
A Preliminaries

A.1 Notations

We define a few notations here to be used throughout the paper.

• Private data are denoted by X = (X1, . . . , Xn), with each Xj 2 Rd. Public data is denoted
by eX = ( eX1, . . . ,

eXm), with each eXi 2 Rd.

• We denote a ball of radius r > 0 centred around a point c 2 Rd by Br(c).
• For a set S, we denote its power set by P(S).

A.2 Useful Concentration Inequalities

We first state a multiplicative Chernoff bound.
Lemma A.1 (Multiplicative Chernoff). Let X1, . . . , Xm be independent Bernoulli random variables,
and let X be their sum. If p = E (Xi), then for 0  �1  1 and �2 � 0,

P (X  (1� �1)pm)  e
� �21pm

2

and

P (X  (1 + �2)pm)  e
� �22pm

2+�2 .

Next, we state Bernstein’s inequality.
Lemma A.2 (Bernstein’s Inequality). Let X1, . . . , Xm be independent Bernoulli random variables.
Let p = E (Xi). Then for m � 5p
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ln(2/�) and "  p/4,
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Now, we state the Hanson-Wright inequality about quadratic forms.
Lemma A.3 (Hanson-Wright inequality [HW71]). Let X ⇠ N (0, Id⇥d) and let A be a d⇥ d matrix.
Then for all t > 0, the following two bounds hold:

P
⇣
X

T
AX � tr(A) � 2kAkF

p
t+ 2kAk2t

⌘
 exp(�t);

P
⇣
X

T
AX � tr(A)  �2kAkF

p
t

⌘
 exp(�t).

We mention an inequality that bounds the tails of a one-dimensional Gaussian N (µ,�
2
).

Lemma A.4 (1-D Gaussian Concentration). Let Z ⇠ N (µ,�
2
). Then,

P (|Z � µ|  t�)  2e
� t2

2 .

Next, we state a concentration inequality for 0-mean Laplace random variables.
Lemma A.5 (Laplace Concentration). Let Z ⇠ Lap(t). Then P (|Z| > t · ln(1/�))  �.

We now mention an anti-concentration inequality for weighted �
2 distributions from [ZZ18]. We

adjust the constants appropriately in the following theorem as per the specifications in the aforemen-
tioned article.
Lemma A.6 (Theorem 6 from [ZZ18]). Let Z ⇠ N (0, 1), a > 0, and Y = aZ. Then for ⌧ � a, we
have the following.

P (Y � a+ ⌧) � 0.06e
� 3⌧

2a

The following are standard concentration results for the empirical mean and covariance of a set of
Gaussian vectors (see, e.g., [DKKLMS16]).
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Lemma A.7. Let X1, . . . , Xn be i.i.d. samples from N (0, Id⇥d). Then we have that
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where c1, c2, c3, c4 > 0 are some absolute constants.

A.3 Gaussian Mixtures

Here, we provide preliminaries for the problem of parameter estimation of mixtures of Gaussians. Let
Sym+

d
denote set of all d⇥ d, symmetric, and positive semidefinite matrices. Let G(d) = {N (µ,⌃) :

µ 2 Rd
,⌃ 2 Sym+

d
} be the family of d-dimensional Gaussians. We can now define the class G(d, k)

of mixtures of Gaussians as follows.
Definition A.8 (Gaussian Mixtures). The class of Gaussian k-mixtures in Rd is

G(d, k) :=
(

kX

i=1

wiGi : G1, . . . , Gk 2 G(d), w1, . . . , wk > 0,

kX

i=1

wi = 1

)
.

We can specify a Gaussian mixture by a set of k tuples as: {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)}, where
each tuple represents the mean, covariance matrix, and mixing weight of one of its components.
Additionally, for each i, we refer to �

2

i
= k⌃ik2 as the maximum directional variance of component

i.

We assume that the mixing weight of each component is lower bounded by wmin. We impose a
separation condition for mixtures of Gaussians to be able to learn them.
Definition A.9 (Separated Mixtures). For s > 0, a Gaussian mixtures D 2 G(d, k) is s-separated if

81  i < j  k, kµi � µjk2 �
✓
s+

10
p
wi

+
10
p
wj

◆
·max{�i,�j}.

We denote the family of separated Gaussian mixtures by G(d, k, s).

Now, we define what it means to “learn” a Gaussian mixture in our setting.
Definition A.10 ((↵,�)-Learning). Let D 2 G(d, k) be parameterized by
{(µ1,⌃1, w1), . . . , (µk,⌃k, wk)}. We say that an algorithm (↵,�)-learns D, if on being
given sample-access to D, it outputs with probablity at least 1� � a distribution bD 2 G(d, k) param-
eterised by {(bµ1,

b⌃1, bw1), . . . , (bµk,
b⌃k, bwk)}, such that there exists a permutation ⇡ : [k]! [k], for

which the following conditions hold.

1. For all 1  i  k, dTV(N (µi,⌃i),N (bµ⇡(i),
b⌃⇡(i)))  O(↵).

2. For all 1  i  k,
��wi � bw⇡(i)

��  O
�
↵

k

�
.

Note that the above two conditions together imply that dTV(D, bD)  ↵.

Finally, we define the “median radius” of a Gaussian.
Definition A.11. Let G := N (µ,⌃) be a d-dimensional Gaussian, and R > 0. Then R is called the
median radius of G, if the G-measure of BR (µ) is exactly 1/2.

The following is an anti-concentration lemma from [AK01] about Gaussians. It lower bounds the
distance of a sample from a Gaussian from any arbitrary point in space.
Lemma A.12 (Lemma 6 from [AK01]). Let G := N (µ,⌃) be a Gaussian in Rd with median radius
R, and let �2

= k⌃k. Suppose z 2 Rd is an arbitrary point, and x ⇠ G. Then for all t � 1, with
probability at least 1� 2e

�t,

kx� zk2 � (max{R� t�, 0})2 + kz � µk2 � 2

p
2t�kz � µk.
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A.4 Robustness of PCA to Noise

Principal Component Analysis (PCA) is one of the main tools in learning mixtures of Gaussians. It
is common to project the entire data onto the top-k principal directions (a subspace, which would
approximately contain all the means of the k components). Ideally, PCA should eliminate directions
that are not so useful, whilst maintaining the distances among the Gaussian components. This would
allow us to cluster the data in low dimensions easily based on the most useful directions, while not
having to worry about the rest of the directions that do not give us useful information for this process.
For the purpose of doing PCA under differential privacy, we would like to have results for PCA when
there is noise involved in the process of obtaining DP guarantees.

Let X 2 Rn⇥d be the dataset obtained from the mixture of Gaussians in question. Suppose A 2 Rn⇥d,
such that for each i, Ai is the true mean of the Gaussian from which Xi has been sampled. Let nj

denote the number of points in X belonging to component j. The following lemma gives guarantees
for PCA when we have a noisy approximation to the top-k subspace of the dataset.
Lemma A.13 (Lemma 3.1 from [KSSU19]). Let X 2 Rn⇥d be a collection of n datapoints
from k clusters each centered at µ1, µ2, ..., µk. Let A 2 Rn⇥d be the corresponding matrix of
(unknown) centers (for each j we place the center µc(j) with c(j) denoting the clustering point
Xj belongs to). Let ⇧Vk 2 Rd⇥d denote the k-PCA projection of X’s rows. Let ⇧U 2 Rd⇥d

be a projection such that for some bound B � 0 it holds that kXT
X � (X⇧U )

T
(X⇧U )k2 

kXT
X � (X⇧Vk)

T
(X⇧Vk)k2 +B. Denote µ̄i as the empirical mean of all points in cluster i and

denote µ̂i as the projection of the empirical mean µ̂i = ⇧U µ̄i. Then

kµ̄i � µ̂ik2  1p
ni
kX �Ak2 +

q
B

ni

The next lemma bounds the singular values of a matrix X that is sampled from a mixture of Gaussians,
but centred around A.
Lemma A.14 (Lemma 3.2 from [KSSU19]). Let X 2 Rn⇥d be a sample from D 2 G(d, k), and let
A 2 Rn⇥d be the matrix where each row i is the (unknown) mean of the Gaussian from which Xi

was sampled. For each i, let �2

i
denote the maximum directional variance of component i, and wi

denote its mixing weight. Define �
2
= max

i

{�2

i
} and wmin = min

i

{wi}. If

n � 1

wmin

✓
⇠1d+ ⇠2 log
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where ⇠1, ⇠2 are universal constants, then with probability at least 1� �,

p
nwmin�

4
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i
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A.5 Privacy Preliminaries

We start with different definitions of differential privacy.
Definition A.15 (Differential Privacy (DP) [DMNS06]). A randomized algorithm M : Xn ! Y
satisfies (", �)-differential privacy ((", �)-DP) if for every pair of neighboring datasets X,X

0 2 Xn

(i.e., datasets that differ in exactly one entry),

8Y ✓ Y P (M(X) 2 Y )  e
" · P (M(X

0
) 2 Y ) + �.

When � = 0, we say that M satisfies "-differential privacy or pure differential privacy.
Definition A.16 (Concentrated Differential Privacy (zCDP) [BS16]). A randomized algorithm
M : Xn ! Y satisfies ⇢-zCDP if for every pair of neighboring datasets X,X

0 2 Xn,

8↵ 2 (1,1) D↵ (M(X)||M(X
0
))  ⇢↵,

where D↵ (M(X)||M(X
0
)) is the ↵-Rényi divergence between M(X) and M(X

0
).3

3Given two probability distributions P,Q over ⌦, D↵(PkQ) = 1
↵�1 log

�P
x P (x)↵Q(x)1�↵

�
.
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Note that (", 0)-DP implies "
2

2
-zCDP, which implies ("

p
log(1/�), �)-DP for every � > 0 [BS16].

Now, we define the notion of “public-private” algorithms that take public data samples and private
data samples as input, and guarantee differential privacy with respect to the private data.
Definition A.17 (Public-Private Algorithms). Let eX be the domain of public data and X be the
domain of private data. A randomized algorithm M : Xn ⇥ eXm ! Y taking in public and private
data satisfies (", �)-DP (or ⇢-zCDP) with respect to the private data if for any public dataset eX 2 eXm,
the resulting randomized algorithm M( eX, ·) : Xn ! Y is (", �)-DP (or ⇢-zCDP, respectively).

These definitions of DP are closed under post-processing, and can be composed with graceful
degradation of the privacy parameters.
Lemma A.18 (Post-Processing [DMNS06; BS16]). If M : Xn ! Y is (", �)-DP, and P : Y ! Z is
any randomized function, then the algorithm P �M is (", �)-DP. Similarly if M is ⇢-zCDP then the
algorithm P �M is ⇢-zCDP.
Lemma A.19 (Composition of DP [DMNS06; DRV10; BS16]). If M is an adaptive composition of
differentially private algorithms M1, . . . ,MT , then the following all hold:

1. If M1, . . . ,MT are ("1, �1), . . . , ("T , �T )-DP then M is (", �)-DP for

" =

X

t

"t and � =

X

t

�t.

2. If M1, . . . ,MT are ("0, �1), . . . , ("0, �T )-DP for some "0  1, then for every �0 > 0, M is
(", �)-DP for

" = "0

p
6T log(1/�0) and � = �0 +

X

t

�t

3. If M1, . . . ,MT are ⇢1, . . . , ⇢T -zCDP then M is ⇢-zCDP for ⇢ =
P

t
⇢t.

A.5.1 Known Differentially Private Mechanisms

We state standard results on achieving differential privacy via noise addition proportional to the
sensitivity [DMNS06].
Definition A.20 (Sensitivity). Let f : Xn ! Rd be a function, its `1-sensitivity and `2-sensitivity are

�f,1 = max
X⇠X02Xn

kf(X)� f(X
0
)k1 and �f,2 = max

X⇠X02Xn
kf(X)� f(X

0
)k2,

respectively. Here, X ⇠ X
0 denotes that X and X

0 are neighboring datasets (i.e., those that differ in
exactly one entry).

For functions with bounded `1-sensitivity, we can achieve "-DP by adding noise from a Laplace
distribution proportional to `1-sensitivity. For functions taking values in Rd for large d it is more
useful to add noise from a Gaussian distribution proportional to the `2-sensitivity, to get (", �)-DP
and ⇢-zCDP.
Lemma A.21 (Laplace Mechanism). Let f : Xn ! Rd be a function with `1-sensitivity �f,1. Then
the Laplace mechanism

M(X) = f(X) + Lap

✓
�f,1

"

◆⌦d

satisfies "-DP.
Lemma A.22 (Gaussian Mechanism). Let f : Xn ! Rd be a function with `2-sensitivity �f,2. Then
the Gaussian mechanism

M(X) = f(X) +N

0

@0,

 
�f,2

p
2 ln(2/�)

"

!2

· Id⇥d

1

A

satisfies (", �)-DP. Similarly, the Gaussian mechanism

Mf (X) = f(X) +N
 
0,

✓
�f,2p
2⇢

◆2

· Id⇥d

!

satisfies ⇢-zCDP.
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Next, we mention a very basic pure DP algorithm that computes the cardinality of a dataset as a
simple application of Lemma A.21.
Lemma A.23 (PCount). Let X = (X1, . . . , Xn) be a set of points from some data universe �. Then
for all " > 0 and 0 < � < 1, there exists an "-DP mechanism (PCount : �⇤ ! R) that on input X
outputs n0, such that with probability at least 1� �, |n� n

0|  ln(1/�)

"
.

Proof. The algorithm is just the following. Step 1: sample � ⇠ Lap
�
1

"

�
. Step 2: output |X|+ �.

Since the sensitivity of |X| is 1, by Lemma A.21, PCount is "-DP.

Next, by the guarantees of Lemma A.5, |�|  ln(1/�)

"
with probability at least 1� �.

