corresponding datapoint, which is particularly
obvious when strong auto-regressive decoders are implemented [46, 4].

Another challenge for VAEs is the hole problem, the state when the aggregated (approximate) posterior
fails to fit the prior distribution, and thus the inference from the prior distribution becomes no longer
suitable to describe the global data distribution [33], which can lead to poor generation quality in
VAEs [1, 25].
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Figure 1: The visualization of the aggregated posterior distributions (the first line) and the posterior
centers distributions (the second line) for models on the Yahoo test-set. The vanilla VAEs suffer from
posterior collapse, i.e., the posterior centers collapse to the same position. Meanwhile, BN-VAEs [46],
β-VAEs [18] and FB-VAEs [20] can solve posterior collapse effectively at the cost of bringing the
hole problem, i.e., mismatch between the aggregated posterior and the prior. Our proposed DG-VAE
intends to solve both problems through a novel regularization based on the density gap. Illustrations
for more datasets, more models, and more dimensions, are shown in Appendix G.

In this work, we perform systematic experiments on VAEs for text generation to study posterior
collapse and the hole problem in existing methods. We demonstrate that VAEs with specific network
structures [9, 45] or modified training strategies [6, 13] have limited effect on solving posterior
collapse, while VAEs with hard restrictions [8, 41, 46] or weakened KL regularization [18, 20] on
the posterior distribution can solve posterior collapse effectively at the expense of the hole problem,
as illustrated in Figure 1.

On that basis, we hypothesize that these two problems stem from the conflict between the KL
regularization in ELBo and the function definition of the prior distribution. As such, we propose a
novel regularization to substitute the KL regularization in ELBo for VAEs, which is based on the
density gap between the aggregated posterior distribution and the prior distribution. We provide
theoretical proof that our method in essence maximizes the ELBo as well as the mutual information
between the input and the latent variable.

In terms of Gaussian distribution-based VAEs, we further propose the corresponding marginal
regularization on each dimension respectively, and we prove it in essence maximizes the ELBo as
well as the sum of mutual information between the input and the latent variable on all dimensions.

To validate our methods in practice, we take experiments on language modeling, latent-guided
generation and latent space visualization. We demonstrate that our methods form latent spaces
that are both active and consistent with the prior, and thus generate smoother sentences from latent
interpolation. The code and data are available at https://github.com/zhangjf-nlp/DG-VAEs.

2 Background and Related Work

2.1 VAEs and ELBo

VAEs are proposed to perform efficient inference and learning in directed probabilistic models [21],
where the random generation process consists of two steps: (1) sample a latent value z from the
prior pθ(z); (2) generate a datapoint x from the conditional distribution pθ(x|z). As the true
posterior pθ(z|x) is intractable, a recognition model qϕ(z|x) is introduced to approximate the true
posterior [21].

Specifically, VAEs represent an observation x as a latent distribution qϕ(z|x), from which latent
variables are sampled to direct the reconstruction of x. As the optimization goal of VAEs, the Evidence
Lower Bound (ELBo) is composed of a Kullback-Leibler (KL) divergence for regularization on the
posterior and a log likelihood for reconstruction conditioned on posterior. The ELBo in fact forms a
lower bound on the marginal likelihood given prior latent variables [21], as illustrated in Eq. 1.

LELBo(θ,ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥pθ(z))

≤ log pθ(x) = log

∫
pθ(x|z)pθ(z)dz

(1)
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2.2 Posterior Collapse

Intuitively, the KL divergence in ELBo (i.e., DKL(qϕ(z|x)∥pθ(z))) encourages the approximate
posterior distribution of every single datapoint to be close to the the prior [21]. This intends to ensure
the prior distribution can depict the latent variable distribution over the data distribution, but it can
also lead to posterior collapse when DKL(qϕ(z|x)∥pθ(z)) has much stronger force on qϕ(z|x) than
Eqϕ(z|x)[log pθ(x|z)] does, which leads that qϕ(z|x) ≈ pθ(z)∀x. In such condition, the sampled
latent variable, z ∼ qϕ(z|x), contains much more noise than useful information about x [27], and
thus the decoder pθ(x|z) becomes insensitive to z [46].

