
Advancing Model Pruning via Bi-level Optimization

Yihua Zhang1,* Yuguang Yao1,* Parikshit Ram2 Pu Zhao3 Tianlong Chen4

Mingyi Hong5 Yanzhi Wang3 Sijia Liu1,2

1Michigan State University, 2 IBM Research, 3Northeastern University,
4University of Texas at Austin, 5University of Minnesota, Twin Cities

*Equal contribution

Abstract

The deployment constraints in practical applications necessitate the pruning of
large-scale deep learning models, i.e., promoting their weight sparsity. As illus-
trated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of
improving their generalization ability. At the core of LTH, iterative magnitude
pruning (IMP) is the predominant pruning method to successfully find ‘winning
tickets’. Yet, the computation cost of IMP grows prohibitively as the targeted
pruning ratio increases. To reduce the computation overhead, various efficient
‘one-shot’ pruning methods have been developed but these schemes are usually
unable to find winning tickets as good as IMP. This raises the question of how to
close the gap between pruning accuracy and pruning efficiency? To tackle it, we
pursue the algorithmic advancement of model pruning. Specifically, we formulate
the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO).
We show that the BLO interpretation provides a technically-grounded optimization
base for an efficient implementation of the pruning-retraining learning paradigm
used in IMP. We also show that the proposed bi-level optimization-oriented pruning
method (termed BIP) is a special class of BLO problems with a bi-linear problem
structure. By leveraging such bi-linearity, we theoretically show that BIP can
be solved as easily as first-order optimization, thus inheriting the computation
efficiency. Through extensive experiments on both structured and unstructured
pruning with 5 model architectures and 4 data sets, we demonstrate that BIP
can find better winning tickets than IMP in most cases, and is computationally
as efficient as the one-shot pruning schemes, demonstrating 2-7× speedup over
IMP for the same level of model accuracy and sparsity. Codes are available at
https://github.com/OPTML-Group/BiP.

1 Introduction

While over-parameterized structures are key to the improved generalization of deep neural networks
(DNNs) [1–3], they create new problems – the millions or even billions of parameters not only
increase computational costs during inference, but also pose serious deployment challenges on
resource-limited devices [4]. As a result, model pruning has seen a lot of research interest in recent
years, focusing on reducing model sizes by removing (or pruning) redundant parameters [4–8].
Model sparsity (achieved by pruning) also benefits adversarial robustness [9], out-of-distribution
generalization [10], and transfer learning [11]. Some pruning methods (towards structured sparsity)
facilitate model deployment on hardware [12, 13].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/OPTML-Group/BiP

Among various proposed model pruning algorithms [5, 9, 11, 14–27], the heuristics-based Iterative
Magnitude Pruning (IMP) is the current dominant approach to achieving model sparsity without
suffering performance loss, as suggested and empirically justified by the Lottery Ticket Hypothesis
(LTH) [17]. The LTH hypothesizes the existence of a subnetwork (the so-called ‘winning ticket’)
when trained in isolation (e.g., from either a random initialization [17] or an early-rewinding point of
dense model training [19]), can match the performance of the original dense model [5, 11, 17–20].
The core idea of IMP is to iteratively prune and retrain the model while progressively pruning
a small ratio of the remaining weights in each iteration, and continuing till the desired pruning
ratio has been reached. While IMP often finds the winning ticket, it incurs the cost of repeated
model retraining from scratch, making it prohibitively expensive for large datasets or large model
architectures [28, 29]. To improve the efficiency of model pruning, numerous heuristics-based
one-shot pruning methods [17, 21–25], e.g., one-shot magnitude pruning (OMP), have been proposed.
These schemes directly prune the model to the target sparsity and are significantly more efficient than
IMP. Yet, the promise of current one-shot pruning methods is dataset/model-specific [22, 30] and
mostly lies in the low pruning ratio regime [25]. As systematically studied in [22, 31], there exists
a clear performance gap between one-shot pruning and IMP. As an alternative to heuristics-based
schemes, optimization-based pruning methods [9, 15, 16, 26, 27] still follow the pruning-retraining
paradigm and adopt sparsity regularization [32, 33] or parameterized masking [9, 16, 27] to prune
models efficiently. However, these methods do not always match the accuracy of IMP and thus have
not been widely used to find winning tickets [17, 21, 23–25, 29]. The empirical results showing that
optimization underperforms heuristics motivate us to revisit the algorithmic fundamentals of pruning.

0 100 200 300 400 500
Time (min)

91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5
96.0

Te
st

 A
cc

ur
ac

y
(%

)
ResNet-18

ResNet-56

ResNet-20

Dense Model IMP BiP (ours)

Figure 1: A performance snapshot of the pro-
posed BIP method vs. the IMP baseline and the
original dense model across three pruned ResNet
models (ResNet-20, ResNet-56, and ResNet-18)
with 74% sparsity on CIFAR-10. The marker
size indicates the relative model size. The uni-
color region corresponds to the same model type
used by different pruning methods.

To this end, we put forth a novel perspective of model
pruning as a bi-level optimization (BLO) problem. In
this new formulation, we show that BLO provides a
technically-grounded optimization basis for an efficient
implementation of the pruning-retraining paradigm, the
key algorithmic component used in IMP. To the best
of our knowledge, we make the first rigorous connec-
tion between model pruning and BLO. Technically, we
propose a novel bi-level optimization-enabled pruning
method (termed BIP). We further show how BIP takes
advantage of the bi-linearity of the pruning problem to
avoid the computational challenges of common BLO
methods, and is as efficient as any first-order alternating
optimization scheme. Practically, we demonstrate the
superiority of the proposed BIP in terms of accuracy,
sparsity, and computation efficiency through extensive
experiments. BIP finds the best winning ticket nearly in all settings while taking time comparable
to the one-shot OMP. In Fig. 1, we present a snapshot of our empirical results for CIFAR-10 with
3 ResNet architectures at 74% pruning ratio. In all cases, BIP (⋆) finds winning tickets, improving
accuracy over the dense model (•) and matching IMP (▲), while being upto 5× faster than IMP.

Our contributions can be summarized as follows:

• (Formulation) We rethink the algorithmic foundation of model pruning through the lens of BLO
(bi-level optimization). The new BLO-oriented formulation disentangles pruning and retraining
variables, providing the flexibility to design the interface between pruning and retraining.

• (Algorithm) We propose the new bi-level pruning (BIP) algorithm, which is built upon the aforemen-
tioned BLO formulation and the implicit gradient-based optimization theory. Unlike computationally
intensive standard BLO solvers, we theoretically show that BIP is as efficient as any first-order
optimization by taking advantage of the bi-linear nature of the pruning variables.

• (Experiments) We conduct extensive experiments across 4 datasets (CIFAR-10, CIFAR-100, Tiny-
ImageNet and ImageNet), 5 model architectures, and 3 pruning settings (unstructured pruning,
filter-wise structured pruning, and channel-wise structured pruning). We show that (i) BIP achieves
higher test accuracy than IMP and finds the best winning tickets nearly in all settings, (ii) BIP is
highly efficient (comparable to one-shot pruning schemes), that is able to achieve 2-7× speedup over
IMP for the same level of model accuracy and sparsity, and (iii) BIP is able to find subnetworks that
achieve better performance than the dense model regardless of initialization rewinding.