Now, we mention three results from prior work for learning high-dimensional Gaussians under
approximate DP, zCDP, and pure DP constraints, respectively.
Lemma A.24 (DPGaussianEstimator). Let ⌃ 2 Rd⇥d be symmetric and positive-definite, and
µ 2 Rd. For all 0 < ↵,� < 1, if given nGE independent samples from N (µ,⌃), then the following
algorithms output a symmetric and positive-definite b⌃ 2 Rd⇥d, and a vector bµ 2 Rd, such that with
probability at least 1� �, dTV(N (µ,⌃),N (bµ, b⌃))  ↵.

1. For the (", �)-DP Gaussian learner from [AL21],

nGE = O

0

B@
d
2
+ log

⇣
1

�

⌘

↵2
+

⇣
d
2

q
log

�
1

�

�
+ d log

�
1

�

�⌘
· polylog

⇣
d,

1

↵
,
1

�
,
1

"
, log

�
1

�

�⌘

↵"

1

CA .

2. For the ⇢-zCDP Gaussian learner from [KLSU19], for I � ⌃ � KI and kµk  R (where
K � 1 and R > 0),

nGE =O

0

@
d
2
+ log

⇣
1

�

⌘

↵2
+

d
2 · polylog

⇣
d

↵�⇢

⌘
+ d log

⇣
d log(R)

↵�⇢

⌘

↵
p
⇢

+

d
1.5
p
log(K) · polylog

⇣
d log(K)

⇢�

⌘
+

r
d log

⇣
Rd

�

⌘

p
⇢

1

CCA .

3. For the (computationally inefficient) "-DP Gaussian learner from [BKSW19], for I � ⌃ �
KI and kµk  R (where K � 1 and R > 0),

nGE = O

0

@
d
2
+ log

⇣
1

�

⌘

↵2
+

d log
�
dR

↵

�
+ d

2
log

�
dK

↵

�
+ log

⇣
1

�

⌘

↵"

1

A .

B Estimating Gaussians

Here we present missing details from Section 2.

B.1 Same Public and Private Distributions

B.1.1 Unknown Mean, Identity Covariance with 1 Public Sample

In this setting, we are given a single public sample eX , along with private samples X1, . . . , Xn,
where the eX and the Xj are drawn from a d-dimensional Gaussian N (µ, I) independently. Recall
our observation from Section 2: a single public sample is sufficient to get a “good enough” coarse
estimate of µ, allowing us to apply existing private algorithms for a finer estimate. This was captured
in Claim 2.1.

We restate existing pure and concentrated DP algorithms for Gaussian mean estimation below.
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Lemma B.1 (Known Private Mean Estimators for Identity Covariance Gaussians). For all ↵,�, ", ⇢ >

0, there exist "-DP and ⇢-zCDP algorithms that take n > 0 samples from N (µ, I) over Rd,
where kµk2  R, and output estimate bµ 2 Rd, such that with probability at least 1 � �,
dTV(N (µ, I),N (bµ, I))  ↵, as long as the following bounds on n hold.

1. For the ⇢-zCDP “clip-and-noise” algorithm via the Gaussian Mechanism,

n = eO
 
d+ log(1/�)

↵2
+

p
d(R+

p
d) log(1/�)

↵
p
⇢

!
.

2. For the (inefficient) "-DP algorithm from [BKSW19],

n = O

✓
d+ log(1/�)

↵2
+

d log(dR/↵) + log(1/�)

↵"

◆
.

3. For the "-DP algorithm from [HKM22],

n = eO
✓
d+ log(1/�)

↵2
+

d+ log(1/�)

↵2"
+

d logR+min{d, logR} · log(1/�)
"

◆
.

In the above, the “clip-and-noise” mechanism simply clips all the points in the dataset to within radius

� = R +

q
d+ 2

p
d log(n/�) + 2 log (n/�) around the origin, and outputs the noisy empirical

mean of the clipped points via the Gaussian mechanism. Note that the `2 sensitivity of the empirical
mean is now 2�

n
, therefore, the magnitude of the noise vector added to the empirical mean is at most

eO
⇣p

d�p
⇢n

⌘
with high probability, which is less than ↵ when n � eO

⇣p
d�p
⇢↵

⌘
. This is ⇢-zCDP from

Lemma A.22.

Also, in part (3) of the above lemma, the third term of the sample complexity arises when the
algorithm tries to find a coarse estimate of the mean, that is, when it attempts to get an estimate that
lies within O(

p
d) of the true mean (Theorem 5.1 of [HKM22]). If we already have such a coarse

estimate with us (which we will), then that term would disappear, and we would simply have to apply
Theorem 6.1 from [HKM22] to get the first term.

Claim 2.1 combined with the results above, yields 1-public-sample, private mean estimation algo-
rithms.
Theorem B.2 (Public-Private Gaussian Mean Estimation). For all ↵,�, ", ⇢ > 0, there exist "-DP
and ⇢-zCDP algorithms that take n > 0 private samples X = (X1, . . . , Xn) and 1 public sample eX
from N (µ, I) over Rd, are private with respect to the private samples X , and output estimate bµ 2 Rd,
such that with probability at least 1 � �, dTV(N (µ, I),N (bµ, I))  ↵, as long as the following
bounds on n hold.

1. For the ⇢-zCDP “clip-and-noise” algorithm via the Gaussian Mechanism and 1 public
sample,

n = eO

0

@
d+ log

⇣
1

�

⌘

↵2
+

d log
1.5

⇣
1

�

⌘

↵
p
⇢

1

A .

2. For the (inefficient) "-DP algorithm via [BKSW19] and 1 public sample,

n = O

0

@
d+ log

⇣
1

�

⌘

↵2
+

d log

⇣
d log(1/�)

↵

⌘
+ log

⇣
1

�

⌘

↵"

1

A .

3. For the (efficient) "-DP algorithm via [HKM22] and 1 public sample,

n = eO

0

@
d+ log

⇣
1

�

⌘

↵2
+

d+ log

⇣
1

�

⌘

↵2"

1

A .
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Proof. For concreteness, we look at (1), however an analogous argument suffices for (2) and (3). Say
we draw our one public sample eX , and form a shifted private dataset Y1, . . . , Yn, each Yj = Xj � eX .

Define � =

q
d+ 2

p
d log(2/�) + 2 log (2/�) and µY := E (Y1) = µ � eX . By Claim 2.1, we

have that with probability � 1 � �/2 over the sampling of eX , kµY k2  �. Hence, we set R = �

and target failure probability �/2, and run the zCDP mean estimation algorithm from Lemma B.1 on
Y1, . . . , Yn. Suppose the output of the algorithm is bµY . Then we return bµ = bµY + eX .

By union bound, with probability� 1��, we have that our private data distribution satisfies the range
requirements for our private algorithm’s guarantees to hold and that our private algorithm succeeds. In
this case, we have kµ� bµk2 = k(µ� eX)� (bµ� eX)k2 = kµY � bµY k2, so dTV(N (bµ, I),N (µ, I)) =
dTV(N (bµY , I),N (µY , I))  ↵. Plugging in R = � and target failure probability �/2 into the
algorithm’s sample complexity in Lemma B.1 gives us the desired result. As mentioned earlier, if
we are to use part (3) of Lemma B.1, then the third term of the sample complexity would disappear
because the public sample already gives us an O(

p
d) estimate of µ.

Notice that bµY is ⇢-zCDP with respect to Y1, . . . , Yn, which implies that bµ is ⇢-zCDP with respect
to private data X1, . . . , Xn. To see why, note that for any fixed eX , the private algorithm from
Lemma B.1 is robust to arbitrary change in Yj , therefore, to any change in Xj because each Xj maps
to exactly one Yj . By the post-processing guarantee of zCDP (Lemma A.18), bµ is also private with
respect to X .

We remark that the above 1-public-sample private mean estimators can also be used to estimate the
mean of a Gaussian with arbitrary known covariance, by reducing to the identity covariance case via
rescaling with the known covariance.

B.1.2 Unknown Mean and Covariance with d+ 1 Public Samples

In this setting, we are given d+ 1 public samples eX1, . . . ,
eXd+1 and n private samples X1, . . . , Xn,

where all the eXi and Xj are drawn from an unknown, d-dimensional Gaussian N (µ,⌃) independently.
Public data is used to transform private samples via “public data preconditioning” (Algorithm 1, as
discussed in Section 2), which reduces the estimation problem to the bounded case which can be
solved using the existing private algorithms.

Algorithm 2 gives the precise description of how we can use Algorithm 1 and existing private
Gaussian estimators to obtain a public-private Gaussian estimator.

Algorithm 2: Public-Private Gaussian Estimator PubDPGaussianEstimator↵,�,PrivParams(
eX,X)

Input: Public samples eX = ( eX1, . . . ,
eXd+1). Private samples X = (X1, . . . , Xn). Error

tolerance ↵ > 0, failure probability � > 0. Privacy parameters PrivParams ⇢ R.
Output: bµX 2 Rd, b⌃X 2 Rd⇥d

// Precondition the private data using the public dataset.

(bµ, b⌃, L, U) PubPreconditioner �
2
( eX).

For j 2 [n]

Set Yj  1p
L

b⌃�1/2
(Xj � bµ).

// Set range parameters for private applications.

R =

p
U/L ·

p
log(6/�) and K = U/L

// Estimate Gaussian using private data and private algorithm.

Set Y  (Y1, . . . , Yn) and (bµY ,
b⌃Y ) DPGaussianEstimator

↵,
�
2 ,PrivParams,R,K

(Y ).
Set

bµX  
p
Lb⌃1/2bµY + bµ and b⌃X  Lb⌃1/2b⌃Y

b⌃1/2

Return bµX , b⌃X .
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The proof of the correctness of Algorithm 2 relies on proof of correctness for public data pre-
conditioning, which was given in Section 2. The following facts were used for the proof in that
section.
Fact B.3 (Singular Values of Gaussian Matrices [SST06]). Let Z 2 Rd⇥d be a matrix with each
Zij ⇠ N(0, 1) independently. Denote by �d(Z) the smallest singular value of Z, and by �1(Z) its
largest singular value. Then we have the following.

1. P
⇣
|�d(Z)|  �/

p
d

⌘
 �

2. P
⇣
|�1(Z)| � 2

p
d+

p
2 log(1/�)

⌘
 �

Fact B.4 (Properties of Wishart Distribution4). Let Z1, . . . , Zm+1, W1, . . . ,Wm be chosen i.i.d.

from N (0, I) over Rd. Suppose bµ =
1

m+1

m+1P
i=1

Zi. Then

1

m

m+1X

i=1

(Zi � bµ)(Zi � bµ)T ⇠ 1

m

mX

i=1

WiW
T

i
⇠ 1

m
Wd(m, I).

In other words, the two quantities are identically distributed according to the scaled, d-dimensional
Wishart distribution with m degrees of freedom.

Below is the same-distribution version of Theorem 2.4, which employs Lemma 2.5 from Section 2.
Theorem B.5 (Public-Private Gaussian Estimation). For all ↵,�, ", ⇢ > 0, there exist "-DP and
⇢-zCDP algorithms that take d+1 public samples eX = ( eX1, . . . ,

eXd+1) and n private samples X =

(X1, . . . , Xn) from an unknown, d-dimensional Gaussian N (µ,⌃), and are private with respect to the
private samples, and return bµX 2 Rd and b⌃X 2 Rd⇥d, such that dTV(N (bµX , b⌃X),N (µ,⌃))  ↵

with probability at least 1� �, as long as the following bounds on n hold.

1. For ⇢-zCDP (with computational efficiency) via [KLSU19] and d+ 1 public samples,

n = O

0

@
d
2
+ log

⇣
1

�

⌘

↵2
+

d
2 · polylog

⇣
d

↵�⇢

⌘

↵
p
⇢

1

A .

2. For "-DP (without computational efficiency) via [BKSW19] and d+ 1 public samples,

n = O

0

@
d
2
+ log

⇣
1

�

⌘

↵2
+

d
2
log

⇣
d

↵�

⌘

↵"

1

A .

Proof. We prove the privacy and the utility guarantees for Algorithm 2. In this proof, we will work
in the ⇢-zCDP regime (where, PrivParams = {⇢}) using the Gaussian estimator of [KLSU19]
(the second algorithm in Lemma A.24), and the analogous guarantees in the "-DP case (where
PrivParams = {"}) would follow by the same argument (but by using the third algorithm from
Lemma A.24, instead).

We start by proving the utility guarantees first. Applying our public data preconditioner (Algorithm 1
with public data eX as input) on X with target failure probability �/2 yields Y1, . . . , Yn, such that
for each j 2 [n], Yj ⇠ N (µY ,⌃Y ), where µY and ⌃Y are quantites as defined in Lemma 2.5.
Then with probability � 1 � �/2 over the sampling of public data, we have I � ⌃Y � U

L
I and

kµY k2 
p
U/L ·

p
5 log(6/�) (Lemma 2.5). Hence, we can set K = U/L = O(d

2
log(1/�)/�

2
),

and R =

p
U/L ·

p
5 log(6/�) = O(d log(1/�)/�), and run the ⇢-zCDP Gaussian estimator on

Y1, . . . , Yn with target failure probability �/2. We obtain our private sample complexity, which is
now independent of the range parameters of the underlying distribution, by plugging in these values
into the private Gaussian estimator’s sample complexity.