Early works to solve posterior collapse attribute it to the difficulty in optimizing ELBo, so their
methods mainly focus on the training strategies [6, 13, 23]. Some works put emphasis on the semantic
learning of the latent variable through specific model structures [9, 45, 29, 17]. Instead of a Gaussian
distribution, vMF-VAE [8, 41] adopts the von Mises-Fisher distribution for latent variables, which
restricts the posterior latent to a hyperspherical space and forms a constant KL divergence. BN-
VAE [46] restricts the posterior distribution through a batch normalization layer with a fixed scale γ,
so as to guarantee a positive lower bound of the KL divergence. β-VAE [18] directly changes the
weight (denoted as β) of the KL term inside ELBo, while free-bits [20] changes the KL term inside
ELBo to a hinge loss term.

In contrast, we hypothesize posterior collapse is due to the conflict between the KL regularization
in ELBo and the function definition of the prior distribution, and tackle it through replacing the KL
regularization in ELBo with a novel regularization on the aggregated posterior distribution.

2.3 Hole Problem

The aggregated (approximate) posterior qϕ(z) refers to the expectation of the approximate posterior
distribution on the data distribution, as defined in Eq. 2, where the distribution of observation x is
represented by the discrete distribution of datapoints in the dataset, i.e., X = {xn}Nn=1, qϕ(n) ≡ 1

N ,
in practice.

qϕ(z) = Ex(qϕ(z|x)) =
1

N

N∑
n=1

qϕ(z|xn) (2)

Formally, the hole problem refers to the phenomenon that the aggregated posterior distribution
qϕ(z) fails to fit the prior distribution pθ(z). Inferences located in the holes (i.e., areas with
mismatch between density in qϕ(z) and pθ(z)) are observed to generate images that are obscure and
corrupted [1], or sentences with incorrect syntax and abnormal semantics [25].

The hole problem of VAEs for image generation is observed in several studies, commonly ascribed
to the limited expressivity of the prior distribution and tackled by increasing the flexibility of the
prior distribution via hierarchical priors [22], auto-regressive models [16], a mixture of encoders [37],
normalizing flows [40], resampled priors [3], and energy-based models [1]. In contrast, we observe
that the vanilla VAEs (with standard prior distributions) for text generation have no hole problem,
but it arises when existing methods are applied to solve posterior collapse. Therefore, our work is
targeted at solving posterior collapse and avoiding the hole problem at the same time, for VAEs with
standard prior distributions.

2.4 Regularization on Aggregated Posterior

As the approximate posterior distribution is introduced to approximate the true posterior, i.e.,
qϕ(z|x) ≈ pθ(z|x), the aggregated posterior should be close to the prior as a result, i.e.,
qϕ(z) ≈ pθ(z). From this point of view, several works are proposed to replace KL regulariza-
tion (on the posterior distribution of each datapoint separately) in ELBo with a regularization on the
aggregated posterior distribution, which can be summarized as Eq. 3, where D is the divergence (or
discrepancy) between two distributions.

LD(θ,ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−D(qϕ(z)∥pθ(z)) (3)

Among them, Adversarial Auto-Encoder (AAE) [28] adopts the Generative Adversarial Network
(GAN) [15] framework to regularize the aggregated posterior distribution through Jensen–Shannon
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divergence DJS ; Wasserstein Auto-Encoder (WAE) [36, 2] regularizes the aggregated posterior
distribution through minimizing Maximum Mean Discrepancy (MMD); Implicit VAE with Mutual
Information regularization (iVAEMI ) regularizes the aggregated posterior through a dual form of KL
divergence DKL on the basis of Implicit VAE (iVAE) [11]. These methods have the same weakness
that their approximations of the divergence between two continuous distributions are depicted by
merely sampling sets from the distributions, which involves noise from random sampling and can
hardly be zero, even for the same distributions.

In contrast, our method approximates the divergence between two continuous distributions in the
perspective of their mismatch in PDFs, which we quantify through the density gap that can be zero if
and only if they are the same, which we describe in section 3.

We validate our method against the aforementioned methods through experiments on a synthetic
dataset, the details and results of which are presented in Appendix A.

3 Methodology

Density Gap-based Discrepancy One of the straight manifestations of holes in latent space is the
mismatch of probabilistic density between qϕ(z) and pθ(z). We quantify this mismatch at a specific
position z in the latent space through DG(θ,ϕ; z), which we refer to as Density Gap. Here we only
consider z ∈ {z|qϕ(z) > 0}.1 We assume qϕ(z) and pθ(z) are differentiable and pθ(z) > 0.