2

2 Related Work and Open Question

Neural network pruning. As neural networks become deeper and more sophisticated, model
pruning technology has gained increasing attention over the last decade since pruned models are
necessary for the deployment of deep networks in practical applications [4, 34, 35]. With the goal
of finding highly-sparse and highly-accurate subnetworks from original dense models, a variety
of pruning methods have been developed such as heuristics-based pruning [17, 21, 23–25, 29, 36]
and optimization-based pruning [9, 16, 26, 27]. The former identifies redundant model weights by
leveraging heuristics-based metrics such as weight magnitudes [6, 17, 19, 11, 22, 37, 31, 36, 38],
gradient magnitudes [21, 23, 24, 39, 40], and Hessian statistics [41–46].The latter is typically built on:
1) sparsity-promoting optimization [15, 33, 47–50], where model weights are trained by penalizing
their sparsity-inducing norms, such as ℓ0 and ℓ1 norms for irregular weight pruning, and ℓ2 norm
for structured pruning; 2) parameterized masking [16, 9, 51–55], where model weight scores are
optimized to filter the most important weights and achieve better performance.

Iterative vs. one-shot pruning, and motivation. Existing schemes can be further categorized into
one-shot or iterative pruning based on the pruning schedule employed for achieving the targeted model
sparsity. Among the iterative schemes, the IMP (Iterative Magnitude Pruning scheme) [17, 20, 56–
65, 36] has played a significant role in identifying high-quality ‘winning tickets’, as postulated
by LTH (Lottery Ticket Hypothesis) [18, 19]. To enable consistent comparisons among different
methods, we extend the original definition of winning tickets in [17] to ‘matching subnetworks’ [20]
so as to cover different implementations of winning tickets, e.g., the use of early-epoch rewinding for
model re-initialization [18] and the no-rewinding (i.e., fine-tuning) variant [66]. Briefly, the matching
subnetworks should match or surpass the performance of the original dense model [20]. In this work,
if a matching subnetwork is found better than the winning ticket obtained by the same method that
follows the original LTH setup [18, 19], we will also call such a matching subnetwork a winning
ticket throughout the paper.

0 20 40 60 80 100
Pruning Ratio (%)

80

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

74% Sparsity

Dense Model
IMP
OMP
Grasp
Snip
SynFlow

20 40 60 80 100
Pruning Ratio (%)

102

103

Ti
m

e
C

on
su

m
pt

io
n

(m
in

)

3× more time

Figure 2: Illustration of the pros and cons of different pruning
methods executed over (ResNet-20, CIFAR-10). Left: test ac-
curacy vs. different pruning ratios of IMP and one-shot pruning
methods (OMP [17], GRASP [23], SNIP [21], SYNFLOW [24]).
Right: comparison of the efficiency with different sparsity.

For example, the current state-of-the-
art (SOTA) implementation of IMP in
[22] can lead to a pruned ResNet-20
on CIFAR-10 with 74% sparsity and
92.12% test accuracy, matching the per-
formance of the original dense model
(see red ⋆ in Fig. 2-Left). The IMP algo-
rithm typically contains two key ingre-
dients: (i) a temporally-evolving prun-
ing schedule to progressively increase
model sparsity over pruning iterations,
and (ii) the pruning-retraining learning
mechanism applied at each pruning iter-
ation. With a target pruning ratio of p%
with T pruning iterations, an example pruning schedule in (i) could be as follows – each iteration
prunes (p%)1/T of the currently unpruned model weights, progressively pruning fewer weights in
each iteration. For (ii), the unpruned weights in each pruning iteration are re-set to the weights
at initialization or at an early-training epoch [18], and re-trained till convergence. In brief, IMP
repeatedly prunes, resets, and trains the network over multiple iterations.

However, winning tickets found by IMP incur significant computational costs. The sparsest winning
ticket found by IMP in Fig. 2-Left (red ⋆) utilizes T = 6 pruning iterations. As shown in Fig. 2-Right,
this takes 3× more time than the original training of the dense model. To avoid the computational
cost of IMP, different kinds of ‘accelerated’ pruning methods were developed [17, 21, 23–25, 29],
and many fall into the one-shot pruning category: The network is directly pruned to the target sparsity
and retrained once. In particular, OMP (one-shot magnitude pruning) is an important baseline that
simplifies IMP [17]. It follows the pruning-retraining paradigm, but prunes the model to the target
ratio with a single pruning iteration. Although one-shot pruning schemes are computationally cheap
(Fig. 2-Right), they incur a significant accuracy drop compared to IMP (Fig. 2-Left). Even if IMP is
customized with a reduced number of training epochs per pruning round, the pruning accuracy also
drops largely (see Fig. A2). Hence, there is a need for advanced model pruning techniques to find
winning tickets like IMP, while being efficient like one-shot pruning.

3

Different from unstructured weight pruning described above, structured pruning takes into consid-
eration the sparse patterns of the model, such as filter and channel-wise pruning [13, 48, 51, 67–
71]. Structured pruning is desirable for deep model deployment in the presence of hardware con-
straints [4, 34]. However, compared to unstructured pruning, it is usually more challenging to
maintain the performance and find structure-aware winning tickets [28, 29].

Open question. As discussed above, one-shot pruning methods are unable to match the predic-
tive performance of IMP, and structure-aware winning tickets are hard to find. Clearly, the best
optimization foundation of model pruning is underdeveloped. Thus, we ask:

Is there an optimization basis for a successful pruning algorithm that can attain high pruned
model accuracy (like IMP) and high computational efficiency (like one-shot pruning)?

The model pruning problem has a natural hierarchical structure – we need to find the best mask to
prune model parameters, and then, given the mask, find the best model weights for the unpruned
model parameters. Given this hierarchical structure, we believe that the bi-level optimization (BLO)
framework is one promising optimization basis for a successful pruning algorithm.

Bi-level optimization (BLO). BLO is a general hierarchical optimization framework, where the
upper-level problem depends on the solution to the lower-level problem. Such a nested structure
makes the BLO in its most generic form very difficult to solve, since it is hard to characterize the
influence of the lower-level optimization on the upper-level problem. Various existing literature
focuses on the design and analysis of algorithms for various special cases of BLO. Applications range
from the classical approximate descent methods [72–74], penalty-based methods [75, 76], to recent
BigSAM [77] and its extensions [78, 79]. It is also studied in the area of stochastic algorithms [80–82]
and back-propagation based algorithms [83–85]. BLO has also advanced adversarial training [86],
meta-learning [87], data poisoning attack generation [88], neural architecture search [89] as well as
reinforcement learning [90]. Although BLO was referred in [50] for model pruning, it actually called
an ordinary alternating optimization procedure, without taking the hierarchical learning structure of
BLO into consideration. To the best of our knowledge, the BLO framework has not been considered
for model pruning in-depth and systematically. We will show that model pruning yields a special
class of BLO problems with bi-linear optimization variables. We will also theoretically show that this
specialized BLO problem for model pruning can be solved as efficiently as first-order optimization.
This is in a sharp contrast to existing BLO applications that rely on heuristics-based BLO solvers
(e.g., gradient unrolling in meta learning [87] and neural architecture search [89, 91]).