4See Theorem 6 from https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec2.pdf.
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Under these parameter settings and sample complexity, by Lemma A.24 and the union bound,
we have that with probability � 1 � �, the algorithm succeeds in outputting bµY and b⌃Y , such
that dTV(N (bµY ,

b⌃Y ),N (µY ,⌃Y ))  ↵. We output the estimates b⌃X :� Lb⌃1/2b⌃Y
b⌃1/2 and

bµX :=
p
Lb⌃1/2bµY + bµ. Denoting A :=

1

L
b⌃�1, by the properties of the Mahalanobis norm, k · k⌃:

kb⌃X � ⌃k⌃ = kA1/2b⌃XA
1/2 �A

1/2
⌃A

1/2kA1/2⌃A1/2 = kb⌃Y � ⌃Y k⌃Y

kbµX � µk⌃ = kA1/2bµX �A
1/2

µkA1/2⌃A1/2

= k(bµY +A
1/2bµ)� (µY +A

1/2bµ)k⌃Y

= kbµY � µY k⌃Y

which implies that dTV(N (bµX , b⌃X),N (µ,⌃)) = dTV(N (bµY ,
b⌃Y ),N (µY ,⌃Y ))  ↵.

To argue about privacy, note that releasing bµX and b⌃X is ⇢-zCDP with respect to Y , since it is post-
processing (Lemma A.18) of the output (bµY ,

b⌃Y ) of a ⇢-zCDP algorithm using public information.
To argue about the ⇢-zCDP of our algorithm with respect to the private dataset X , note that for any
fixed public dataset eX , the application of DPGaussianEstimator from Lemma A.24 is robust to
changing one sample Yj arbitrarily. Since each Xj maps to exactly one Yj , DPGaussianEstimator

is robust against changing any Xj arbitrarily, as well. This gives us the final privacy guarantee with
respect to X .

B.2 Different Public Data and Private Data Distributions

In this section, we give results for the scenario, where the public data does not come from the same
distribution as that of the private data. Specifically, we show that in the case, where our public
data comes from another Gaussian within TV distance � of our private data distribution, a slight
modification of Algorithm 1 (public data preconditioning) will also work to reduce our unbounded
private estimation problem to a bounded one.

B.2.1 Technical Lemmata

We start by stating results about different distance metrics for distributions. Let dH(·, ·) denote
the Hellinger distance between two distributions, and let dTV(·, ·) denote their total variation (TV)
distance. We start with a known fact about the relation between dH(·, ·)2 and dTV(·, ·).
Lemma B.6 (Hellinger Distance vs. TV Distance). Let P,Q be distributions over R

d. Then
dH(P,Q)

2  dTV(P,Q).

Next, we state the expression for Hellinger distance between two univariate Gaussians.
Lemma B.7 (Hellinger Distance for Gaussians). Let G1 ⌘ N (µ1,�

2

1
), G2 ⌘ N (µ2,�

2

2
) be Gaus-

sians over R. Then

dH(G1, G2)
2
= 1�

s
2�1�2

�2

1
+ �2

2

· e
� (µ1�µ2)2

4(�2
1+�2

2)
.

Now, we lower-bound the Hellinger distance between two univariate Gaussians.
Lemma B.8 (Hellinger Distance Lower Bounds). Let G1 ⌘ N (µ1,�

2

1
), G2 ⌘ N (µ2,�

2

2
)

be Gaussians over R. Suppose �max = max{�1,�2}. Then dH(G1, G2)
2 �

dH(N (µ1,�
2

max
),N (µ2,�

2

max
))

2 and dH(G1, G2)
2 � dH(N (0,�

2

1
),N (0,�

2

2
))

2.

Proof. Using Lemma B.7, we have the following.

dH(G1, G2)
2
= 1�

s
2�1�2
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1
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� (µ1�µ2)2
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� 1� e
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= dH(N (µ1,�
2

max
),N (µ2,�

2

max
))

2

In the above, the second line follows from AM-GM inequality, that is, �
2
1+�

2
2

2
� �1�2. This proves

the first part. Now, we prove the second part.

dH(G1, G2)
2
= 1�

s
2�1�2

�2

1
+ �2

2

· e
� (µ1�µ2)2

4(�2
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� 1�

s
2�1�2
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+ �2

2

= dH(N (0,�
2

1
),N (0,�

2

2
))

2

In the above, the second line follows from the fact that e�x  1 for x � 0. This completes our
proof.

The next lemma describes the relation between the parameters of two univariate Gaussians when their
TV distance is upper-bounded.
Lemma B.9 (TV Distance and Gaussian Parameters). Let G1 ⌘ N (µ1,�

2

1
), G2 ⌘ N (µ2,�

2

2
) be

Gaussians over R. Suppose �max = max{�1,�2} and �min = min{�1,�2}. If dTV(G1, G2)  ↵,
then

(µ2 � µ1)
2

�2
max

 8↵

1� ↵
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�max

�min

 2

(1� ↵)2
.

Proof. We have the following from Lemmata B.6 and B.8.

↵ � dTV(G1, G2)
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),N (µ2,�
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= 1� e
� (µ1�µ2)2
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◆

 8↵
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The last line holds because 1

1�↵
= 1 +

↵

1�↵
, and x � ln(1 + x) for all x 2 R.

For the second part, we apply Lemmata B.6 and B.8 again to get the following.

↵ � dTV(G1, G2)
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Finally, we state a multivariate analogue of Lemma B.9.
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Lemma B.10. Suppose dTV(N (µ,⌃),N (eµ, e⌃))  � for some � < 1. Then

1. (1��)
4

4

e⌃ � ⌃ � 4

(1��)4
e⌃

2. (µ� eµ)(µ� eµ)T � 8�

1��
(⌃+ e⌃)

Proof. Let G1 ⌘ N (µ,⌃) and G2 ⌘ N (eµ, e⌃). For any unit vector v 2 Rd, denote by v
T
Gi the

distribution over R obtained by sampling x ⇠ Gi and outputting v
T
x. A data-processing inequality

for the TV distance gives us that, for any unit vector v 2 Rd,

dTV(N (v
T
µ, v

T
⌃v),N (v

T eµ, vT e⌃v)) = dTV(v
T
G1, v

T
G2)  dTV(G1, G2)

where the first equality comes from the fact that the projection of a Gaussian is also Gaussian, with
the above parameters.

By the second univariate bound in Lemma B.9, we have that for every unit vector v 2 Rd,

(1� �)
4

4
 v

T
⌃v

vT e⌃v
 4

(1� �)4
.

Rearranging the above gives us (1).

For (2), we have that for every unit vector v 2 Rd,

v
T
(eµ� µ)(eµ� µ)

T
v

vT (⌃+ e⌃)v
=

(v
T eµ� v

T
µ)

2

vT⌃v + vT e⌃v
 (v

T eµ� v
T
µ)

2

max{vT⌃v, vT e⌃v}
 8�

1� �

where the last inequality comes from applying the first univariate bound in Lemma B.9. Rearranging
the above gives us (2).

B.2.2 Unknown Mean and Covariance with d+ 1 Public Samples

Let L,U be quantities, as defined in Algorithm 1, and let L� =
(1��)

4

4
· L and U� =

4

(1��)4
· U for

0  � < 1. The following is an analogue of Lemma 2.5 for the case, where we apply Algorithm 1
(public data preconditioning) with public data that comes from a Gaussian that is at most �-far in TV
distance from the private data distribution.
Lemma B.11 (�-Far Public Data Preconditioning). For all � > 0, there exists an algorithm that
takes d + 1 independent samples eX = ( eX1, . . . ,

eXd+1) from a Gaussian N (eµ, e⌃) over Rd, and
outputs bµ 2 Rd, b⌃ 2 Rd⇥d, L� 2 R, and U� 2 R, such that for a Gaussian N (µ,⌃) over Rd with
0  dTV(N (µ,⌃),N (eµ, e⌃))  � < 1, if ⌃Y =

1

L�

b⌃�1/2
⌃b⌃�1/2 and µY =

1p
L�

b⌃�1/2
(µ� bµ),

then with probability at least 1� � over the sampling of the data,

1. I � ⌃Y � U�

L�
I

2. kµY k2 
q
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L�
·
⇣q

10�

1��
+

p
5 log(3/�)

⌘

where U�

L�
= O

⇣
d
2
log(1/�)

�2(1��)8

⌘
.

Proof. We prove the lemma by proving the utility of a modified version of Algorithm 1, which returns
L� and U� , instead of L and U , respectively. The result follows from tracing through the proof of
Lemma 2.5, and applying Lemma B.10 as necessary. We highlight the differences.

We start with (1). By the same chain of equivalences in the proof of Lemma 2.5, it suffices to show
that L�⌃

�1/2b⌃⌃�1/2 � I � U�⌃
�1/2b⌃⌃�1/2. We have the following.

⌃
�1/2b⌃⌃�1/2

= ⌃
�1/2

 
1
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d+1X
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�1/2
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= ⌃
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In the above, Zi, bµZ , and b⌃Z are quantities, as defined in the proof of Lemma 2.5. From the same
proof, we know that with probability � 1� �/3, we have U b⌃Z ⌫ I, which implies that

U⌃
�1/2e⌃1/2b⌃Z

e⌃1/2
⌃
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where the last inequality follows from (1) in Lemma B.10. Recalling that we set U� =
4

(1��)4
·U , and

rearranging gives us that U�⌃
�1/2b⌃⌃�1/2 ⌫ I, as desired. Similarly, with probability � 1� �/3,

Lb⌃Z � I, which implies that
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which again, after rearranging, allows us to conclude L�⌃
�1/2b⌃⌃�1/2 � I.

It remains to verify that (2) holds. Write
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We bound the two terms separately. Note that the second term appears in the proof of Lemma 2.5.
By the same argument as in that proof, we claim that with probability � 1 � �
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Now, we argue that the first term is also bounded. First, we apply Lemma B.10 to get
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Note that U b⌃Z ⌫ I =) e⌃ � U b⌃. Plugging this in above, and rearranging gives
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Combining the two terms gives us
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s
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A

which completes the proof.

Lemma B.11, combined with guarantees of the Gaussian estimators from Lemma A.24, allows us to
conclude the following analogue to Theorem B.5 (this stated in the main body as Theorem 2.4).

26



Theorem B.12 (�-Far Public-Private Gaussian Estimation). For all ↵,�, ", ⇢ > 0, there exist "-DP
and ⇢-zCDP algorithms that take d+ 1 public samples eX = ( eX1, . . . ,

eXd+1) and n private samples
X = (X1, . . . , Xn) from unknown, d-dimensional Gaussians N (eµ, e⌃) and N (µ,⌃), respectively,
such that 0  dTV(N (µ,⌃),N (eµ, e⌃))  � < 1, and are private with respect to the private samples,
and return bµX 2 Rd and b⌃X 2 Rd⇥d, such that dTV(N (bµX , b⌃X),N (µ,⌃))  ↵ with probability
at least 1� �, as long as the following bounds on n hold.

1. For ⇢-zCDP (with computational efficiency) via [KLSU19] and d+ 1 public samples,

n = O
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2. For "-DP (without computational efficiency) via [BKSW19] and d+ 1 public samples,
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Proof. The theorem follows from the privacy and the utility guarantees of a modified version of
Algorithm 2, which uses the modified version of Algorithm 1 as outlined in Lemma B.11, and
parameters L� and U� , instead. The proof remains the same as that of Theorem B.5.

C Estimating Gaussian Mixtures

In this section, we state our algorithms to learn mixtures of well-separated Gaussians under differential
privacy, when we have trace amounts of public data available to us. We then provide theoretical
guarantees for privacy of our algorithms with respect to the private data samples, along with its utility.
We analyse two cases here: when we have eO(1/wmin) public samples available to us, and when we
have eO(d/wmin) public samples available.

The general scheme of our algorithms is similar to that of the non-private algorithm for learning
Mixtures of Gaussians by [AM05], and the private algorithm (with no public data available) by
[KSSU19]. Many algorithms for learning mixtures of Gaussians follow a specific outline – use PCA
to project the data onto a low-dimensional subspace, which would separate the largest Gaussian from
the rest; partition the dataset again, if there is more than one Gaussian present, otherwise isolate the
lone Gaussian; estimate the parameters of that Gaussian; repeat the process on the remaining points.
Our algorithms are also spectral algorithms that rely upon techniques, like PCA, but use their private
counterparts at various stages.

The difference in the aforementioned cases, where we have O(1/wmin) and O(d/wmin) public
samples available, is that in the former, we have very few public samples, but they are enough to be
able to isolate a group of nearby clusters (called, a “supercluster”), which we could then use for an
application of private PCA. In the latter case, we wouldn’t need to apply private PCA at all because
the number of public samples is enough to be able to do non-private PCA accurately.

Assumption. We make an assumption about the shape of the covariances of all Gaussians, which
essentially says that the Gaussians are not too flat or degenerate. Let N be the total number of points
sampled from D 2 G(d, k, s). We formalise this as follows.

8i 2 [k], k⌃ikF
p

log(Nk/�)  1

8
tr(⌃i) and k⌃ik2 log2(Nk/�)  1

8
tr(⌃i) (2)

Note that this implies that d � 8 log
2
(Nk/�) because tr(⌃i)  dk⌃ik2. We also assume that

� < 1/2.
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Notations. We also define a few notations before moving on to the technical sections. We say
that a Gaussian N (µ,⌃) in high dimensions satisfying Condition 2 is contained within S ⇢ Rd, if
Bp 3

2 tr(⌃)
(µ) ✓ S. For a low-dimensional Gaussian N (µ,⌃

0
) in ` < d dimensions, we say that a set

S ⇢ Rd contains the Gaussian for fixed 0 < � < 1 and N � 1, if Bpk⌃0k2

p
2` ln(2N`/�)

(µ
0
) ⇢ S.

Also, given D 2 G(d, k, s), we say that B ⇢ Rd is “pure”, if for each Gaussian component i, B
either contains the Gaussian N (µi,⌃i), or Bp 3

2 tr(⌃i)
(µi) \B = ;. Similarly, given a set of points

T from D, we say that S ✓ T is “clean”, if for every i 2 [k], S has all points from component i that
lie in T , or it has none of them. We sometimes say that for a clean S1 ✓ T , S2 is a clean subset of S1

if S2 ✓ S1 and S2 is clean with respect to T .