DG(θ,ϕ; z) = log
qϕ(z)

pθ(z)
= log

1
N

∑N
n=1 qϕ(z|xn)

pθ(z)
(4)

It can be inferred that the expectation of DG(θ,ϕ; z) on qϕ(z) equals to the KL divergence between
qϕ(z) and pθ(z), as illustrated in Eq. 5, which is a strict divergence, i.e., Ez∼qϕ(z)[DG(θ,ϕ; z)] =
0 iff qϕ(z) = pθ(z).

Ez∼qϕ(z)[DG(θ,ϕ; z)] = Ez∼qϕ(z)[log
qϕ(z)

pθ(z)
] = DKL(qϕ(z)∥pθ(z)) ≥ 0 (5)

So, we can approximate and optimize DKL(qϕ(z)∥pθ(z)) via Monte Carlo, as illustrated in Eq. 6,

where zs
idd∼ qϕ(z) denotes the sth random sample from the aggregated posterior distribution.

DKL(qϕ(z)∥pθ(z)) ≈
1

S

S∑
s=1

DG(θ,ϕ; zs) (6)

It should be noted that DKL(qϕ(z)∥pθ(z)) approximated by this is an overall divergence, as it consid-
ers the posterior distribution of all datapoints as a whole, instead of averaging DKL(qϕ(z|x)∥pθ(z))
across all datapoints as ELBo does.

On that basis, we can implement LD(θ,ϕ;x) with D = DKL, which is equivalent to replacing
the KL term in ELBo with DKL(qϕ(z)∥pθ(z)) approximated by Eq. 6. According to the decom-
position (illustrated in Eq. 7) of the KL term in ELBo given by Hoffman et al. [19], maximizing
LDKL

(θ,ϕ;xn) on the whole dataset, X = {xn}Nn=1, qϕ(n) ≡ 1
N , is equivalent to maximizing

ELBo as well as Iqϕ(n,z)[n, z],2 the mutual information of z and n in their joint distribution qϕ(n, z),
as illustrated in Eq. 8.

1

N

N∑
n=1

DKL(qϕ(z|xn)∥pθ(z)) = DKL(qϕ(z)∥pθ(z)) + Iqϕ(n,z)[n, z]

where Iqϕ(n,z)[n, z] = Eqϕ(n,z)[log
qϕ(n, z)

qϕ(n)qϕ(z)
]

where qϕ(n, z) = qϕ(n)qϕ(z|n) =
1

N
qϕ(z|xn)

(7)

1Although we can have qϕ(z) = 0, z ∈ RDim when the latent variable follows a von Mises-Fisher (vMF)
distribution, we do not need to consider such points in regularization.

2Posterior collapse (or KL vanishing) can be solved effectively by maximizing this mutual information term
as it is a lower bound of the vanished KL divergence term in ELBo according to Eq. 7.
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1

N

N∑
n=1

[LDKL
(θ,ϕ;xn)] =

1

N

N∑
n=1

[Eqϕ(z|xn)[log pθ(xn|z)]]−DKL(qϕ(z)∥pθ(z))

=
1

N

N∑
n=1

[LELBo(θ,ϕ;xn)] + Iqϕ(n,z)[n, z]

(8)

Optimization on Mini-Batch Theoretically attractive as it is, maximizing LDKL
(θ,ϕ;xn) approx-

imated by DG(θ,ϕ; zs) is undesirable for training VAEs on large datasets, because the probabilistic
density of qϕ(z) at z needs computation across the whole dataset and is changing in every training
step. In practice, training deep networks such as VAEs commonly adopts mini-batch gradient descent,
where only a small subset of the dataset is used for calculating gradients and updating parameters in
each iteration step.

So, a practicable way is to aggregate the posterior of datapoints inside a mini-batch B =

{xn}|B|
n=1, qϕ(n) ≡ 1

|B| , as stated in Eq. 9, where zn,m is the mth sample from the posterior of
datapoint xn. Here, stratified sampling is used to ensure a steady Monte Carlo approximation,3 and
the reparameterization trick [21] is applied to ensure a differentiable output.