3 BIP: Model Pruning via Bi-level Optimization

In this section, we re-investigate the problem of model pruning through the lens of BLO and develop
the bi-level pruning (BIP) algorithm. We can theoretically show that BIP can be solved as easily as
the first-order alternating optimization by taking advantage of the bi-linearity of pruning variables.

A BLO viewpoint on model pruning As described in the previous section, the pruning-retraining
learning paradigm covers two kinds of tasks: ❶ pruning that determines the sparse pattern of model
weights, and ❷ training remaining non-zero weights to recover the model accuracy. In existing
optimization-based pruning methods [92–95], the tasks ❶-❷ are typically achieved by optimizing
model weights, together with penalizing their sparsity-inducing norms, e.g., the ℓ1 and ℓ2 norms [96].
Different from the above formulation, we propose to separate optimization variables involved in the
pruning tasks ❶ and ❷. This leads to the (binary) pruning mask variable m ∈ {0, 1}n and the model
weight variable θ ∈ Rn. Here n denotes the total number of model parameters. Accordingly, the
pruned model is given by (m ⊙ θ), where ⊙ denotes the element-wise multiplication. As will be
evident later, this form of variable disentanglement enables us to explicitly depict how the pruning
and retraining process co-evolve, and helps customize the pruning task with high flexibility.

We next elaborate on how BLO can be established to co-optimize the pruning mask m and the
retrained sparse model weights θ. Given the pruning ratio p%, the sparsity constraint is given by
m ∈ S, where S = {m |m ∈ {0, 1}n,1Tm ≤ k} and k = (1 − p%)n. Our goal is to prune
the original model directly to the targeted pruning ratio p% (i.e., without calling for the IMP-like
sparsity schedule as described in Sec. 2) and obtain the optimized sparse model (m ⊙ θ). To this

4

end, we interpret the pruning task (i.e., ❶) and the model retraining task (i.e., ❷) as two optimization
levels, where the former is formulated as an upper-level optimization problem, and it relies on the
optimization of the lower-level retraining task. We thus cast the model pruning problem as the
following BLO problem (with ❷ being nested inside ❶):

minimize
m∈S

ℓ(m⊙ θ∗(m))︸ ︷︷ ︸
❶: Pruning task

; subject to θ∗(m) = argmin
θ∈Rn

:= g(m, θ)︷ ︸︸ ︷
ℓ(m⊙ θ) +

γ

2
∥θ∥22︸ ︷︷ ︸

❷: Sparsity-fixed model retraining

, (1)

where ℓ denotes the training loss (e.g., cross-entropy), m and θ are the upper-level and lower-level
optimization variables respectively, θ∗(m) signifies the lower-level solution obtained by minimizing
the objective function g given the pruning mask m, and γ > 0 is a regularization parameter introduced
to convexify the lower-level optimization so as to stabilize the gradient flow from θ∗(m) to m and
thus the convergence of BLO [82, 97]. In a sharp contrast to existing single-level optimization-based
model pruning methods [92–95], the BLO formulation (1) brings in two advantages.

First, BLO has the flexibility to use mismatched pruning and retraining objectives at the upper and
lower optimization levels, respectively. This flexibility allows us to regularize the lower-level training
objective function in (1) and customize the implemented optimization methods at both levels. To be
more specific, one can update the upper-level pruning mask m using a data batch (called B2) distinct
from the one (called B1) used for obtaining the lower-level solution θ∗(m). The resulting BLO
procedure can then mimic the idea of meta learning to improve model generalization [98], where the
lower-level problem fine-tunes θ using B1, and the upper-level problem validates the generalization
of the sparsity-aware finetuned model (m⊙ θ∗(m)) using B2.

Second, BLO enables us to explicitly model and optimize the coupling between the retrained model
weights θ∗(m) and the pruning mask m through the implicit gradient (IG)-based optimization
routine. Here IG refers to the gradient of the lower-level solution θ∗(m) with respect to (w.r.t.)
the upper-level variable m, and its derivation calls the implicit function theory [76]. The use of IG
makes our proposed BLO-oriented pruning (1) significantly different from the greedy alternating
minimization [99] that learns the upper-level and lower-level variables independently (i.e., minimizes
one variable by fixing the other). We refer readers to the following section for the detailed IG theory.
We will also show in Sec. 4 that the pruning strategy from (1) can outperform IMP in many pruning
scenarios but is much more efficient as it does not call for the scheduler of iterative pruning ratios.

Optimization foundation of BIP. The key optimization challenge of solving the BIP problem (1)
lies in the computation of IG (implicit gradient). Prior to developing an effective solution, we first
elaborate on the IG challenge, the unique characteristic of BLO. In the context of gradient descent,
the gradient of the objective function in (1) yields

dℓ(m⊙ θ∗(m))

dm︸ ︷︷ ︸
Gradient of objective

= ∇mℓ(m⊙ θ∗(m)) +
d(θ∗(m)⊤)

dm︸ ︷︷ ︸
IG

∇θℓ(m⊙ θ∗(m)), (2)

where ∇m and ∇θ denote the partial derivatives of the bi-variate function ℓ(m ⊙ θ) w.r.t. the
variable m and θ respectively, dθ⊤/dm ∈ Rn×n denotes the vector-wise full derivative, and for ease
of notation, we will omit the transpose ⊤ when the context is clear. In (2), the IG challenge refers to
the demand for computing the full gradient of the implicit function θ∗(m) = argminθ g(m,θ) w.r.t.
m, where recall from (1) that g(m,θ) := ℓ(m⊙ θ) + γ

2 ∥θ∥
2
2.

Next, we derive the IG formula following the rigorous implicit function theory [76, 82, 87]. Based
on the fact that θ∗(m) satisfies the stationarity condition for the lower-level objective function in (2),
it is not difficult to obtain that (see derivation in Appendix A)

dθ∗(m)

dm
= −∇2

mθℓ(m⊙ θ∗)[∇2
θℓ(m⊙ θ∗) + γI]−1, (3)

where∇2
mθℓ and∇2

θℓ denote the second-order partial derivatives of ℓ respectively, and (·)−1 denotes
the matrix inversion operation.