C.1 Deterministic Regularity Conditions

Here, we state a few results that would be useful in solving the problems in the next two subsections.
The following condition bounds the number of points from each component of a Gaussian mixture.
Condition C.1 (Sample Frequency). Suppose we have n samples from a mixture of Gaussians
D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(d, k, s) satisfying Condition 2. Then for each i 2 [k],
the number of samples from component i lies in

⇥
nwi
2

,
3nwi
2

⇤
. Furthermore, if wi � 4↵

9k
, then the

number of points from component i lies in
⇥
n(wi � ↵

9k
), n(wi +

↵

9k
)
⇤
.

The next condition bounds the distance of any point sampled from a Gaussian mixture from the mean
of its respective component.
Condition C.2 (Intra-Gaussian Distances From Mean). Suppose we have n samples from a mixture
of Gaussians D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(d, k, s) satisfying Condition 2. Then for
each i 2 [k], if x is one of the samples from component i, then 3

4
tr(⌃i)  kx� µik2  3

2
tr(⌃i).

This condition bounds the distance between any two points sampled from the same component of a
Gaussian mixture.
Condition C.3 (Intra-Gaussian Distances Between Points). Suppose we have n samples from
D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(d, k, s) satisfying Condition 2. Then for each i 2 [k], if
x, y are two of the samples from component i, then 3

2
tr(⌃i)  kx� yk2  3tr(⌃i).

This final condition quantifies the minimum distance between any two points from different compo-
nents of a Gaussian mixture.
Condition C.4 (Inter-Gaussian Distances). Suppose we have n samples from a mixture of
Gaussians D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(d, k, s) satisfying Condition 2, where
s � ⌦(

p
ln(n/�)). Then for any i, j 2 [k] with i 6= j, if x is one of the samples from com-

ponent i, and y is one of the samples from component j, then kx� yk �
p

max{tr(⌃i),tr(⌃j)}
4

.

We state another condition that says that in low dimensions, too, the distance between the mean of a
Gaussian from all its points is bounded, and it is true for all the components of the mixture.
Condition C.5 (Intra-Gaussian Distances from Mean in Low Dimensions). Suppose we have n

samples from D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(`, k). For each i 2 [k], let �2

i
= k⌃ik2.

Then for any i 2 [k] and a fixed 0 < � < 1, if x is a datapoint sampled from N (µi,⌃i), then
kµi � xk  �i

p
2` ln(2n`/�).

The final condition about low-dimensional Gaussian mixtures bounds the distance between two points
from the same component.
Condition C.6 (Intra-Gaussian Distances Between Points in Low Dimensions). Suppose we have n

samples from D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(`, k). For each i 2 [k], let �2

i
= k⌃ik2.

Then for any i 2 [k] and a fixed 0 < � < 1, if x, y are a datapoints sampled from N (µi,⌃i), then
kx� yk  2�i

p
2` ln(2n`/�).

Now, we prove that the above conditions hold with high probability.
Lemma C.7. Suppose we have n samples from D 2 G(d, k, s) satisfying Condition 2. If

n � max

⇢
12

wmin

ln(2k/�),
405k

2

2↵2
ln(2k/�)

�
,
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then Condition C.1 holds with probability at least 1� �.

Proof. We simply use Lemma A.1 k times with p � wmin, and Lemma A.2 k times, and take the
union bound.

Lemma C.8. Suppose we have n samples from D 2 G(d, k, s) satisfying Condition 2. Then
Condition C.2 holds with probability at least 1� �.

Proof. From the Hanson-Wright inequality (Lemma A.3), 8i, 8x ⇠ N (µi,⌃i), we have that

tr(⌃i)� 2k⌃ikF
p
log(n/�)  kx� µik22  tr(⌃i) + 2k⌃ikF

p
log(n/�) + 2k⌃ik2 log(n/�).

Condition 2, combined with the above, gives us the required result.

Lemma C.9. Suppose we have n samples from D 2 G(d, k, s) satisfying Condition 2. Then
Condition C.3 holds with probability at least 1� �.

Proof. For every i and for any x, y ⇠ N (µi,⌃i), we have that x�y ⇠ N (0, 2⌃i). Using Condition 2
and Lemma A.3 again, we have the result.

The following is a quantification of the median radius of a Gaussian in terms of the trace of its
covariance.
Lemma C.10. Suppose we have n samples from D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(d, k, s)
satisfying Condition 2. Then for each i 2 [k], the median radius Ri of component i lies in⇣q

3

4
tr(⌃i),

q
3

2
tr(⌃i)

⌘
.

Proof. For each i 2 [k], let ai =

q
3

4
tr(⌃i) and bi =

q
3

2
tr(⌃i). We know from the proof of

Lemma C.8 that for a given i 2 [k], 1 � �

k
of the probability mass of Gi := N (µi,⌃i) lies in

Bbi (µi) \Bai (µi). Let �1  �/k be the probability mass of Gi in Bai (µi), and let �2 = �/k � �1.
We know that �1 < 1/2, therefore, Ri > ai. Since the mass of Gi outside Bbi (µi) is �2 < 1/2, it
must be the case that Ri < bi. Hence, the claim.

Lemma C.11. Suppose we have n samples from D 2 G(d, k, s) satisfying Condition 2. If s �
⌦(

p
ln(n/�)), then Condition C.4 holds with probability at least 1� 2�.

Proof. For this, we will use Lemmata A.12 and C.10. We know from Lemma A.12 that with
probability at least 1 � �/m, for any given i 2 [k], and x sampled from Gi := N (µi,⌃i) in the
dataset sampled from D,

kx� zk2 � (max{Ri � ln(�/2m)�i, 0})2 + kz � µik2 � 2

p
2 ln(�/2m)�ikz � µik.

For any j 2 [k] with j 6= i, let z = µj . Suppose Ri and Rj are the median radii of Gi and Gj ,
respectively. WLOG, let’s assume that Ri � Rj . Then we have the following.

kx� µjk2 � (max{Ri � ln(2m/�)�i, 0})2 + kµj � µik2 � 2

p
2 ln(2m/�)�ikµj � µik

� (max{Ri � ln(2m/�)�i, 0})2 +
kµj � µik2

2

(Separation condition and Condition 2.)

Now, let y ⇠ Gj . Due to our separation condition, we know that,

2

p
2 ln(2m/�)�j 

kµj � µik
2
p
2

 kx� µjk
2

.

We apply Lemma A.12 again with z = x.

kx� yk2 � (max{Rj � ln(2m/�)�j , 0})2 + kx� µjk2 � 2

p
2 ln(2m/�)�jkx� µjk

� (max{Rj � ln(2m/�)�j , 0})2 +
kx� µjk2

2
(Separation condition.)
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� (max{Rj � ln(2m/�)�j , 0})2 +
(max{Ri � ln(2m/�)�i, 0})2

4
+
kµj � µik2

8

� tr(⌃j)

4
+

tr(⌃i)

16
+
kµj � µik2

8
(Condition 2.)

� tr(⌃i)

16

This proves the lemma.

Lemma C.12. Suppose we have n samples from D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(`, k).
Then for a fixed 0 < � < 1, Condition C.5 holds with probability at least 1� �.

Proof. Fix i 2 [k], x be an arbitrary sample from component i, and an eigenvector of ⌃i v. In
that direction, using Lemma A.4, we know that with probability at least 1� �

n`
, k(x� µi)vv

T k 
�i

p
2 ln(2n`/�). Applying the union bound in all ` directions of ⌃i, we have that with probability

at least 1� �

n
, kx� µik  �i

p
2` ln(2n`/�). Applying the union bound again over all n points, we

get the required result.

Lemma C.13. Suppose we have n samples from D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} 2 G(`, k).
Then for a fixed 0 < � < 1, Condition C.6 holds with probability at least 1� �.

Proof. The proof just involves application of triangle inequality for any pairs of points from the same
component, along with Lemma C.12.

C.2 eO(1/wmin) Public Samples

In this subsection, we assume that we have eO(1/wmin) public samples available. Here, the number
of public samples is not enough to be able to do PCA accurately, so we, instead, try to use them
to isolate the superclusters in the data, and perform private actions, like private PCA and private
estimation algorithms, on the private data based on that information.

We start with a superclustering algorithm for public data. It first computes a constant-factor approx-
imation to the diamater (⇡ r) of the largest Gaussian in the public dataset by finding the largest
minimum pairwise distance among all points. It then tries to find a supercluster around the point
(x) that has the largest minimum distance to all other points. The idea is that Br (x) will have a
lot of points, but if Br+r (x) doesn’t have any more points, and Br+2r (x) doesn’t have any more
points either, then it must be the case that with high probability, no other Gaussian would have a
point in B2r (x). This follows from the concentration properties of high-dimensional Gaussians, and
the fact that r approximates the diameter of the largest Gaussian. If we do encounter more points in
either B2r (x) or B3r (x), we expand the ball by O(r) and check for these conditions again. We show
that the ball returned by the algorithm is of size at most O(kr), and that it contains the Gaussian
corresponding to the point x.

We now state the main result about Algorithm 3.
Theorem C.14. There exists an algorithm, which if given a clean subset of

m � O

✓
ln(k/�)

wmin

◆

points from D 2 G(d, k), where D satisfies Condition 2, it outputs c 2 Rd and R 2 R, such that the
following holds, given Conditions C.1 to C.4 hold.

1. BR (c) is pure.

2. Let ⌃0 be the covariance of the largest Gaussian (covariance with maximum trace) contained
in BR (c). Then R 2 O(k

p
tr(⌃0)).

Proof. Let N (µ,⌃) be the largest Gaussian that has points in eX . First, we claim that r 2 ⇥(

p
tr(⌃)).

We know from Lemma C.11, that the minimum distance between x ⇠ N (µi,⌃i) and y ⇠ N (µj ,⌃j)
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Algorithm 3: Superclustering on Public Data SCk,m( eX)

Input: Samples eX1, . . . ,
eXm0 2 Rd. Parameters �, k,m > 0.

Output: Centre c 2 Rd and radius R 2 R.

Let r  16 ·max
x2 eX

min
y2 eX
kx� yk.

Let c argmax

x2 eX
min
y2 eX
kx� yk.

Set pure FALSE.
Let R r.
For i 1, . . . , k

Let mi  
���BR (c) \ eX

���.

If

���BR+r (c) \ eX
��� = mi

If pure = TRUE
Return BR (c)

elif

���BR+2r (c) \ eX
��� = mi

Return (c, R+ r)

Else

pure = FALSE
R R+ 3r

Else

If

���BR+2r (c) \ eX
��� =

���BR+r (c) \ eX
���

pure = TRUE
Else

pure = FALSE
R R+ 2r

Return (c, R).

for i 6= j is lower bounded by
p

max{tr(⌃i),tr(⌃j)}
4

. We also know from Lemma C.9 that for any

i 2 [k], and any x, z ⇠ N (µi,⌃i), kx� zk �
q

3

2
tr(⌃i). Let y 2 eX , such that y is sampled from

component j 6= i and is closest to x, that is, y is the closest point to x that has not been sampled
from component i to which x belongs. This means that distance between x and its nearest point

is at least min

⇢q
3

2
tr(⌃i),

p
max{tr(⌃i),tr(⌃j)}

4

�
� min

⇢q
3

2
tr(⌃i),

p
tr(⌃i)

4

�
. We also know

from Lemma C.9 that for any x, z ⇠ N (µi,⌃i), kx � zk 
p
3tr(⌃i). This means that the point

in eX that is closest to x is at most
p
3tr(⌃i) far from x. This shows that the distance between x

and the point in eX that is closest to x lies in
p

tr(⌃i)

4
,
p

3tr(⌃i)

�
. This is true for any point in eX .

Therefore, the largest minimum distance has to lie in the interval
p

tr(⌃)

4
,
p
3tr(⌃)

�
. This shows

that r 2 ⇥(

p
tr(⌃)).

We use this to show that BR (c) is pure. We prove the following claims for that.

Claim C.15. If at the end of any iteration, the algorithm doesn’t exit the loop, but calls any of the
return steps within the loop instead, then the returned ball is pure.

Proof. Suppose it happens in iteration i. Consider the case where the return statement was called
in the elif block. If BR (c) were intersecting with a component, then BR+r (c) would contain it
(Lemmata C.8 and C.9) because r is large enough. Now, we need to show that BR+r (c) doesn’t
intersect with any new component. By construction, it must mean that

���BR (c) \ eX
��� = mi, but
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���BR+r (c) \ eX
��� = mi and

���BR+2r (c) \ eX
��� = mi. If BR+r (c) intersects with another component

that it doesn’t fully contain, then it must be the case that the component would have at least one more
point in BR+2r (c) \ BR+r (c) and would be contained in that region (by Lemma C.8) because r is
large enough. Since that doesn’t happen, there cannot be any component that is partially contained in
BR+r (c). Therefore, BR+r (c) is pure.

If return were called because pure were true, then it must have been the case that in iteration i� 1,
before the final update to R, pure must have been set to TRUE because BR+r (c) found new points,
but BR+2r (c) couldn’t. In all other case, pure is set to FALSE. Since in iteration i, BR+r (c) couldn’t
find new points either, by the same reasoning as above, BR (c) must be pure.

Claim C.16. In iteration i, either the algorithm exits with a pure ball containing at least i � 1

components, or at the end of iteration i, BR (c) contains at least i components.