DG(θ,ϕ, B; z) = log
qϕ,B(z)

pθ(z)
= log

1
|B|

∑|B|
n=1 qϕ(z|xn)

pθ(z)

DKL(qϕ,B(z)∥pθ(z)) ≈
1

|B|

|B|∑
n=1

1

M

M∑
m=1

DG(θ,ϕ, B; zn,m),where zn,m
idd∼ qϕ(z|xn)

(9)

Through this approximation, we can implement LDKL
(θ,ϕ, B;xn) that regularizes qϕ,B(z) towards

pθ(z) for a mini-batch B, as stated in Eq. 10.

1

|B|

|B|∑
n=1

[LDKL
(θ,ϕ, B;xn)] =

1

|B|

|B|∑
n=1

[Eqϕ(z|xn)[log pθ(xn|z)]]−DKL(qϕ,B(z)∥pθ(z))

=
1

|B|

|B|∑
n=1

[LELBo(θ,ϕ;xn)] + Iqϕ(n,z)[n, z]

(10)

It should be noticed that the mutual information term Iqϕ(n,z)[n, z] is different in Eq. 8 (on the whole
dataset) and Eq. 10 (on a mini-batch), because the range of discrete variable n is from 1 to N in
Eq. 8, but 1 to |B| in Eq. 10. Consequently, Iqϕ(n,z)[n, z] has an upper bound of H(n) = logN in
Eq. 8, but H(n) = log |B| in Eq. 10. In other words, maximizing Iqϕ(n,z)[n, z] in Eq. 8 intends to
distinguish z of xn from that of N − 1 other datapoints, while it is limited to |B| − 1 other datapoints
in Eq. 10.

Marginal Regularization for More Mutual Information As described above, approximating
and optimizing DKL(qϕ,B(z)∥pθ(z)) is practicable but has limited effect. Empirically, Gaussian
distribution-based VAEs trained by Eq. 10 still have limited active units, which means the encoded
latent variable z still collapses to the prior on most dimensions, where it provides little information.

To activate z on all dimensions, we propose to regularize qϕ,B(z) towards pθ(z) on each dimension
respectively, i.e., regularize the marginal distribution of qϕ,B(z) on each dimension, as illustrated in
Eq. 11, where zi ∈ R is the ith component of z ∈ RDim and the corresponding probability density
functions are of the marginal distributions on the ith dimension; and zn,m,i is the ith component of

3In other words, we sample S = |B| × M samples from qϕ,B(z) through sampling M samples from
qϕ(z|xn) for each datapoint xn ∈ B.
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the mth sample from the posterior of datapoint xn.

DGmrg(θ,ϕ, B; zi) = log
qϕ,B(zi)

pθ(zi)
= log

1
|B|

∑|B|
n=1 qϕ(zi|xn)

pθ(zi)

DKL,mrg(qϕ,B(z)∥pθ(z)) =
Dim∑
i=1

DKL(qϕ,B(zi)∥pθ(zi))

≈
Dim∑
i=1

1

|B|

|B|∑
n=1

1

M

M∑
m=1

DGmrg(θ,ϕ, B; zn,m,i)

(11)

In Gaussian distribution-based VAEs, the marginal distributions of z on different dimensions are
independent, i.e., qϕ(z|xn) =

∏Dim
i qϕ(zi|xn) and pθ(z) =

∏Dim
i pθ(zi), so their KL divergence

can be decomposed as DKL(qϕ(z|xn)∥pθ(z)) =
∑Dim

i DKL(qϕ(zi|xn)∥pθ(zi)). Thus, we can
infer the decomposition of DKL,mrg(qϕ,B(z)∥pθ(z)) through Eq. 12.

DKL,mrg(qϕ,B(z)∥pθ(z)) =
Dim∑
i=1

DKL(qϕ,B(zi)∥pθ(zi))

=

Dim∑
i=1

[
1

|B|

|B|∑
n

[DKL(qϕ(zi|xn)∥pθ(zi))]− Iqϕ(n,zi)[n, zi]]

=
1

|B|

|B|∑
n

[DKL(qϕ(z|xn)∥pθ(z))]−
Dim∑
i=1

[Iqϕ(n,zi)[n, zi]]

(12)

So, maximizing LDKL,mrg
(θ,ϕ, B;xn) derived from Eq. 11 is equivalent to maximizing ELBo as

well as the mutual information of n and zi for each dimension i respectively, as stated in Eq. 13. In
other words, it intends to distinguish zi of xn from that of |B|−1 other datapoints for each dimension
i respectively. We refer to our models based on this Density Gap-based regularization as DG-VAEs.