Yet, the exact IG formula (3) remains difficult to calculate due to the presence of matrix inversion and
second-order partial derivatives. To simplify it, we impose the Hessian-free assumption,∇2

θℓ = 0,
which is mild in general; For example, the decision boundaries of neural networks with ReLU

5

activations are piece-wise linear in a tropical hyper-surface [100], and this assumption has been
widely used in BLO-involved applications such as meta learning [101] and adversarial learning [86].
Given ∇2

θℓ = 0, the matrix inversion in (3) can be then mitigated, leading to the IG formula
dθ∗(m)

dm
= − 1

γ
∇2

mθℓ(m⊙ θ∗). (4)

At the first glance, the computation of the simplified IG (4) still requires the mixed (second-order)
partial derivative ∇2

mθℓ. However, BIP is a special class of BLO problems with bi-linear variables
(m⊙ θ). Based on this bi-linearity, we can prove that IG in (4) can be analytically expressed using
only first-order derivatives; see the following theorem.

Proposition 1 Assuming∇2
θℓ = 0 and defining∇zℓ(z) := ∇zℓ(z) |z=m⊙θ∗ , the implicit gradient

(4) is then given by
dθ∗(m)

dm
= − 1

γ
diag(∇zℓ(z)); (5)

Further, the gradient of the objective function given by (2) becomes
dℓ(m⊙ θ∗)

dm
= (θ∗ − 1

γ
m⊙∇zℓ(z))⊙∇zℓ(z), (6)

where ⊙ denotes the element-wise multiplication.

Proof: Using chain-rule, we can obtain that
∇θℓ(m⊙ θ∗) = diag(m)∇zℓ(z) = m⊙∇zℓ(z); (7)

similarly, ∇mℓ(m⊙ θ∗) = diag(θ∗)∇zℓ(z) = θ∗ ⊙∇zℓ(z) (8)

where diag(·) represents a diagonal matrix with · being the main diagonal vector. Further, we can
convert (4) to

∇2
mθℓ(m⊙ θ∗)

(7)
= ∇m [m⊙∇zℓ(z)]

chain rule
= diag(∇zℓ(z)) + diag(m)[∇m(∇zℓ(z))]

(8)
= diag(∇zℓ(z)) + diag(m)[diag(θ∗)∇2

zℓ(z)] = diag(∇zℓ(z)), (9)

where the last equality holds due to the Hessian-free assumption. With (9) and (4) we can prove (5).

Next, substituting the IG (5) to the upper-level gradient (2), we obtain that

dℓ(m⊙ θ∗)

dm
= ∇mℓ(m⊙ θ∗)− 1

γ
∇zℓ(z)⊙∇θℓ(m⊙ θ∗)

(7),(8)
= θ∗ ⊙∇zℓ(z)−

1

γ
∇zℓ(z)⊙ (m⊙∇zℓ(z)) = (θ∗ − 1

γ
m⊙∇zℓ(z))⊙∇zℓ(z),

which leads to (6). The proof is now complete. □

The key insight drawn from Prop. 1 is that the bi-linearity of pruning variables (i.e., m⊙ θ∗) makes
the IG-involved gradient (2) easily solvable, and the computational complexity is almost the same as
that of computing the first-order gradient∇zℓ(z) just once, as supported by (6)

BIP algorithm and implementation. We next formalize the BIP algorithm based on Prop. 1 and
the alternating gradient descent based BLO solver [82]. At iteration t, there are two main steps.

★ Lower-level SGD for model retraining: Given m(t−1), θ(t−1), and z(t−1) := m(t−1)⊙θ(t−1), we
update θ(t) by randomly selecting a data batch with the learning rate α and applying SGD (stochastic
gradient descent) to the lower-level problem of (1),

θ(t) = θ(t−1) − α∇θg(m
(t−1),θ(t−1))

(7)
= θ(t−1) − α[m(t−1) ⊙∇zℓ(z) | z=z(t−1) + γθ(t−1)], (θ-step)

★ Upper-level SPGD for pruning: Given m(t−1), θ(t), and z(t+1/2) := m(t−1) ⊙ θ(t), we update
m using SPGD (stochastic projected gradient descent) along the IG-enhanced descent direction (2),

m(t) =PS

[
m(t−1) − β

dℓ(m⊙ θ(t))

dm
|m=m(t−1)

]
(6)
=PS

[
m(t−1) − β

(
θ(t) − 1

γ
m(t−1) ⊙∇zℓ(z) | z=z(t+1/2)

)
⊙∇zℓ(z) | z=z(t+1/2)

]
, (m-step)

6

Our proposal: Bi-level Pruning (BiP) directly to pruning ratio p%Original Pruned

Pretrained Model

Original Prior art: Iterative Magnitude Pruning (IMP) over T Rounds Pruned

Train N epochs

Random & dense init

Train N epochs Prune p1/T% Prune p1/T%

Rewind to init

Train N epochs

Rewind to init

Prune p1/T%

Rewind to init

Train N epochs

Prune to p%
1 epoch SPGD

Round 1 Round 2 Round T

Prune to p%
1 epoch SPGD

Train weights
1 epoch SGD

Sparse Model

Upper level Upper level Upper level

Lower level Lower levelLower level

Prune to p%
1 epoch SPGD

Train weights
1 epoch SGD

Train weights
1 epoch SGD

Sparse Model

Figure 3: Visualization of pruning pipeline comparison between IMP and BIP. Edge refers to the mask update
and color refers to the weight update.

where β > 0 is the upper-level learning rate, and PS(·) denotes the Euclidean projection onto the
constraint set S given by S = {m |m ∈ {0, 1}n,1Tm ≤ k} in (1) and is achieved by the top-k
hard-thresholding operation as will be detailed later.

In BIP, the (θ-step) and (m-step) steps execute iteratively. For clarity, Fig. 3 shows the difference
between the pruning pipelines of BIP and IMP. In contrast to IMP that progressively prunes and
retrains a model with a growing pruning ratio, BIP directly prunes the model to the targeted sparsity
level without involving costly re-training process. In practice, we find that both the upper- and lower-
level optimization routines of BIP converge very well (see Fig. A12 and Fig. A13). It is also worth
noting that both (θ-step) and (m-step) only require the first-order information∇zℓ(z), demonstrating
that BIP can be conducted as efficiently as first-order optimization. In Fig. A1, we highlight the
algorithmic details on the BIP pipeline. We present more implementation details of BIP below and
refer readers to Appendix B for a detailed algorithm description.

✦ Discrete optimization over m: We follow the ‘convex relaxation + hard thresholding’ mechanism
used in [9, 16]. Specifically, we relax the binary masking variables to continuous masking scores
m ∈ [0,1]. We then acquire loss gradients at the backward pass based on the relaxed m. At the
forward pass, we project it onto the discrete constraint set S using the hard thresholding operator,
where the top k elements are set to 1s and the others to 0s. See Appendix B for more discussion.

✦ Data batch selection for lower-level and upper-level optimization: We adopt different data batches
(with the same batch size) when implementing (θ-step) and (m-step). This is one of the advantages
of the BLO formulation, which enables the flexibility to customize the lower-level and upper-level
problems. The use of diverse data batches is beneficial to generalization as shown in [98].