Proof. We show this by induction on i, as defined in Algorithm 3.
Base Case: At the beginning of the first iteration, R = r. But we know from Lemmata C.9 and C.8
that r is big enough that the mean of the Gaussian from which c has been sampled, along with all
other points from the same Gaussian would be contained in Br (c) because the mean of the Gaussian

is at most
q

3

2
tr(⌃) away from c and all other points from the same component are at most

p
3tr(⌃)

away from c. Now, if the algorithm does not exit after the end of the iteration, our base case holds
because we have at least one component in the ball at end of the iteration. If the algorithm exited, it
must be the case that B2r (c) is pure (from the above claim) and has at least one component.
Inductive Step: Suppose for i � 1, assume that at the end of iteration i, BR (c) contains at least i
Gaussian components, or that it exits with at least i� 1 components. If the algorithm exits in iteration
i, we are done. So, we assume that it doesn’t. In iteration i+ 1, if the algorithm exits and returns a
ball, then it is pure (by the claim above and the inductive hypothesis), and has at least i components.
So, we’re done. Otherwise, either BR+r (c) or BR+2r (c) finds new points. If BR+r (c) finds new
points, it is fully containing a component not previously contained within BR (c), or it is intersecting
with new components. In the former case, a new component is added by the end of the iteration, and
our claim holds. This holds in the latter case, too, by Lemmata C.8 and C.9 because BR+2r (c) would
contain that new component. So, we have contained at least i+ 1 components at the end of iteration
i + 1. If BR+r (c) has no new points, but BR+2r (c) does, then these must be points from a new
component. Therefore, BR+3r (c) would completely contain the new component by Lemmata C.8
and C.9. So, we have i+ 1 components again by the end of the iteration.

From the above argument, we have that either the algorithm exited in the loop, and returned a pure
ball, or it had k components at the end of iteration k, in which case, the returned ball is again pure.
This gives us the first part of the theorem.

Now, we prove the second part. Let c 2 eX be as defined in Algorithm 3. Let ⌃ be the covariance
of the largest Gaussian G in eX . Suppose c was sampled from component G0 := N (µ

0
,⌃

0
). If

tr(⌃) = tr(⌃
0
), then by the proof above, r 2 ⇥(

p
tr(⌃)). Suppose tr(⌃

0
) < tr(⌃). Then in the

worst case, the nearest point to c is
p
3tr(⌃0) away from c. It is possible in this case that all points

from the largest Gaussian had nearest points
p

tr(⌃)

4
away from them, but

p
3tr(⌃0) �

p
tr(⌃)

4
. In

this case r would still be 16
p
3-factor approximation of

p
tr(⌃0). We know that the returned ball

BR (c) contains the component of c. Also, the loop of the algorithm runs at most k times, where
in each iteration, R can only increase additively by 3r. Therefore, the final radius can be at most
(3k + 1)r 2 O(k

p
tr(⌃0). This proves the second part of the theorem.

Now, we restate a folklore private algorithm for obtaining a projection matrix of the top-k subspace
of a dataset via PCA, along with its main result. Here, we just talk about its utility, but focus on
the privacy later when we instantiate it for different forms of differential privacy. Given a dataset, it
simply truncates all points to within a given range, computes the empirical covariance matrix, then
adds random noise to each entry of the matrix that is sampled from a Gaussian distribution scaled
according to the appropriate privacy parameters depending on the notion of privacy. In the algorithm,
fPCA(PrivParams) denotes an appropriate function of the privacy parameters, which we would set
according to the type of differential privacy guarantee we require.
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Algorithm 4: DP PCA PrivPCAPrivParams,`(X, r)

Input: Private samples X = (X1, . . . , Xn0) 2 Rn
0⇥d. Radius r 2 R. Parameters

PrivParams ⇢ R, ` > 0.
Output: Projection matrix ⇧ 2 Rd⇥d.

Let fPCA be an appropriate function of the elements of PrivParams to ensure DP.
Set �P  2r

2
fPCA(PrivParams).

Truncate all points of X to within Br (0) to get dataset Y .
Let E 2 Rd⇥d, such that for all i, j 2 [d] with i  j, Ei,j ⇠ N (0,�

2

P
) and Ej,i  Ei,j .

Let ⇧ be the projection matrix of the top-` subspace of Z  Y
T
Y + E.

Return ⇧.

Theorem C.17 (Theorem 9 from [DTTZ14]). Let X,Y, Z, `, c, r,�P be quantities as defined in
Algorithm 4, C` be the best rank-` approximation to Y

T
Y , and bC` be the rank-` approximation to Z.

Then with probability at least 1� �,

kY T
Y � bC`k2  kY T

Y � C`k2 +O

⇣
�P

p
d+ �P

p
ln(1/�)

⌘
.

We get the following corollary using Theorem C.17 and Lemmata A.13 and A.14.
Corollary C.18. Let X,Y, Z, `, c, r,�P ,⇧ be quantities as defined in Algorithm 4, such that X is a
clean subset of n samples from a mixture of k Gaussians D satisfying Condition 2, and X contains
points from k

0 components. Suppose wmin is the minimum mixing weight of a components with
respect to D. Let �2

max
be the largest directional variance of any component that has points in X ,

and ⌃ be the covariance of the Gaussian with largest trace that has points in X . If r 2 O(k
p

tr(⌃)),
all points in X lie within Br (0), and

n � O

✓
d

wmin

+ d
1.5

k
2
fPCA(PrivParams) +

ln(k/�)

wmin

◆
,

then with probability at least 1�O(�), for each component (µ0
,⌃

0
, w

0
) that has points in X ,

kµ0 � µ
0
⇧k  O

✓
�maxp
w0

◆
.

Proof. By construction of our algorithm and our assumption on r, we know that
O

⇣
�P

p
d+ �P

p
ln(1/�)

⌘
2 fPCA(PrivParams) · O

⇣
d
1.5

k
2
+ dk

2
p

ln(1/�)

⌘
2

fPCA(PrivParams) · O
�
d
1.5

k
2
�

(since D satisfies Condition 2). Using Lemma A.7 and
our bound on n, we know that for each component (µ0

,⌃
0
, w

0
), the empirical mean of all the points

from that Gaussian in X would be at most
p

k⌃0k2p
w0 away from µ

0. By the same reasoning, the

empirical mean of the same projected points would be at most
p

k⌃0k2p
w0 away from µ

0
⇧ because the

projection of a Gaussian is still a Gaussian. Lemmata A.13 and A.14, and Theorem C.17 together
guarantee that the distance between the empirical mean of those points and that of the projected
points of that component would be at most O

⇣
�maxp

w0

⌘
. Applying the triangle inequality gives us the

result.

Now, we mention a result about the sensitivity of Y T
Y in Algorithm 4, which would be used in later

subsections.
Lemma C.19. In Algorithm 4, the `2 sensitivity of Y T

Y is 2r2.

Proof. Since all points in X are truncated to within Br (0), for all i, kXik  r. Therefore, for a
neighbouring dataset X 0, and corresponding truncated dataset Y 0, kY T

Y � Y
0T
Y

0kF  2r
2.
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Next, we describe an algorithm for partitioning the data after the PCA step has been performed. For
this, we assume that the data is in low-dimensions (`-dimensional), where Condition 2 may not hold,
but there is at least one cluster that is well-separated from the other points, or there is just one cluster
in the whole dataset. We provide a private partitioner for private and public data for this regime,
which in the first case, returns a partition of the datasets that contains their clean subsets, and in the
second case, it returns the same cluster itself. For this, we define the following queries (akin to those
in [KSSU19]) that would be used for the public and the private data (respectively) in the algorithm.

QPub(X, c, r, t) := (|X \ Br (c)| � t)^
(|X \ (B11r (c) \ Br (c))| = 0)^
���X \ (Rd \ B11r (c))

�� � t
�

(3)
QPriv(X, c, r, t,PrivParams) := (PCountPrivParams(X \ Br (c)) � t)^

✓
PCountPrivParams(X \ (B5r (c) \ Br (c))) <

t

320

◆
^

�
PCountPrivParams(X \ (Rd \ B5r (c))) � t

�
(4)

Just like in [KSSU19], we define the notion of a terrific ball. We say a ball Br (c) is (�, t)-terrific
with respect to some dataset X for � > 1, t > 0, if (1) Br (c) contains at least t points from X , (2)
B�r (c) \ Br (c) contains at most t

80
points from X , and (3) Rd \ B�r (c) contains at least t points

from X . We sometimes omit the parameter t when the context is clear.

Algorithm 5: DP Partitioner DPLowDimPartitionern,m,wmin,PrivParams(
eY , eZ, rmax, rmin)

Input: Private Samples eZ1, . . . ,
eZn0 2 Rd. Public Samples eY1, . . . ,

eYm0 2 Rd. Parameters
n � n

0
,m � m

0
, wmin > 0. Privacy Parameters PrivParams.

Output: A tuple of centre c 2 Rd, radius R 2 R, or ?.

For i 0, . . . , log(rmax/rmin)

ri  rmax
2i

For j  1, . . . ,m
0

cj  eYj

If QPub(
eY , cj , ri,

mwmin
2

) = TRUE

If QPriv(
eZ, cj , 2ri,

nwmin
4

,PrivParams) = TRUE
Return (c = cj , R = 2ri).

Else

Return ?.
Return ?.

Now, we prove the main theorem about the utility of Algorithm 5. In the following,
fPCount(PrivParams) denotes an appropriate function of the privacy parameters based on the
accuracy guarantees of PCount (Lemma A.23) depending on the notion of DP being used. We prove
the privacy guarantees in later sections.
Theorem C.20. Let Y be a clean subset of a set of public samples from D 2 G(d, k), Z be a clean
subset of private samples from D, ⇧ be a projection matrix to ` dimensions, eY = Y⇧, eZ = Z⇧ be
the input to Algorithm 5, rmax, rmin > 0, such that for some j 2 [m

0
], eY \ Brmax

⇣
eYi

⌘
= eY and

eZ \ Brmax

⇣
eYi

⌘
= eZ and Brmax

⇣
eYi

⌘
is pure with respect to the components of D projected on to

the subspace of ⇧ having points in eY (and eZ). Suppose �
2

max
is the largest directional variance

among the Gaussians that have points in Y . Let that Gaussian be N (µ,⌃). Suppose,

n � O

✓
d ln(k/�)

wmin

+
ln(1/�)

wmin · fPCount(PrivParams)

◆

and
m � O

✓
ln(k/�)

wmin

◆
.

Then we have the following with probability at least 1� 4�.
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1. Suppose there are at least two Gaussians that have points in Y , and the same Gaussians
have points in Z. For any other Gaussian N (µ

0
,⌃

0
) that has points in Y and Z, suppose

for N = m+n, kµ⇧�µ
0
⇧k � ⌦(�max

p
` ln(N`/�)). Let rmin  �max

p
2` ln(2N`/�).

Then the ball returned by Algorithm 5 is pure with respect to the components of D projected
by ⇧, which have points in eY , such that Rd \ BR (c) only contains components from D

projected by ⇧ that have points in eY (alternatively, eZ), and so does BR (c).

2. Suppose there is only one Gaussian that has points in Y and Z. Then the algorithm returns
?.

Proof. We first prove the first part of the theorem. In this case, we know that there exists a ball of
some radius r > 0 and some centre c 2 eY , such that Br (c) has the required properties. We prove
the existence of such a ball first. Let c 2 eY be a point, such that the corresponding Gaussian to c

in d dimensions is N (µ,⌃) (with k⌃k = �
2

max
). For any Gaussian N (µ

0
,⌃

0
) that has points in Y ,

in the subspace of ⇧, kµ⇧� µ
0
⇧k � 103�max

p
` ln(N`/�). Now, we know that for any Gaussian

N (µ
00
,⌃

00
), in this subspace, for any y ⇠ N (µ

00
,⌃

00
) that lies in Y and any z ⇠ N (µ

00
,⌃

00
) that lies

in Z, ky⇧� µ
00
⇧k, kz⇧� µ

00
⇧k 

p
k⇧⌃00⇧k2

p
2` ln(2N`/�) from Lemma C.12. The triangle

inequality implies that for any y, z ⇠ N (µ,⌃) with y 2 Y and z 2 Z, and a, b ⇠ N (µ
0
,⌃

0
) with a 2

Y and b 2 Z, ky⇧�a⇧k, kz⇧�b⇧k � 100�
2

max

p
` ln(2N`/�). Given that B

2�max

p
2 ln(2N`/�)

(c)

contains all points in Y⇧ and Z⇧, whose Gaussian in high dimensions is N (µ,⌃), and contains the
Gaussian in low dimensions, this ball satisfies the required properties.

Now, let’s say the algorithm returns a ball B = B2ri (cj). We know that in this case, because the radius
ri decreases when i increases, ri � 2�max

p
2` ln(2N`/�). Because ri is bigger than the largest

possible diameter of any Gaussian component in the `-dimensional subspace, Bri (cj) must be, at least,
containing the component of cj in that subspace. We know that the shell S = B11ri (cj) \ Bri (cj)

has no points from any component in eY (by construction). For any component inside Bri (cj) (either
partially or completely), the distance between the mean of any such component from the mean of
any other component that is completely outside Bri (cj) has to be at least 10ri � 2 ⇥ ri

2
= 9ri

(because ri is at least twice the maximum distance from the mean of a Gaussian to any of its points
in that subspace). If there a component, whose mean lies in the shell T = B 21ri

2
(cj) \ B 3ri

2
(cj),

it would be completely contained inside S, and we would see points of eY in S, which would be a
contradiction. Therefore, the means of all components that lie completely outside Bri (cj) must be
within Rd \ B 21ri

2
(cj), which means that they would be entirely contained within Rd \ B10ri (cj)

(because of Lemma C.12). Therefore, B cannot have any component that lies completely outside
Bri (cj). By similar reasoning, the mean of any component that partially intersects with Bri (cj)

has to be within B 3ri
2

(cj). Therefore, by Lemma C.12 again, that component would be contained
within B2ri (cj). Therefore, the ball B is pure. By the construction of the query QPriv, our sample
complexity (of n), and the guarantees of PCount, with probability at least 1 � 3�, we know that
the noise in each call to PCount cannot be more than nwmin

1280
(Lemma A.23). We also know that

the number of points from each component is at least nwmin
2

(from Lemma C.7). Since B2ri (cj)

is pure, it must have at least nwmin
2

points in it, so the noisy answer via PCount would be at
least nwmin

4
. Similarly, since there is no Gaussian component even partially contained within

B10ri (cj) \ B2ri (cj), the noisy answer will be less than nwmin
1280

. Finally, since there is at least one
component in Rd \ B10ri (cj), the noisy answer of PCount would be over nwmin

4
. So, QPriv would

return TRUE. This proves the first part of the theorem.