1

|B|

|B|∑
n=1

[LDKL,mrg
(θ,ϕ, B;xn)] =

1

|B|

|B|∑
n=1

[Eqϕ(z|xn)[log pθ(xn|z)]]−DKL,mrg(qϕ,B(z)∥pθ(z))

=
1

|B|

|B|∑
n=1

[LELBo(θ,ϕ;xn)] +

Dim∑
i=1

[Iqϕ(n,zi)[n, zi]]

(13)

Aggregation Size for Ablation As discussed above, the size of mini-batch |B| sets an upper
bound of the mutual information term Iqϕ(n,z)[n, z] (or Iqϕ(n,zi)[n, zi]). To validate this impact,
we further extend DG-VAEs through dividing the mini-batch into non-overlapping subsets B =⋃C

i=1 bi, s.t. bj ∩bi = ∅ iff i ̸= j, calculating and optimizing the KL divergence over each subset, i.e.,
1
C

∑C
i=1

1
|bi|

∑|bi|
j=1 [LDKL,mrg

(θ,ϕ, bi;xn)], where C denotes the number of subsets and |bi| = |B|
C

is the size of those subsets, which we refer to as the aggregation size and denote as |b| for simplification.
It can be inferred that the DG-VAE with |b| = 1 is equivalent to the vanilla VAE trained by ELBo,
except that it approximates the KL term through Monte Carlo instead of integration.

Extension to von Mises-Fisher Distribution-based VAEs Besides the commonly used Gaussian
distribution-based VAEs, we also consider von Mises-Fisher (vMF) distribution-based VAEs. As
the decomposition qϕ(z) =

∏Dim
i qϕ(zi) is not established for latent variables following vMF

distributions (i.e., z ∼ vMF (µ, κ)), marginal regularization for vMF-VAEs may be not interpretable,
so we only implement Eq. 10 in vMF-VAEs. We refer to those extensions as DG-vMF-VAEs.
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Table 1: Statistics of sentences in the datasets

Dataset Train Valid Test Vocab size Length (avg ± std)

Yelp 100,000 10,000 10,000 19997 98.01 ± 48.86
Yahoo 100,000 10,000 10,000 20001 80.76 ± 46.21
Short-Yelp 100,000 10,000 10,000 8411 10.96 ± 3.60
SNLI 100,000 10,000 10,000 9990 11.73 ± 4.33

4 Experiments

4.1 Experimental Setup

Datasets We consider four public available datasets commonly used for VAE-based language
modeling tasks in our experiments: Yelp [42], Yahoo [42, 44], a downsampled version of Yelp [35]
(we denote this as Short-Yelp), and a downsampled version of SNLI [5, 23]. The statistics of these
datasets are illustrated in Table 1. It can be viewed that Yelp and Yahoo contain long sentences while
Short-Yelp and SNLI contain short sentences.

Baselines We consider a wide range of VAEs for solving posterior collapse in text generation, where
the hyperparameters are set according to Zhu et al. [46]:

• VAEs with modified training strategies (i.e., KL annealing): VAE with linear KL annealing
in the first 10 epochs (default) [6]; VAE with linear KL annealing for 10 epochs at the start
of every 20 epochs (cyclic-VAE) [13];

• VAEs with specific model structures: VAE with additional Bag-of-Words loss (bow-
VAE) [45], and VAE with skip connection from the latent variable z to the vocabulary
classifier for generation (skip-VAE) [9];

• VAEs with hard restrictions on the posterior distribution: δ-VAE with the committed rate
δ = 0.15 [31]; BN-VAEs with the scale of BN layer γ ∈ {0.6, 0.7, 0.9, 1.2, 1.5, 1.8} [46];
vMF-VAEs with the distribution’s concentration κ ∈ {13, 25, 50, 100, 200} [8, 41];

• VAEs with weakened KL regularization: FB-VAEs (free-bits) with the target KL λKL ∈
{4, 9, 16, 25, 36, 49} [20]; β-VAEs with the weight of the KL term in ELBo β ∈
{0.0, 0.1, 0.2, 0.4, 0.8} [18].

Configurations We completely follow Zhu et al. [46] in the models’ backbone structures, data
pre-processing, and training procedure, which we describe in detail in Appendix B.