✦ Hyperparameter tuning: As described in (θ-step)-(m-step), BIP needs to set two learning rates α
and β for lower-level and upper-level optimization, respectively. We choose α = 0.01 and β = 0.1 in
all experiments, where we adopt the mask learning rate β from Hydra [9] and set a smaller lower-level
learning rate α, as θ is initialized by a pre-trained dense model. We show ablation study on α
in Fig. A8(c). BLO also brings in the low-level convexification parameter γ. We set γ = 1.0 in
experiments and refer readers to Fig. A8(b) for a sanity check.

✦ One-step vs. multi-step SGD: In (θ-step), the one-step SGD is used and helps reduce the computa-
tion overhead. In practice, we also find that the one-step SGD is sufficient: The use of multi-step
SGD in BIP does not yield much significant improvement over the one-step version; see Fig. A8(a).

✦ Extension to structured pruning: We formulate and solve the BIP problem in the context of
unstructured (element-wise) weight pruning. However, if define the pruning mask m w.r.t. model’s
structural units (e.g., filters), BIP is easily applied to structured pruning (see Fig. 6 and Fig. A10).

7

0 20 40 60 80 100
Pruning Ratio (%)

93.0

93.5

94.0

94.5

95.0

95.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-56

0 20 40 60 80 100
Pruning Ratio (%)

92.0

92.5

93.0

93.5

94.0

94.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-16

0 20 40 60 80 100
Pruning Ratio (%)

72.0

73.0

74.0

75.0

76.0

77.0

78.0

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

60.0

62.0

64.0

66.0

68.0

70.0

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

57.0

58.0

59.0

60.0

61.0

62.0

63.0

64.0

Te
st

 A
cc

ur
ac

y
(%

)

Tiny-ImageNet, ResNet-18

0 20 40 60 80 100
Pruning Ratio (%)

72.0

73.0

74.0

75.0

76.0

77.0

Te
st

 A
cc

ur
ac

y
(%

)

ImageNet, ResNet-50

Dense Model
IMP
BiP
Best Winning Ticket

Figure 4: Unstructured pruning trajectory given by test accuracy (%) vs. sparsity (%) on various dataset-model
pairs. The proposed BIP is compared with HYDRA [9], IMP [22], OMP [22], GRASP [23]. And the performance
of dense model and that of the best winning ticket are marked using dashed lines in each plot. The solid line and
shaded area of each pruning method represent the mean and variance of test accuracies over 3 independent trials.
We observe that BIP consistently outperforms the other baselines. Note in the (ImageNet, ResNet-50) setting,
we only compare BIP with our strongest baseline IMP due to computational resource constraints.

4 Experiments

In this section, we present extensive experimental results to show the effectiveness of BIP across
multiple model architectures, various datasets, and different pruning setups. Compared to IMP,
one-shot pruning, and optimization-based pruning baselines, we find that BIP can find better winning
tickets in most cases and is computationally efficient.

4.1 Experiment Setup

Datasets and models. Following the pruning benchmark in [22], we consider 4 datasets including
CIFAR-10 [102], CIFAR-100 [102], Tiny-ImageNet [103], ImageNet [104], and 5 architecture types
including ResNet-20/56/18/50 and VGG-16 [105, 106]. Tab. A1 summarizes these datasets and
model configurations and setups.

Baselines, training, and evaluation. As baselines, we mainly focus on 4 SOTA pruning methods,
① IMP [17], ② OMP [17], ③ GRASP [23] (a one-shot pruning method by analyzing gradient
flow at initialization), and ④ HYDRA [9] (an optimization-based pruning method that optimizes
masking scores). It is worth noting that there exist various implementations of IMP, e.g., specified
by different learning rates and model initialization or ‘rewinding’ strategies [18]. To make a fair
comparison, we follow the recent IMP benchmark in [22], which can find the best winning tickets over
current heuristics-based pruning baselines. We also remark that HYDRA is originally proposed for
improving the adversarial robustness of a pruned model, but it can be easily customized for standard
pruning when setting the adversary’s strength as 0 [9]. We choose HYDRA as a baseline because
it can be regarded as a single-level variant of BIP with post-optimization weight retraining. When
implementing BIP, unless specified otherwise, we use the 1-step SGD in (θ-step), and set the learning
rates (α, β) and the lower-level regularization parameter γ as described in the previous section. When
implementing baselines, we follow their official repository setups. We evaluate the performance
of all methods mainly from two perspectives: (1) the test accuracy of the sub-network, and (2) the
runtime of pruning to reach the desired sparsity. We refer readers to Tab. A3 and Appendix C.2 for
more training and evaluation details, such as training epochs and learning rate schedules.

4.2 Experiment Results

BIP identifies high-accuracy subnetworks. In what follows, we look at the quality of winning
tickets identified by BIP. Two key observations can be drawn from our results: (1) BIP finds winning
tickets of higher accuracy and/or higher sparsity than the baselines in most cases (as shown in Fig. 4

8

Table 1: The sparsest winning tickets found by different methods at different data-model setups. Winning
tickets refer to the sparse models with an average test accuracy no less than the dense model [20]. In each cell,
p% (acc±std%) represents the sparsity as well as the test accuracy. The test accuracy of dense models can be
found in the header. ✗ signifies that no winning ticket is found by a pruning method. Given the data-model setup
(i.e., per column), the sparsest winning ticket is highlighted in bold.

Method
CIFAR-10 CIFAR-100

ResNet-18 ResNet-20 ResNet-56 VGG-16 ResNet-18 ResNet-20
(94.77%) (92.12%) (92.95%) (93.65%) (76.67%) (68.69%)

IMP 87% (94.77±0.10%) 74% (92.15±0.15%) 74% (92.99±0.12%) 89% (93.68±0.05%) 87% (76.91±0.19%) ✗
OMP 49% (94.80±0.10%) ✗ ✗ 20% (93.79±0.06%) 74% (76.99±0.07%) ✗

GRASP ✗ ✗ 36% (93.07±0.34%) ✗ ✗ ✗
HYDRA ✗ ✗ ✗ 87% (93.73±0.03%) ✗ 20% (68.94±0.17%)

BIP 89% (94.79±0.15%) 67% (92.14±0.15%) 74% (93.13±0.04%) 93% (93.75±0.15%) 89% (76.69±0.18%) 49% (68.78±0.10%)

0 20 40 60 80 100
Pruning Ratio (%)

91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

82.0

84.0

86.0

88.0

90.0

92.0
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

70.0

71.0

72.0

73.0

74.0

75.0

76.0

77.0

78.0

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100, ResNet-18

0 20 40 60 80 100
Pruning Ratio (%)

45.0

50.0

55.0

60.0

65.0

70.0

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100, ResNet-20

Figure 6: Filter pruning given by test accuracy (%) vs. pruning ratio (%). The visual presentation setting is the
same as Fig. 4. We observe that BIP identifies winning tickets of structured pruning in certain sparsity regimes.

and Tab. 1); (2) The superiority of BIP holds for both unstructured pruning and structured pruning (as
shown in Fig. 6 and Fig. A10). We refer to more experiment results in Appendix C.3.