Now, we prove the second part of the theorem. It is sufficient to show that there exists no 5-terrific
ball in the private dataset eZ when all the data is coming from a single Gaussian. First, we claim
that if there is a 5-terrific ball in a dataset X , then there exists a 3-terrific ball, too. The argument is
simple. Suppose Br (c) is a 5-terrific ball, then it is easy to see that Br0 (c) for r0 = 5r

3
is a 3-terrific

ball. This is because Br0 (c) would contain more points that Br (c), hence, B3r0 (c) \ Br0 (c) would
contain fewer points than B5r (c) \ Br (c). Since Rd \ B5r (c) = Rd \ B3r0 (c), the final constraint
would hold, as well. Hence, the claim. So now, it is sufficient to show that there exists no 3-terrific
ball with respect to eZ.
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We prove this via contradiction. We know that due to our sample complexity (bound on n), the noise
in each call to PCount is at most nwmin

1280
. Therefore, for a query QPriv(

eZ, c
0
, r

0
,
nwmin

4
,PrivParams)

to return a ball Br0 (c
0
), Br0 (c

0
) and Rd \ B5r0 (c

0
) must contain at least nwmin

8
points from eZ, and

B5r0 (c
0
)\Br0 (c

0
) must contain at most nwmin

640
points from eZ. This implies the existence of a 3-terrific

ball of radius r with respect to eZ. This means that there exists a unit vector v such that on projecting
all the data on to v, we would have an three adjacent intervals along the vector I1, I2, I3 of length 2r

each along the direction of v, such that I1 and I3 together contain at most nwmin
640

points, I2 contains at
least nwmin

8
points, and the rest of the line contains at least nwmin

8
points. Suppose the mixing weight

of the Gaussian in question is wi. Lemma C.7 shows that the number of points in eZ is Cnwi, where
1

2
 C  3

2
. A straightforward application of Chernoff bound (Lemma A.1) and the union bound

over all 2O(d) unit vectors in a cover of the unit sphere in Rd, along with our sample complexity,
implies that the probability mass contained in I2 and the part of line excluding I1, I2, and I3 (which
we call, I4) is at least wmin

8Cwi
each, and the mass contained in I1 [ I3 is strictly less than wmin

160Cwi
.

We show that this is impossible when the underlying distribution along v is a (one-dimensional)
Gaussian.

Suppose the variance along v of the said Gaussian is �2. WLOG, we will assume that its mean is
0. Note that for the said condition about the probability mass to be true, I2 must contain the mean.
This is because of the symmetry about the mean and unimodality of one-dimensional Gaussians – if
I2 does not contain the mean, then either I1 or I3 would be closer to the mean, and would contain
more mass than I2 because all three of these intervals are of the same length. Next, we show that
the total mass contained within I1 and I3 is minimised when the mean is at the centre of I2. After
that, it would be sufficient to show that in this configuration, the probability mass contained within I1

and I3 together is at least wmin
160Cwi

when the mass contained in I2 and I4 each is at least wmin
8Cwi

. Let
0  r1  r and r2 = 2r � r1, such that one end point of I2 is r1 away from the mean, and the other
end point is r2 away from the mean. Then the probability mass contained within I1 [ I3 is

1p
2⇡�

r1+2rZ

r1

e
� t2

2�2 dt+
1p
2⇡�

r2+2rZ

r2

e
� t2

2�2 dt =
1p
2⇡

(r1+2r)/�Z

r1/�

e
� t2

2 dt+
1p
2⇡

(4r�r1)/�Z

(2r�r1)/�

e
� t2

2 dt.

Define f(r1) =
1p
2⇡

(r1+2r)/�R

r1/�

e
� t2

2 dt+
1p
2⇡

(4r�r1)/�R

(2r�r1)/�

e
� t2

2 dt. Then we have the following.

df(r1)

dr1
=

1p
2⇡


1

�
· e�

(r1+2r)2

2�2 � 1

�
· e�

r21
2�2 � 1

�
· e�

(4r�r1)2

2�2 +
1

�
· e�

(2r�r1)2

2�2

�

Within the interval [0, r], setting the above to 0, we have r1 = r. It can be checked that for all
r1 2 [0, r], d

2
f(r1)

dr21
> 0. This means that within [0, r], f is minimised at r1 = r. Therefore, for the

rest of the proof, we would concentrate on lower bounding the quantity q(r) =
2p
2⇡

3r/�R

r/�

e
� t2

2 dt. We

define p(r) =
2p
2⇡

r/�R

0

e
� t2

2 dt to be the mass of I2 in this regime, and �(r) =
2p
2⇡

1R

3r/�

e
� t2

2 dt to

be the mass of I4. We consider three cases.

Case 1: r
2
= �

2
+⌧ , 0  ⌧  �

2
. Noting that e�x+0.25 � e

�x
2

for x 2 [0, 1] and 1p
2
 rp

2�
 1,

we have the following.

wmin

8Cwi

 p(r) =
2p
⇡

r/
p
2�Z

0

e
�s

2

ds  2e
1
4

p
⇡

r/
p
2�Z

0

e
�s

ds =
2e

1
4

p
⇡

·
⇣
1� e

� rp
2�

⌘

Now, we compute q(r).

q(r) =
2p
⇡

3r/
p
2�Z

r/
p
2�

e
�s

2

ds
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2p
⇡
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· e� 9r

2� �
p
2�

3r
· e�

9r2

2�2

3

75

� 2p
pi

2

64

3/
p
2Z

1

e
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e
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· e� 9r

2� � 1

3
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75

>
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1
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20
p
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·
⇣
1� e

� rp
2�

⌘

� wmin

160Cwi

We have a contradiction. Thus, in this case, the probability mass in I1 [ I3 has to be at least wmin
160Cwi

.

Case 2: r
2
= �

2
+ ⌧ , ⌧ � �

2
. We have the following upper bound on �(r) using Lemma A.4.

�(r) =
2p
2⇡

1Z

3r/�

e
� t2

2 dt  2e
� 9r2

2�2

We know that �(r) � wmin
8Cwi

. This implies that r
2

�2  2

9
ln

⇣
16Cwi
wmin

⌘
. This is also equivalent to

wmin
16Cwi

 1

e9
. Lemma A.6 gives us the following lower bound on 1� p(r).

1� p(r) =
2p
2⇡

1Z

r/�

e
� t2

2 dt � 0.06e
� 3r2

2�2 +
3
2 = (0.06)e

3
2 e

� 3r2

2�2

This gives us the following lower bound on q(r).

q(r) =
2p
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e
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2 dt� 2p
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3
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2 � 2e
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3
2 e

� 3r2

2 (For r2 � 2�
2.)
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= (0.03)e
3
2 ·

✓
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16Cwi

◆ 1
3

� wmin

160Cwi

(In the regime wmin
16Cwi

 1

e9
.)

This gives us a contradiction for the second case, as well.

Case 3: r
2
= �

2 � ⌧ , 0  ⌧ < �
2
. This final case has two sub-cases to analyse: 9r2  2�

2 and
9r

2
> 2�

2. In the first instance, we have the following bounds on p(r).

wmin

8Cwi

 p(r) =
2p
2⇡

r/�Z

0

e
� t2

2 dt  2rp
2⇡�
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Next, we lower bound p(3r).

p(3r) =
2p
2⇡

3r/�Z

0

e
� t2

2 dt � 2p
2⇡

· 3r
�

· e�
9r2
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e
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This gives us the following lower bound on q(r).
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This shows that this situation is impossible. So, we move on to the final instance, that is, when
2�

2

9
< r

2
< �

2. Just as we did in Case 1, we bound p(r). We get the following.
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We lower bound p(3r) again.
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Now, we lower bound q(r).
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This gives us the final contradiction, hence, completing the proof for Case 3.

Therefore, there cannot be such intervals on the line of v. This means that there cannot be any such
direction, where such intervals exist, which means that there cannot be a 3-terrific ball with respect
to eZ, implying that the algorithm could not have found a 5-terrific ball with respect to eZ. By the
construction of the algorithm, the output would be ?. This completes the proof of the theorem.
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We now state the main private algorithm for clustering points from a Gaussian mixture (Algorithm 6)
that utilises the public data available to it, along with a theorem describing its utility guarantees.
In the theorem, f 0

PCA
and f

0
PCount

denote appropriate functions of the privacy parameters in terms
of the previously mentioned functions fPCA and fPCount, respectively. Note that the output of the
algorithm itself is not private, but the intermediate steps involved are. Since its output will not be
released to public, and will just be utilised by our main private estimation algorithm, there will be
no violation of privacy in the end. This algorithm is a general private framework, which could be
instantiated for approximate DP and zCDP by choosing the right parameters and privacy primitives,
for example, it would use approximate DP PCA algorithm for the former, and zCDP PCA algorithm
for the latter. It first uses Algorithm 3 on the public data to find a supercluster that tightly bounds
a group of clusters. Since the private data is sampled from the same distribution as the public data,
it uses that supercluster to isolate the points in the private dataset corresponding to the components
contained within the supercluster. Next, it uses private PCA to project the data on to the top-k
subspace, and then works within that subspace to either determine if the data is coming from a
single Gaussian, or to partition the dataset into clean subsets in case it is coming from at least two
Gaussians. In the former case, it adds the set of private points in the original d-dimensional space to
the output (which contains sets of points). In the latter case, it just proceeds to work on the partitions
independently.
Theorem C.21. There exists an algorithm (Algorithm 6) that takes n private samples X , and m

public samples from D 2 G(d, k, s) satisfying Condition 2, and outputs a partition C of X , such that
given Conditions C.1 to C.6 hold, and

s � ⌦(

p
k ln((n+m)k/�)),

n � O

 
d ln(k/�)

wmin

+ d
1.5

k
2.5

f
0
PCA

(PrivParams) +

p
k ln(k/�)

wmin · f 0
PCount

(PrivParams)

!
,

and

m � O

✓
ln(k/�)

wmin

◆
,

then with probability at least 1�O(�), |C| = k and each S 2 C is clean and non-empty.

Proof. It is enough to show that 8i � 0, at the end of the i-th iteration, (1) a new Gaussian component
is isolated in C and count equals the number of isolated components in C, (2) or the private dataset
X is further partitioned into non-empty, clean subsets, and the public dataset eX is further partitioned
into clean subsets, such that |QPub| = |QPriv| and for each j 2 [|QPub|], QPub[j] and QPriv[j] have
points from the same Gaussian components. We can prove this via induction on i.

Base Case: The end of the 0-th iteration essentially means the actual start of the loop. In this case, we
know that QPub and QPriv are clean subsets of eX and X , respectively. Therefore, the claim trivially
holds in this case.

Inductive Step: We assume for all iterations, up to and including some i � 0, the claim holds. Then
we show that it holds for iteration i+ 1, as well. By the inductive hypothesis, we know that Z and Y

are clean subsets, and contain points from the same components. When the superclustering algorithm
(Algorithm 3) is called, it finds a pure ball that will either contain the whole dataset Y (hence, Z
because the ball is pure), or it partitions Y into clean subsets (Theorem C.14). Since the components
from which the points in Y and Z come from are the same, BRi (ci) would contain points from the
same components from Z as in Y (because the deterministic regularity conditions hold). So, adding
Z \ Zi to QPriv and Y \ Y i to QPub ensures that the partition of Z added to the back of QPriv is
clean and contains the points from the same components as those that have points in Y \ Y i (which
itself gets added to the back of QPub), which preserves the ordering of the set of components in the
two queues.

If there is just one component that has points in Y
i (hence, in Z

i), then after projecting the data
points on to the subspace of ⇧i, and feeding the projected datasets to Algorithm 5, we will get ? (by
the guarantees from Theorem C.20) with probability at least 1� �

2k
. Because Z

i is a clean subset, C
now contains one more clean subset of X , and we have isolated a new component, and updated the
value of count to reflect the change.
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Algorithm 6: DP GMM Hard Clustering DPHardClustering
PrivParams,�,k,wmin

( eX,X)

Input: Private samples X = (X1, . . . , Xn) 2 Rn⇥d. Public samples
eX = ( eX1, . . . ,

eXm) 2 Rm⇥d. Parameters PrivParams ⇢ R,�, k, wmin > 0.
Output: Set C ⇢ P(X).

Let Y  eX and Z  X .
Let C  ;.
Let QPriv and QPub be queues of sets of points.
Add set Z to QPriv, and set Y to QPub.
PrivParams

0 be the set of privacy parameters modified as per composition based on
PrivParams.

Set count 0 and i 1.

While count < k and i  2k

Pop QPriv to get Z, and QPub to get Y .

// Run superclustering algorithm on the public dataset.

Set (ci, Ri) SCk,m(Y ).

// Partition both datasets on the basis of the supercluster.

Y
i  Y \ BRi (ci) and Z

i  Z \ BRi (ci).
Add Z \ Zi to QPriv, and Y \ Y i to QPub.

// Private PCA: project points of both datasets onto returned

subspace.

Let M i 2 R|Zi|⇥d, such that each row M
i

j
 ci.

⇧i  PrivPCAPrivParams0,k(Z
i �M

i
, Ri).

Y
0  (Y

i �M
i
)⇧i and Z

0  (Z
i �M

i
)⇧i.