4.2 Language Modeling

We evaluate the performance of our methods and the baselines on language modeling, where the
following metrics are reported: the prior log likelihood priorLL(θ) and the posterior log likelihood
postLL(θ,ϕ) for generation quality; the KL term in ELBo KL(ϕ), the mutual information MI(ϕ)
of z and n and the number of active units AU(ϕ) [7] for posterior collapse; and the number of
consistent units CU(ϕ) (we propose) for the hole problem. The corresponding expressions and
explanations are presented in Appendix C.

We illustrate part of the results on Yahoo in Table 2 and all results on all datasets in Appendix D. It
can be observed that: (1) models with modified training strategies or specific model structures can
alleviate the problem of posterior collapse but has limited effect according to MI(ϕ) and AU(ϕ);
(2) models with hard restrictions or weakened KL regularization on the posterior can solve posterior
collapse better through harder restrictions or further weakening according to the increase of KL(ϕ),
MI(ϕ), and AU(ϕ), but the decrease of CU(ϕ) indicates that their posterior latent spaces tend to
be increasingly inconsistent with that of the prior; (3) in contrast, our proposed DG-VAE has similar
performance to the vanilla VAE when |b| = 1, and with the increase of |b|, it can solve posterior
collapse effectively and avoid the hole problem at the same time.4

4There’s a little difference between DG-VAE (|b| = 32) and DG-VAE (default): DG-VAE (|b| = 32) ignores
data batch B if |B| < 32 while DG-VAE (default) accepts it through adapting to its batch size.
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Table 2: Results of Language Modeling on Yahoo dataset. We bold up MI(ϕ) ≥ 9.0, AU(ϕ) ≥ 30,
CU(ϕ) ≥ 30, the highest priorLL(θ) and postLL(θ,ϕ) for the same methods.

Models priorLL(θ) postLL(θ,ϕ) KL(ϕ) MI(ϕ) AU(ϕ) CU(ϕ)

VAE (default) -330.7 -330.7 0.0 0.0 0 323232
cyclic-VAE -329.8 -328.9 1.1 1.0 2 313131
bow-VAE -330.5 -330.5 0.0 0.0 0 323232
skip-VAE -330.1 -325.2 5.0 4.3 8 313131
δ-VAE(0.15) -330.5 -330.6 4.8 0.0 0 0

BN-VAE(0.6) -327.6-327.6-327.6 -321.1 6.6 5.9 323232 323232
BN-VAE(1.2) -330.9 -310.1 26.2 9.29.29.2 323232 0
BN-VAE(1.8) -343.5 -308.6-308.6-308.6 51.3 9.29.29.2 323232 0

FB-VAE(4) -329.8 -328.4 3.9 1.8 323232 323232
FB-VAE(16) -325.7-325.7-325.7 -320.8 16.1 8.5 323232 8
FB-VAE(49) -344.6 -296.1-296.1-296.1 50.0 9.29.29.2 323232 0

β-VAE(0.4) -330.8-330.8-330.8 -324.8 7.0 6.7 3 313131
β-VAE(0.2) -338.6 -310.3 30.1 9.29.29.2 22 25
β-VAE(0.1) -369.9 -289.6-289.6-289.6 83.7 9.29.29.2 323232 0

DG-VAE (|b| = 1) -330.7 -330.7 0.0 0.0 0 323232
DG-VAE (|b| = 4) -330.4-330.4-330.4 -318.3 14.3 9.19.19.1 11 323232
DG-VAE (|b| = 32) -355.4 -294.1 65.2 9.19.19.1 323232 323232
DG-VAE (default) -358.0 -290.8-290.8-290.8 70.8 9.19.19.1 323232 323232

It can also be viewed that with the increase of MI(ϕ) or KL(ϕ), postLL(θ,ϕ) tends to increase,
while priorLL(θ) tends to decrease, as the decoder θ becomes more dependent on the encoder ϕ. We
further plot the curves of priorLL(θ) and postLL(θ,ϕ) for models with different hyperparameters
in Figure 2, where we can observe that DG-VAEs make better trade-offs than BN-VAEs and β-VAEs
do on short datasets and perform competitively to BN-VAEs and FB-VAEs on long datasets.

Figure 2: The curves of priorLL(θ) and postLL(θ,ϕ) in Gaussian distribution-based VAEs.

We also compare the performance of DG-vMF-VAEs with vMF-VAEs under different settings of
κ. As they have the same KL(ϕ), while AU(ϕ) and CU(ϕ) are inappropriate to report for vMF
distributions, we only plot their curves of priorLL(θ) and postLL(θ,ϕ) in Figure 3. It can be
observed that DG-vMF-VAEs outperform vMF-VAEs in most cases.