Fig. 4 shows the unstructured pruning trajectory (given by test accuracy vs. pruning ratio) of BIP
and baseline methods in 8 model-dataset setups. For comparison, we also present the performance of
the original dense model. As we can see, the proposed BIP approach finds the best winning tickets
(in terms of the highest accuracy) compared to the baselines across all the pruning setups. Among the
baseline methods, IMP is the most competitive method to ours. However, the improvement brought
by BIP is significant with respect to the variance of IMP, except for the 60%-80% sparsity regime
in (CIFAR-10, ResNet-20). In the case of (CIFAR-100, ResNet-20), where IMP can not find any
winning tickets (as confirmed by [22]), BIP still manages to find winning tickets with around 0.6%
improvement over the dense model. In Tab. 1, we summarize the sparsest winning tickets along the
pruning trajectory identified by different pruning methods. BIP can identify the winning tickets with
higher sparsity levels than the other methods, except in the case of (CIFAR-10, ResNet-20).

20 40 60 80 100
Pruning Ratio (%)

102

103

Ti
m

e
C

on
su

m
pt

io
n

(m
in

)

Dense Model
Hydra
IMP
OMP
Grasp
BiP

Figure 5: Time consumption comparison on
(CIFAR-10, ResNet-18) with different prun-
ing ratio p.

Fig. 6 demonstrates the structured pruning trajectory on
the CIFAR-10/100 datasets. Here we focus on filter prun-
ing, where the filter is regarded as a masking unit in (1).
We refer readers to Fig. A10 for channel-wise pruning re-
sults. Due to the page limit, we only report the results
of the filter-wise pruning in the main paper and please
refer to Appendix C.3 for channel-wise pruning. Com-
pared to Fig. 4, Fig. 6 shows that it becomes more difficult
to find winning tickets of high accuracy and sparsity in
the structured pruning, and the gap among different meth-
ods decreases. This is not surprising, since filter pruning
imposes much stricter pruning structure constraints than
irregular pruning. However, BIP still outperforms all the
baselines. Most importantly, it identifies clear winning
tickets in the low sparse regime even when IMP fails.

BIP is computationally efficient. In our experiments, another key observation is that BIP yields
sparsity-agnostic runtime complexity while IMP leads to runtime exponential to the target sparsity.
Fig. 5 shows the computation cost of different methods versus pruning ratios on (CIFAR-10, ResNet-
18). For example, BIP takes 86 mins to find the sparsest winning ticket (with 89% sparsity in Tab. 1).
This yields 7× less runtime than IMP, which consumes 620 mins to find a comparable winning ticket
with 87% sparsity. Compared to the optimization-based baseline HYDRA, BIP is more efficient as it

9

N/A 5% 10% 50% 75% 100%
Rewinding Epoch Number

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

Te
st

 A
cc

ur
ac

y
of

 B
iP

 (%
)

CIFAR10, ResNet20s

Dense Model
p=20%

p=67.2%
p=86.58%

N/A 5% 10% 50% 75% 100%
Rewinding Epoch Number

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

Te
st

 A
cc

ur
ac

y
of

 B
iP

 (%
)

CIFAR10, ResNet18

Dense Model
p=20%

p=67.2%
p=86.58%

N/A 5% 10% 50% 75% 100%
Rewinding Epoch Number

75.75
76.00
76.25
76.50
76.75
77.00
77.25
77.50
77.75

Te
st

 A
cc

ur
ac

y
of

 B
iP

 (%
)

CIFAR100, ResNet18

Dense Model
p=20%

p=67.2%
p=86.58%

Figure 7: The sensitivity of BIP to rewinding epoch numbers on different datasets and model architectures.
"N/A" in the x-axis indicates BIP without retraining.

does not rely on the extra post-optimization retraining; see Tab. A2 for a detailed summary of runtime
and number of training epochs required by different pruning methods. Further, BIP takes about 1.25
× more computation time than GRASP and OMP. However, the latter methods lead to worse pruned
model accuracy, as demonstrated by their failure to find winning tickets in Tab. 1, Fig. 4, and Fig. 6.

BIP requires no rewinding. Another advantage of BIP is that it insensitive to model rewinding to
find matching subnetworks. Recall that rewinding is a strategy used in LTH [19] to determine what
model initialization should be used for retraining a pruned model. As shown in [22], an IMP-identified
winning ticket could be sensitive to the choice of a rewinding point. Fig. 7 shows the test accuracy
of the BIP-pruned model when it is retrained at different rewinding epochs under various datasets
and model architectures, where ‘N/A’ in the x-axis represents the case of no retraining (and thus
no rewinding). As we can see, a carefully-tuned rewinding scheme does not lead to a significant
improvement over BIP without retraining. This suggests that the subnetworks found by BIP are
already of high quality and does not require any rewinding operation.

Additional results. We include more experiment results in Appendix C.3. In particular, we show
more results in both unstructured and structured pruning settings in Fig. A4, Fig. A5, Fig. A6 and
Fig. A7, where we compare BIP with more baselines and cover more model architectures. We also
study the sensitivity of BIP to the lower-level step number, lower-level regularization coefficient,
the significance of the implicit gradient term (2), learning rate, and batch size, as shown in Fig. A8
and Fig. A9. To demonstrate the convergence of the upper-level and lower-level optimization in BIP,
we show the training trajectory of BIP for accuracy (Fig.A12) and mask score (Fig.A13), and show
how the lower-level step number affects the convergence speed (Fig. A14)). Further, we show the
performance of BIP vs. the growth of training epochs (Fig. A15), and its performance vs. different
data batch schedulers (see Fig. A16).

5 Conclusion

We proposed the BIP method to find sparse networks through the lens of BLO. Our work advanced
the algorithmic foundation of model pruning by characterizing its pruning-retraining hierarchy
using BLO. We theoretically showed that BIP can be solved as easily as first-order optimization
by exploiting the bi-linearity of pruning variables. We also empirically showed that BIP can find
high-quality winning tickets very efficiently compared to the predominant iterative pruning method.
In the future, we will seek the optimal curriculum of training data at different optimization levels of
BIP, and will investigate the performance of our proposal for actual hardware acceleration.

Acknowledgement

The work of Y. Zhang, Y. Yao, and S. Liu was supported by National Science Foundation (NSF) Grant
IIS-2207052. The work of M. Hong was supported by NSF grants CIF-1910385 and CMMI-1727757.
The work of Y. Wang was supported NSF grant CCF-1919117. The computing resources used in
this work were also supported by the MIT-IBM Watson AI Lab, IBM Research and the Institute for
Cyber-Enabled Research (ICER) at Michigan State University.

10

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al., “Language
models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp.
1877–1901, 2020.

[3] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin, “Deep learning: a statistical
viewpoint,” Acta numerica, vol. 30, pp. 87–201, 2021.

[4] Song Han, Huizi Mao, and William J Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[5] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag, “What is the
state of neural network pruning?,” arXiv preprint arXiv:2003.03033, 2020.