// If there is only one Gaussian, add it to C, otherwise further

partition the datasets.

B  DPLowDimPartitionern,m,wmin,PrivParams0(Z
0
, Y

0
, Ri,

Rip
d
).

If B = ?
C  C [ {Zi}.
count count+ 1.

Else

B is an ordered pair (c0
i
, r

0
i
).

S
0  Br0i

(c
0
) \ Y

0 and T
0  Br0i

(c
0
) \ Z

0.
Let S be points in Y

i corresponding to S
0, and T be points in Z

i corresponding to T
0.

Add S to QPub and T to QPriv.
Add Y

i \ S to QPub and Z
i \ T to QPriv.

i i+ 1

Return C.

Suppose there are at least two components that have points in Y
i (hence, in Z

i). Then we know from
Theorem C.14, that if ⌃ is the covariance having the largest trace among all components that have
points in Y

i (hence, in Z
i), then Ri 2 O(k

p
tr(⌃)). Let the largest directional variance among the

Gaussians that have points in Z
i (hence, in Y

i) be �
2

max
, its mean be µ, and its mixing weight be

w. From the guarantees in Corollary C.18, we know that kµ� µ⇧ik  O

⇣
�maxp

w

⌘
with probability

at least 1� �

2k
. Because of the separation condition, applying the triangle inequality, we know that

the distance between µ⇧i and the projected mean of any other Gaussian having points in Z
i
⇧ is at

least ⌦(�max

p
k ln((n+m)k)/�). Then from the guarantees of Theorem C.20, we have that a ball

is returned, and it is pure with respect to the components of the mixture projected by ⇧i that have
points in Z

i
⇧. Therefore, subsets S0 and T

0 are clean, and so are S and T . This implies that Y i \ S
and Z

i \ T are clean, too. By adding them in order to QPub and QPriv respectively, we partition
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the datasets eX and X further into clean subsets, and preserve the ordering of the components in the
respective queues. This proves the claim.

Note that before the PCA step, we recentre the points in both Y
i and Z

i for the ease of analysis later
when we provide guarantees for privacy. It does not affect correctness of any step of the algorithm
because it is just recentering of data.

Now, we just have to show that the number of iterations we allow is enough with high probability.
Because we have k components in the mixture, we can only partition into clean subsets at most k � 1

times. For each component, the loop will run at most one time. So, 2k � 1 iterations are enough to
capture all the components, and |C| = k. Taking the union bound over all possible 2k � 1 iterations,
we have the required result.

We finally state the private algorithm (Algorithm 7) for estimating the parameters of mixtures of
Gaussians, along with a theorem highlighting its utility guarantees. Just like the DP clustering
algorithm above, it is a private framework that could instantiated for approximate DP and zCDP
settings by using the corresponding private algorithms. It calls Algorithm 6 to cluster the points
according to their respective components, then calls private estimators to estimate the parameters
of the respective components. It finally uses PCount to estimate their mixing weights based on the
private data.

Algorithm 7: DP GMM Hard Case Estimator DPHardEstimatorPrivParams,↵,�,k,wmin(
eX,X)

Input: Private samples X = (X1, . . . , Xn) 2 Rn⇥d. Public samples
eX = ( eX1, . . . ,

eXm) 2 Rm⇥d. Parameters PrivParams ⇢ R,�, k, wmin > 0.
Output: Set bD = {(bµ1,

b⌃1, bw1), . . . , (bµk,
b⌃k, bwk)}.

// Clustering.

Set C  DPHardClustering
PrivParams,�,k,wmin

(X, eX).

// Parameter estimation.

bD  ;.
For i 1, . . . , k

Set (bµi,
b⌃i) DPGaussianEstimator

PrivParams,
�
k
(Ci).

Set bwi  max
�

1

n
· PCountPrivParams(|Ci|), ↵

2k

 
.

bD  bD [ {(bµi,
b⌃i, bwi)}.

Return bD.

Theorem C.22. For all ↵,� > 0 and sets of privacy parameters PrivParams, there exists an
algorithm (Algorithm 7) that takes n private samples and m public samples from D 2 G(d, k, s),
such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, and
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p
k ln((n+m)k/�))
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+
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p
k ln(k/�)

wmin · f 0
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m 2 O

✓
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where nGE is the sample complexity of privately learning a Gaussian using Lemma A.24 according
to the type of DP required, then it (↵,�)-learns D.

Proof. By our sample complexity bound and Theorem C.21, with probability at least 1 � �

3
, for

each i 2 [k], Ci is clean with respect to X . Therefore, each Ci can be used to learn an independent
component.

Next, by the guarantees of Lemma A.24, for each i 2 [k], dTV(N (bµi,
b⌃i),N (µi,⌃i))  ↵ with

probability at least 1� �

3k
.
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Finally, using Lemmata C.7 and A.23, along with our sample complexity, we know that the error
due to each call to PCount is at most ↵

2k
with probability at least 1� �

3k
, and that the error due to

sampling is at most ↵

2k
. We apply the triangle inequality to get the final error of ↵

k
for each mixing

weight.

Applying the union bound over all failure events (including the failures of Conditions C.1 to C.6), we
have the desired result.

C.2.1 (", �)-DP Algorithm

Here, we describe our results under approximate DP constraints, and instantiate Algorithms 4, 6, and 7
for this version of DP. We will not restate the entire algorithms, but just describe how PrivParams

and the sample complexity in these different algorithms change. We now state the main theorem of
our section.
Theorem C.23. For all ↵,�, ", � > 0, there exists an (O("), O(�))-DP algorithm M that takes n
private samples and m public samples from D 2 G(d, k, s), and is private with respect to the private
samples, such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, and
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then M (↵,�)-learns D.

Proof. We mainly focus on the privacy guarantees here because the accuracy would follow from
Theorem C.22 after setting the parameters appropriately. Note that the privacy parameters in this case
in the set PrivParams are ", �. As per the advanced composition guarantees of DP (Lemma A.19),
we set the privacy parameters in PrivParams

0 in Algorithm 6 to be "
0
=

"p
12k log(1/�)

and �
0
=

�

4k
.

Define "0 =
p
k"

0.

Now, we show that the intermediate steps in the call to Algorithm 6 yield (", �)-DP. We don’t release
the output of that step itself, but use it in subsequent steps. The clusters are formed on the basis of
intersection of the privately formed balls with the private dataset, and are then used subsequently in
other private algorithms. So, the final algorithm would be private, as well. Thus, it is enough to prove
the privacy guarantees of those intermediate steps that yield the said balls.

In Algorithm 6, we start working on the private dataset X inside the loop, specifically, when
we use private PCA. In each iteration i, we ensure that each row of the input to Algorithm 4
(Zi �M

i) has norm at most Ri by virtue of selecting points that lie in a ball of radius Ri, and by
recentering the points appropriately. Then by Lemma C.19, the sensitivity of Y T

Y in Algorithm 4
is at most 2R2

i
. Therefore, adding Gaussian noise calibrated to "

0
, �

0 to Y
T
Y , that is, setting

fPCA("
0
, �

0
) =

p
2 ln(2/�0)

"0 , implying that �P =
2R

2
i

p
2 ln(2/�0)

"0 is enough to ensure ("
0
, �

0
)-DP in

this step (Lemmata A.22 and A.18). The next step in Algorithm 6 that works with the private data is
at the call to Algorithm 5. In this algorithm, only one call to PCount is performed, and this is the
only time it works with the private dataset. Therefore, by the guarantees of Lemma A.23, we know
that this step is "0-DP. The next steps are either partitioning the private data or adding the isolated
private data to C. Since neither of those sets are being released to public, there is no privacy loss
here. Therefore, each iteration is (2"

0
, �

0
)-DP (by Lemma A.19). Applying composition over all

2k iterations, we have that all operations together in the entire run of the loop in the algorithm are
(2", �)-DP.

In Theorem C.21, setting f
0
PCA

(PrivParams) = fPCA("0, �0) 2 O

⇣
log(k/�)

"

⌘
give us the right

sample complexity for accuracy for all calls to Algorithm 4 (by Lemma A.19), since we already
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multiply the
p
k factor in the numerator. Similarly, setting f

0
PCount

(PrivParams) = fPCount("0) =
"p

12 log(1/�)
in Theorem C.21 gives us the right sample complexity for all calls to Algorithm 5.

Now, each call to the approximate-DP Gaussian learner (Lemma A.24) is on a disjoint part of the
private dataset X . Therefore, all the k calls together are (", �)-DP because changing one point in X

can change one point in only one of the clusters. By the same reasoning, all calls to PCount together
are (", �)-DP.

As far as the accuracy goes, the first two terms in the sample complexity ensures that enough points
go to each call to the Gaussian estimator from Lemma A.24 and to each call to PCount because of
Lemma C.7. Therefore, our GMM estimator (↵,�)-learns the mixture.

C.2.2 ⇢-zCDP Algorithm

Here, we state our results under zCDP, and instantiate Algorithms 4, 6, and 7 for this version of DP.
Theorem C.24. For all ↵,�, ⇢ > 0, there exists an O(⇢)-zCDP algorithm M that takes n private
samples and m public samples from D 2 G(d, k, s), and is private with respect to the private samples,
such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, for each i 2 [k], kµik  R

and I � ⌃i � KI, and
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then M (↵,�)-learns D.

Proof. Again, we focus on the privacy guarantees because the accuracy would follow from Theo-
rem C.22 after setting the parameters correctly. Note that the privacy parameter in this case in the
set PrivParams is ⇢. As per the advanced composition guarantees of DP (Lemma A.19), we set the
privacy parameter in PrivParams

0 in Algorithm 6 to be ⇢
0
=

⇢

2k
.

Now, we show that the intermediate steps in the call to Algorithm 6 yield O(⇢)-zCDP. As before, it is
enough to prove the privacy guarantees of those intermediate steps, since the output of the algorithm
itself wouldn’t be released, but would be used by Algorithm 7, instead.

In Algorithm 6, we start working on the private dataset X inside the loop, specifically, when we
use private PCA. In each iteration i, by the same argument as in the proof of Theorem C.23, the
sensitivity of Y T

Y in the call to Algorithm 4 is 2R2

i
. Therefore, adding Gaussian noise calibrated to

⇢
0 to Y

T
Y , that is, setting fPCA(⇢

0
) =

1p
2⇢0 , implying that �P =

2R
2
ip

2⇢0 is enough to ensure ⇢0-zCDP
in this step (Lemmata A.22 and A.18). The next step in Algorithm 6 that works with the private data
is at the call to Algorithm 5. In this algorithm, only one call to PCount is performed, and this is
the only time it works with the private dataset. Therefore, by the guarantees of Lemma A.23, we
know that this step is ⇢0-zCDP. Therefore, each iteration is 2⇢0-zCDP (by Lemma A.19). Applying
composition over all 2k iterations, we have that all operations together in the entire run of the loop in
the algorithm are 2⇢-zCDP.

In Theorem C.21, setting f
0
PCA

(PrivParams) = fPCA(⇢) 2 O

⇣
1p
⇢

⌘
give us the right sample

complexity for accuracy for all calls to Algorithm 4 (by Lemma A.19), since we already multiply
the
p
k factor in the numerator. Similarly, setting f

0
PCount

(PrivParams) = fPCount(
p
2⇢) =

p
2⇢

in Theorem C.21 gives us the right sample complexity for all calls to Algorithm 5.
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Now, each call to the zCDP Gaussian learner (Lemma A.24) is on a disjoint part of the private dataset
X . Therefore, all the k calls together are ⇢-zCDP because changing one point in X can change one
point in only one of the clusters. By the same reasoning, all calls to PCount together are ⇢-zCDP.

For the accuracy guarantees, the first two terms in the sample complexity ensures that enough points
go to each call to the Gaussian estimator from Lemma A.24 and to each call to PCount because of
Lemma C.7. Therefore, our GMM estimator (↵,�)-learns the mixture.

C.3 eO(d/wmin) Public Samples

In this subsection, we assume that we have eO(d/wmin) public data samples available. In this case,
the number of public samples is enough to do PCA accurately. So, the approach would be much
simpler than before, since we don’t need to find a supercluster anymore. Also, because we have
enough public samples, we could simply use the public dataset itself to partition the data when in low
dimensions. Therefore, the entire clustering operations to partition the private dataset could be done
using the public dataset itself, without having to touch the private dataset at all. As in the previous
subsection, we will first give a general private algorithm for estimating the GMM, but will instantiate
it separately for approximate DP and zCDP.

We start with the low-dimensional partitioner first, which just uses the public dataset, and the public
query, as defined in 3.

Algorithm 8: Public Low-Dimensional Partitioner LowDimPartitionerm,wmin(
eY , rmax, rmin)

Input: Public Samples eY1, . . . ,
eYm0 2 Rd. Parameters m � m

0
, wmin > 0.

Output: A tuple of centre c 2 Rd, radius R 2 R, or ?.

For i 0, . . . , log(rmax/rmin)

ri  rmax
2i

For j  1, . . . ,m
0

cj  eYj

If QPub(
eY , cj , ri,

mwmin
2

) = TRUE
Return (c = cj , R = 2ri).

Return ?.

Theorem C.25. Let Y be a clean subset of a set of public samples from D 2 G(d, k), ⇧ be a
projection matrix to ` dimensions, eY = Y⇧ be the input to Algorithm 8, rmax, rmin > 0, such that
for some j 2 [m

0
], eY \ Brmax

⇣
eYi

⌘
= eY and Brmax

⇣
eYi

⌘
is pure with respect to the components of

D projected on to the subspace of ⇧ having points in eY . Suppose �
2

max
is the largest directional

variance among the Gaussians that have points in Y . Let that Gaussian be N (µ,⌃). Suppose,

m � O

✓
d ln(k/�)

wmin

◆
.