Figure 3: The curves of priorLL(θ) and postLL(θ,ϕ) in vMF distribution-based VAEs.
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4.3 Visualization of the Posterior

To further investigate the posterior distribution in latent space of those models, we visualize the aggre-
gated posterior distributions and the posterior centers distributions on the 2 most active dimensions,
i.e., the two dimensions with the highest V arx∼X[Eqϕ(z|x)[z]], as depicted in Figure 4.

Figure 4: The visualization of the aggregated posterior distributions (red-in-black) and the posterior
centers distributions (blue-in-white) for BN-VAEs, FB-VAEs, β-VAEs, and DG-VAEs on the Yahoo
test-set. Illustrations for more datasets, more models, and more dimensions, are shown in Appendix
G.

Here, we can observe that BN-VAEs, FB-VAEs and β-VAEs can better solve posterior collapse
with harder restrictions or further weakening, but meanwhile they are faced with different kinds
of mismatch between the aggregated posterior distribution and the prior distribution, i.e., the hole
problem. In contrast, with the increase of aggregation size |b|, DG-VAE can better solve posterior
collapse and avoid the hole problem in the meantime.

4.4 Interpolation Study

One of the main advantages of VAEs over normal language models (e.g., GPT-2 [30]) is that VAEs
embed datapoints into a continuous latent space and thus enable latent-guided generation. We evaluate
this ability through interpolation, where the models encode two sentences xa and xb as their posterior
centers, i.e., za = Eqϕ(z|xa)[z] and zb = Eqϕ(z|xb)[z], and decode the variables between them, i.e.,
zλ = za · (1 − λ) + zb · λ, λ ∈ {0.0, 0.1, . . . , 1.0}.5 The interpolated sentences are wished to be
semantically smooth and meaningful, which we evaluate through the average Rouge-L F1-score [26],
as stated in Eq. 14, where Flcs denotes the F1-score of Longest Common Subsequence (LCS). We
plot the curves of Rouge-L F1-score and λ for models on Yahoo dataset in Figure 5 and those curves
on other datasets in Appendix E.

RougeLF1(xa,xb,xλ) =
1

2
(Flcs(xa,xλ) + Flcs(xb,xλ)) (14)

Figure 5: The curves of Rouge-L F1-score and λ for models’ interpolation performance on Yahoo.

As shown in Figure 5, the average F1-score of LCS tends to be lower in the middle than at the ends,
which indicates that generated sentences tend to not be smooth in the middle, which corresponds
to the phenomenon of generation near to holes observed in previous work [25]6. The vanilla VAE
performs the worst as it suffers from posterior collapse, and only generates the same plain sentence;

5We only consider greedy search for generation in this work.
6For further illustration on this phenomenon, we provide case study in Appendix F.
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meanwhile, DG-VAE outperforms BN-VAEs, FB-VAEs and β-VAEs in the quality of interpolation
on the Yahoo dataset as it can solve posterior collapse and avoid the hole problem at the same time.

In summary, the existing methods for solving posterior collapse in VAEs either have limited effect
or can effectively solve posterior collapse at the cost of bringing the hole problem. In contrast,
our proposed DG-VAE can effectively solve posterior collapse and avoid the hole problem at the
same time, which is demonstrated by the posterior centers spread in latent space and the aggregated
posterior distribution consistent with the prior distribution. Furthermore, our proposed DG-VAE
outperforms the existing methods in the quality of latent-guided generation due to these improvements
in latent space.

5 Discussion

Conclusion In this work, we perform systematic experiments to demonstrate posterior collapse
and the hole problem in existing continuous VAEs for text generation. To solve both problems at the
same time, we propose a density gap-based regularization on the aggregated posterior distribution
to replace the KL regularization in ELBo, and prove it in essence maximizes the ELBo as well
as the mutual information between the latent and the input. Experiments on real-world datasets
prove the effectiveness of our method in solving both problems and its improvement in latent-guided
generation.

Limitation & Future work Both the theory and the ablation study show that the effectiveness of
our proposed method depends on the aggregation size |b|, which is still limited by the batch size
during training. Therefore a promising future direction is to find a solution to break this limit, such
like the memory bank mechanism in contrastive learning [38].
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