[6] Song Han, Jeff Pool, John Tran, and William Dally, “Learning both weights and connections
for efficient neural network,” Advances in neural information processing systems, vol. 28,
2015.

[7] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 784–800.

[8] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally,
“Exploring the granularity of sparsity in convolutional neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 13–20.

[9] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana, “Hydra: Pruning adversarially
robust neural networks,” Advances in Neural Information Processing Systems, vol. 33, pp.
19655–19666, 2020.

[10] James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura,
“A winning hand: Compressing deep networks can improve out-of-distribution robustness,”
Advances in Neural Information Processing Systems, vol. 34, pp. 664–676, 2021.

[11] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin,
and Zhangyang Wang, “The lottery tickets hypothesis for supervised and self-supervised
pre-training in computer vision models,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 16306–16316.

[12] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren, and
Yanzhi Wang, “Pconv: The missing but desirable sparsity in dnn weight pruning for real-time
execution on mobile devices,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2020, vol. 34, pp. 5117–5124.

[13] Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang, “Coarsening
the granularity: Towards structurally sparse lottery tickets,” arXiv preprint arXiv:2202.04736,
2022.

[14] Yann LeCun, John Denker, and Sara Solla, “Optimal brain damage,” Advances in neural
information processing systems, vol. 2, 1989.

[15] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin, and Yanzhi
Wang, “Admm-nn: An algorithm-hardware co-design framework of dnns using alternating
direction method of multipliers,” 2018.

[16] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari, “What’s hidden in a randomly weighted neural network?,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11893–11902.

11

[17] Jonathan Frankle and Michael Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[18] Alex Renda, Jonathan Frankle, and Michael Carbin, “Comparing rewinding and fine-tuning in
neural network pruning,” in 8th International Conference on Learning Representations, 2020.

[19] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin, “Linear
mode connectivity and the lottery ticket hypothesis,” in International Conference on Machine
Learning. PMLR, 2020, pp. 3259–3269.

[20] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin, “The lottery ticket hypothesis for pre-trained bert networks,” Advances in
neural information processing systems, vol. 33, pp. 15834–15846, 2020.

[21] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[22] Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu,
Minghai Qin, Sijia Liu, Zhangyang Wang, et al., “Sanity checks for lottery tickets: Does your
winning ticket really win the jackpot?,” arXiv preprint arXiv:2107.00166, 2021.

[23] Chaoqi Wang, Guodong Zhang, and Roger Grosse, “Picking winning tickets before training
by preserving gradient flow,” arXiv preprint arXiv:2002.07376, 2020.

[24] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6377–6389, 2020.

[25] Milad Alizadeh, Shyam A. Tailor, Luisa M Zintgraf, Joost van Amersfoort, Sebastian Farquhar,
Nicholas Donald Lane, and Yarin Gal, “Prospect pruning: Finding trainable weights at
initialization using meta-gradients,” in International Conference on Learning Representations,
2022.

[26] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin, “Layer-adaptive sparsity
for the magnitude-based pruning,” arXiv preprint arXiv:2010.07611, 2020.

[27] Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber, “Are neural nets modu-
lar? inspecting functional modularity through differentiable weight masks,” arXiv preprint
arXiv:2010.02066, 2020.

[28] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G
Baraniuk, Zhangyang Wang, and Yingyan Lin, “Drawing early-bird tickets: Towards more
efficient training of deep networks,” arXiv preprint arXiv:1909.11957, 2019.

[29] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang, “Efficient lottery ticket
finding: Less data is more,” in International Conference on Machine Learning. PMLR, 2021,
pp. 12380–12390.

[30] Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee,
“Sanity-checking pruning methods: Random tickets can win the jackpot,” Advances in Neural
Information Processing Systems, vol. 33, pp. 20390–20401, 2020.

[31] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin, “Prun-
ing neural networks at initialization: Why are we missing the mark?,” arXiv preprint
arXiv:2009.08576, 2020.

[32] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst
Samulowitz, Dakuo Wang, Andrew Conn, and Alexander Gray, “An ADMM based framework
for automl pipeline configuration,” 2019.

[33] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu, “Neural pruning via growing regularization,”
arXiv preprint arXiv:2012.09243, 2020.

12

[34] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas,
“Predicting parameters in deep learning,” Advances in neural information processing systems,
vol. 26, 2013.

[35] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney, “A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications,” IEEE Signal Processing Magazine, vol. 37, no.
5, pp. 43–54, 2020.

[36] Michael Zhu and Suyog Gupta, “To prune, or not to prune: exploring the efficacy of pruning
for model compression,” arXiv preprint arXiv:1710.01878, 2017.

[37] Steven A Janowsky, “Pruning versus clipping in neural networks,” Physical Review A, vol. 39,
no. 12, pp. 6600, 1989.

[38] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh, “Ac/dc: Alternating
compressed/decompressed training of deep neural networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 8557–8570, 2021.

[39] Michael C Mozer and Paul Smolensky, “Skeletonization: A technique for trimming the fat
from a network via relevance assessment,” in Advances in neural information processing
systems, 1989, pp. 107–115.

[40] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen, “Rigging
the lottery: Making all tickets winners,” in International Conference on Machine Learning.
PMLR, 2020, pp. 2943–2952.

[41] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz, “Importance
estimation for neural network pruning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 11264–11272.

[42] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney, “Pyhessian: Neural
networks through the lens of the hessian,” in 2020 IEEE International Conference on Big Data
(Big Data). IEEE, 2020, pp. 581–590.

[43] Yann LeCun, John S Denker, and Sara A Solla, “Optimal brain damage,” in Advances in
neural information processing systems, 1990, pp. 598–605.

[44] Babak Hassibi and David G Stork, Second order derivatives for network pruning: Optimal
brain surgeon, Morgan Kaufmann, 1993.

[45] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” arXiv preprint arXiv:1611.06440,
2016.

[46] Sidak Pal Singh and Dan Alistarh, “Woodfisher: Efficient second-order approximation for
neural network compression,” Advances in Neural Information Processing Systems, vol. 33,
pp. 18098–18109, 2020.

[47] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang,
“Learning efficient convolutional networks through network slimming,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 2736–2744.

[48] Yihui He, Xiangyu Zhang, and Jian Sun, “Channel pruning for accelerating very deep neural
networks,” in Proceedings of the IEEE international conference on computer vision, 2017, pp.
1389–1397.

[49] Hao Zhou, Jose M Alvarez, and Fatih Porikli, “Less is more: Towards compact cnns,” in
European Conference on Computer Vision. Springer, 2016, pp. 662–677.

[50] Christos Louizos, Max Welling, and Diederik P Kingma, “Learning sparse neural networks
through l_0 regularization,” arXiv preprint arXiv:1712.01312, 2017.

13

[51] Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen Yang, and Ji Liu, “Gdp: Stabilized
neural network pruning via gates with differentiable polarization,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 5239–5250.

[52] Edgar Liberis and Nicholas D Lane, “Differentiable network pruning for microcontrollers,”
arXiv preprint arXiv:2110.08350, 2021.