Then we have the following with probability at least 1� �.

1. Suppose there are at least two Gaussians that have points in Y . For any other Gaussian
N (µ

0
,⌃

0
) that has points in Y , suppose for N > m, kµ⇧�µ0

⇧k � ⌦(�max

p
` ln(N`/�)).

Let rmin  �max

p
2` ln(2N`/�). Then the ball returned by Algorithm 8 is pure with respect

to the components of D projected by ⇧, which have points in eY , such that Rd \ BR (c) only
contains components from D projected by ⇧ that have points in eY , and so does BR (c).

2. Suppose there is only one Gaussian that has points in Y . Then the algorithm returns ?.

Proof. The proof for the first part is the same as that for the first part of Theorem C.20. So, we don’t
discuss that any further.

For the next part, note that we could relax the query QPub by modifying the second constraint to say
|X \ (B11r (c) \ Br (c))| < t

320
. If the answer to the original query is true, then the answer to the
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modified query would be true, as well. In other words, if the answer to the modified query is false,
then the answer to the original query is false, too. Therefore, it is enough to show that with probability
at least 1� �, there cannot be an 11-terrific ball in eY . As argued in the proof of Theorem C.20, it
is enough to show that there exists no 3-terrific ball in eY . We already proved this in the proof of
Theorem C.20. Hence, we have the claim.

Next, we provide a clustering algorithm to partition the private dataset that just operates on the public
dataset (Algorithm 9). The algorithm is the same as Algorithm 6, but uses the public data solely to
partition the private data. It uses tools like PCA and Algorithm 8 on public data.

Algorithm 9: GMM Easy Clustering EasyClustering�,k,wmin
( eX,X)

Input: Private samples X = (X1, . . . , Xn) 2 Rn⇥d. Public samples
eX = ( eX1, . . . ,

eXm) 2 Rm⇥d. Parameters �, k, wmin > 0.
Output: Set C ⇢ P(X).

Let Y  eX and Z  X .
Let C  ;.
Let QPriv and QPub be queues of sets of points.
Add set Z to QPriv, and set Y to QPub.
Set count 0 and i 1.

While count < k and i  2k

Pop QPriv to get Z, and QPub to get Y .

// PCA: project points of both datasets onto returned subspace.

Let ⇧i be the top-k subspace of Y T
Y .

Y
0  Y⇧i and Z

0  Z⇧i.

// If there is only one Gaussian, add it to C, otherwise further

partition the datasets.

Let Ri  4 max
y1,y22Y

{ky1 � y2k} and ri  
p

2k ln(2(n+m)k/�)

4

p
d

min
y1,y22Y

{ky1 � y2k}.

B  LowDimPartitionerm,wmin(Y
0
, Ri, ri).

If B = ?
C  C [ {Zi}.
count count+ 1.

Else

B is an ordered pair (c0
i
, r

0
i
).

S
0  Br0i

(c
0
) \ Y

0 and T
0  Br0i

(c
0
) \ Z

0.
Let S be points in Y

i corresponding to S
0, and T be points in Z

i corresponding to T
0.

Add S to QPub and T to QPriv.
Add Y

i \ S to QPub and Z
i \ T to QPriv.

i i+ 1

Return C.

Theorem C.26. There exists an algorithm (Algorithm 9) that takes n private samples X , and m

public samples from D 2 G(d, k, s) satisfying Condition 2, and outputs a partition C of X , such that
given Conditions C.1 to C.6 hold, and

s � ⌦(

p
k ln((n+m)k/�)),

and
m � O

✓
d ln(k/�)

wmin

◆
,

then with probability at least 1�O(�), |C| = k and each S 2 C is clean and non-empty.

Proof. As in the proof of Theorem C.21, it is enough to show that 8i � 0, at the end of the i-th
iteration, (1) a new Gaussian component is isolated in C and count equals the number of isolated
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components in C, (2) or the private dataset X is further partitioned into non-empty, clean subsets,
and the public dataset eX is further partitioned into clean subsets, such that |QPub| = |QPriv| and for
each j 2 [|QPub|], QPub[j] and QPriv[j] have points from the same Gaussian components. We can
prove this via induction on i.

Base Case: The proof is exactly the same as in the proof of Theorem C.21.

Inductive Step: We assume for all iterations, up to and including some i � 0, the claim holds. Then
we show that it holds for iteration i+ 1, as well. By the inductive hypothesis, we know that Z and Y

are clean subsets, and contain points from the same components.

We first reason about the correctness of the PCA step. Using Lemma A.7 and our bound on m, we
know that for each component (µ0

,⌃
0
, w

0
), the empirical mean of all the points from that Gaussian in

eX would be at most
p

k⌃0k2p
w0 away from µ

0. By the same reasoning, the empirical mean of the same

projected points would be at most
p

k⌃0k2p
w0 away from µ

0
⇧ because the projection of a Gaussian is

still a Gaussian. Lemmata A.13 (by setting B = 0) and A.14 together guarantee that the distance
between the empirical mean of those points and that of the projected points of that component would
be at most O

⇣
�maxp

w0

⌘
. The triangle inequality implies that kµ0 � µ

0
⇧k  O

⇣
�maxp

w0

⌘
. This happens

with probability at least 1� �

2k
.

Now, if there is just one component that has points in Y (hence, in Z), then on feeding Y
0 to

Algorithm 5, we will get ? (by the guarantees from Theorem C.20) with probability at least 1� �

2k
.

Because Z is a clean subset, C now contains one more clean subset of X , and we have isolated a new
component, and updated the value of count to reflect the change.

Suppose there are at least two components that have points in Y (hence, in Z). Let the largest
directional variance among the Gaussians that have points in Y be �

2

max
, its mean be µ, and its

mixing weight be w. From the guarantees of the PCA step, we know that kµ� µ⇧ik  O

⇣
�maxp

w

⌘
.

Because of the separation condition, applying the triangle inequality, we know that the distance
between µ⇧i and the projected mean of any other Gaussian having points in Z⇧ is at least
⌦(�max

p
k ln((n+m)k)/�). Also, we know by the construction of the algorithm that for any

y 2 Y , Y ✓ BRi (y), and from Lemmata C.8, C.9 and C.11 that BRi (y) would contain all the compo-
nents of D that have points in Y . Also, by Lemmata C.9, and C.11, ri  �max

p
2k ln(2(n+m)k/�).

Then from the guarantees of Theorem C.25, we have that a ball is returned, and it is pure with respect
to the components of the mixture projected by ⇧i that have points in Y

0. Therefore, subsets S0 and
T

0 are clean, and so are S and T . This implies that Y \ S and Z \ T are clean, too. By adding them
in order to QPub and QPriv respectively, we partition the datasets eX and X further into clean subsets,
and preserve the ordering of the components in the respective queues. This proves the claim.

As argued before in the proof Theorem C.21, allowing up to 2k iterations is enough. Therefore, we
get a clean partition of X .

Finally, we provide the DP algorithm for learning GMM’s in this regime of public data. The algorithm
is the same as Algorithm 7, except that it calls Algorithm 9, instead of Algorithm 6.

Theorem C.27. For all ↵,� > 0 and sets of privacy parameters PrivParams, there exists an
algorithm (Algorithm 10) that takes n private samples and m public samples from D 2 G(d, k, s),
such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, and

s 2 ⌦(

p
k ln((n+m)k/�))

n 2 O

✓
nGE ln(k/�)

wmin

◆

m 2 O

✓
d ln(k/�)

wmin

◆
,

where nGE is the sample complexity of privately learning a Gaussian using Lemma A.24 and
Theorem B.5 according to the type of DP required, then it (↵,�)-learns D.
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Algorithm 10: DP GMM Easy Case Estimator DPEasyEstimator
PrivParams,↵,�,k,wmin

( eX,X)

Input: Private samples X = (X1, . . . , Xn) 2 Rn⇥d. Public samples
eX = ( eX1, . . . ,

eXm) 2 Rm⇥d. Parameters PrivParams ⇢ R,�, k, wmin > 0.
Output: Set bD = {(bµ1,

b⌃1, bw1), . . . , (bµk,
b⌃k, bwk)}.

// Clustering.

Set C  EasyClustering�,k,wmin
(X, eX).

// Parameter estimation.

bD  ;.
For i 1, . . . , k

Set (bµi,
b⌃i) DPGaussianEstimator

PrivParams,
�
k
(Ci).

Set bwi  max
�

1

n
· PCountPrivParams(|Ci|), ↵

2k

 
.

bD  bD [ {(bµi,
b⌃i, bwi)}.

Return bD.

Proof. By Theorem C.26, we know that with probability at least 1� �

3
, |C| = k, and for each i 2 [k],

Ci is a clean subset of X .

Next, by the guarantees of Lemma A.24 and Theorem B.5, for each i 2 [k], with probability at least
1� �

3k
, dTV(N (bµi,

b⌃i),N (µi,⌃i))  ↵.

Finally, by the same argument as in the proof of Theorem C.22, the mixing weights are estimated
accurately, as well.

Therefore, taking the union bound over all failure events, we have the required result.

C.3.1 (", �)-DP Algorithm

Here, we instantiate Algorithm 10 for the case of approximate DP.
Theorem C.28. For all ↵,�, ", � > 0, there exists an (O("), O(�))-DP algorithm M that takes n
private samples and m public samples from D 2 G(d, k, s), and is private with respect to the private
samples, such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, and
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p
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then M (↵,�)-learns D.

Proof. We again focus on the privacy guarantees here because the accuracy would follow from
Theorem C.27 after setting the parameters appropriately. Note that the privacy parameters in this
case in the set PrivParams are ", �. We just have to show the privacy guarantees for the calls to the
Gaussian estimator and PCount because all other steps involve computations on the public dataset.

By the same argument as in the proof for Theorem C.23, all k calls together to the approximate DP
learner from Lemma A.24 are (", �)-DP, and all calls together to PCount are (", �)-DP. Therefore,
we get (2", 2�)-DP guarantee in the end.

For the accuracy goal, the sample complexity ensures that enough points go to each call to the
Gaussian estimator from Lemma A.24 and to each call to PCount because of Lemma C.7. Therefore,
our GMM estimator (↵,�)-learns the mixture.
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C.3.2 ⇢-zCDP Algorithm

Finally, we instantiate Algorithm 10 for the case of zCDP. Note that we don’t need any bounds on the
range parameters in this case because we are using the Gaussian learner from Section B.
Theorem C.29. For all ↵,�, ⇢ > 0, there exists an O(⇢)-zCDP algorithm M that takes n private
samples and m public samples from D 2 G(d, k, s), and is private with respect to the private samples,
such that if D = {(µ1,⌃1, w1), . . . , (µk,⌃k, wk)} satisfies Condition 2, and
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p
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then M (↵,�)-learns D.

Proof. We mainly prove the privacy guarantees because the accuracy would follow from Theo-
rem C.27 after setting the parameters correctly. Note that the privacy parameter in this case in the set
PrivParams is ⇢.

Using the same argument as in the proof of Theorem C.23, we have ⇢-zCDP for all k calls to the
learner in Section B (by Theorem B.5), and ⇢-zCDP for all calls together to PCount. Therefore, we
have 2⇢-zCDP in the end.

By the same argument as before, the sample complexity is enough to send enough points to each
call to the learner in Section B and to PCount. Therefore, our GMM estimator (↵,�)-learns the
mixture.

D A Proof-of-Concept Numerical Result

For Gaussian mean estimation, our approach is relatively simple to implement on top of an existing
private algorithm. We offer some proof-of-concept simulations that demonstrate the effectiveness of
public data in private statistical estimation.5 In Figure 1, we show plots that evaluate 1-public-sample
private mean estimation (the algorithm described in Section 2.1 and in more detail in Appendix
B.1.1).

We examine the effect of 1 public sample on the performance of CoinPress [BDKU20] with its best
parameter setting (t = 2), in a case where the initial a priori bounds on the mean are weak. Concretely,
we draw n samples from a d = 50 dimensional Gaussian N (µk, Id), where µk = k · [1, ..., 1]T
and correspondingly set our a priori bound R = k

p
d for CoinPress. We show results for k 2

[10, 100, 1000], representing varying levels of strength in our a prior bounds on the mean.

We follow the evaluation protocol from [BDKU20]: we target zCDP with ⇢ = 0.5, and at each sample
size n we run the estimator 100 times and report the 10% trimmed mean of error from the ground
truth (we additionally report the 10% trimmed standard deviation as error bars). We also follow their
practice of treating target failure probabilities �i of various steps of the algorithm as hyperparameters
that can be tuned for the best empirical results. The new step we introduce (using the public sample
to set R based on d,�) uses � = 0.01, which is the same value used for all the �i’s in CoinPress.

The numerical result demonstrates the promise of utilizing public data for private data analysis, and
confirms the takeaway that very little public data can help greatly when a priori knowledge of the
private data is weak. As is visible from the plots, the error of our public-private algorithm tracks the
non-private algorithm closer when a priori bounds on the mean are weak (k = 1000 case).

Note that these results are only meant to be a proof-of-concept simulation to demonstrate the promise
of public data – thorough tuning and evaluation of these algorithms (which is necessary to bring these
algorithms to practice) is an important direction for future work.

5Our code is available at https://github.com/alexbie98/1pub-priv-mean-est. Experiments run
within two minutes on a 2020 M1 MacBook Air.
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(a) k = 10 (b) k = 100 (c) k = 1000

(d) k = 100 (zoomed in) (e) k = 1000 (zoomed in)

Figure 1: Comparing the error of CoinPress [BDKU20] under its best setting, against CoinPress with
1 public sample for mean estimation of N (k · [1, ..., 1]T , Id) for d = 50, targeting zCDP at ⇢ = 0.5.
Larger k corresponds to weaker a priori bounds on the mean for CoinPress. For large k, a single
public sample significantly improves results.
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