[53] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi, “Soft threshold weight reparameterization for learnable sparsity,” in
International Conference on Machine Learning. PMLR, 2020, pp. 5544–5555.

[54] Chao Xue, Xiaoxing Wang, Junchi Yan, Yonggang Hu, Xiaokang Yang, and Kewei Sun,
“Rethinking bi-level optimization in neural architecture search: A gibbs sampling perspective,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, pp. 10551–
10559.

[55] Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang, “Effective sparsification of neural
networks with global sparsity constraint,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 3599–3608.

[56] Trevor Gale, Erich Elsen, and Sara Hooker, “The state of sparsity in deep neural networks,”
arXiv, vol. abs/1902.09574, 2019.

[57] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang, “Efficient lottery ticket
finding: Less data is more,” in Proceedings of the 38th International Conference on Machine
Learning, Marina Meila and Tong Zhang, Eds. 18–24 Jul 2021, vol. 139 of Proceedings of
Machine Learning Research, pp. 12380–12390, PMLR.

[58] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin,
and Zhangyang Wang, “The lottery tickets hypothesis for supervised and self-supervised
pre-training in computer vision models,” arXiv preprint arXiv:2012.06908, 2020.

[59] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos, “Playing the lottery with
rewards and multiple languages: lottery tickets in rl and nlp,” in 8th International Conference
on Learning Representations, 2020.

[60] Xuxi Chen, Zhenyu Zhang, Yongduo Sui, and Tianlong Chen, “{GAN}s can play lottery
tickets too,” in International Conference on Learning Representations, 2021.

[61] Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang Wang,
“Good students play big lottery better,” arXiv preprint arXiv:2101.03255, 2021.

[62] Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen, Yu Cheng, Shuohang Wang, and Jingjing
Liu, “Playing lottery tickets with vision and language,” arXiv preprint arXiv:2104.11832,
2021.

[63] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang, “A unified
lottery ticket hypothesis for graph neural networks,” arXiv preprint arXiv:2102.06790, 2021.

[64] Neha Mukund Kalibhat, Yogesh Balaji, and Soheil Feizi, “Winning lottery tickets in deep
generative models,” 2021.

[65] Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, and Zhangyang Wang, “Ultra-data-
efficient gan training: Drawing a lottery ticket first, then training it toughly,” arXiv preprint
arXiv:2103.00397, 2021.

[66] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang, “Long live the
lottery: The existence of winning tickets in lifelong learning,” in International Conference on
Learning Representations, 2020.

[67] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf, “Pruning filters
for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

14

[68] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang, and
Bin Ren, “Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based
weight pruning,” in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp. 907–922.

[69] Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Sheng Lin, Hongjia Li, Wujie Wen, Xiang
Chen, Jian Tang, Kaisheng Ma, et al., “An image enhancing pattern-based sparsity for real-time
inference on mobile devices,” in European Conference on Computer Vision. Springer, 2020,
pp. 629–645.

[70] Jingyu Wang, Songming Yu, Zhuqing Yuan, Jinshan Yue, Zhe Yuan, Ruoyang Liu, Yanzhi
Wang, Huazhong Yang, Xueqing Li, and Yongpan Liu, “Paca: A pattern pruning algorithm and
channel-fused high pe utilization accelerator for cnns,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2022.

[71] Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, and Yarin Gal,
“Single shot structured pruning before training,” arXiv preprint arXiv:2007.00389, 2020.

[72] James E Falk and Jiming Liu, “On bilevel programming, part i: general nonlinear cases,”
Mathematical Programming, vol. 70, no. 1, pp. 47–72, 1995.

[73] Luis Vicente, Gilles Savard, and Joaquim Júdice, “Descent approaches for quadratic bilevel
programming,” Journal of Optimization Theory and Applications, vol. 81, no. 2, pp. 379–399,
1994.

[74] Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu, “Gradient-based bi-level optimization
for deep learning: A survey,” arXiv preprint arXiv:2207.11719, 2022.

[75] Douglas J White and G Anandalingam, “A penalty function approach for solving bi-level
linear programs,” Journal of Global Optimization, vol. 3, no. 4, pp. 397–419, 1993.

[76] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo, “On differentiating parameterized argmin and argmax problems with application
to bi-level optimization,” arXiv preprint arXiv:1607.05447, 2016.

[77] Shoham Sabach and Shimrit Shtern, “A first order method for solving convex bilevel optimiza-
tion problems,” SIAM Journal on Optimization, vol. 27, no. 2, pp. 640–660, 2017.

[78] Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang, “A generic first-
order algorithmic framework for bi-level programming beyond lower-level singleton,” in
International Conference on Machine Learning. PMLR, 2020, pp. 6305–6315.

[79] Junyi Li, Bin Gu, and Heng Huang, “Improved bilevel model: Fast and optimal algorithm
with theoretical guarantee,” arXiv preprint arXiv:2009.00690, 2020.

[80] Saeed Ghadimi and Mengdi Wang, “Approximation methods for bilevel programming,” arXiv
preprint arXiv:1802.02246, 2018.

[81] Kaiyi Ji, Junjie Yang, and Yingbin Liang, “Bilevel optimization: Nonasymptotic analysis and
faster algorithms,” arXiv preprint arXiv:2010.07962, 2020.

[82] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang, “A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic,” arXiv preprint
arXiv:2007.05170, 2020.

[83] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil, “Forward and
reverse gradient-based hyperparameter optimization,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1165–1173.

[84] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo, “On the iteration
complexity of hypergradient computation,” in International Conference on Machine Learning.
PMLR, 2020, pp. 3748–3758.

15

[85] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots, “Truncated back-
propagation for bilevel optimization,” in The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR, 2019, pp. 1723–1732.

[86] Yihua Zhang, Guanhuan Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu,
“Revisiting and advancing fast adversarial training through the lens of bi-level optimization,”
arXiv preprint arXiv:2112.12376, 2021.

[87] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine, “Meta-learning
with implicit gradients,” in Advances in Neural Information Processing Systems, 2019, pp.
113–124.

[88] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein, “Metapoison:
Practical general-purpose clean-label data poisoning,” arXiv preprint arXiv:2004.00225, 2020.

[89] Hanxiao Liu, Karen Simonyan, and Yiming Yang, “Darts: Differentiable architecture search,”
arXiv preprint arXiv:1806.09055, 2018.

[90] Zhangyu Chen, Dong Liu, Xiaofei Wu, and Xiaochun Xu, “Research on distributed renewable
energy transaction decision-making based on multi-agent bilevel cooperative reinforcement
learning,” 2019.

[91] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang, “Dsa:
More efficient budgeted pruning via differentiable sparsity allocation,” in European Conference
on Computer Vision. Springer, 2020, pp. 592–607.

[92] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li, “Learning structured sparsity
in deep neural networks,” Advances in neural information processing systems, vol. 29, 2016.

[93] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi
Wang, “A systematic dnn weight pruning framework using alternating direction method of
multipliers,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 184–199.

[94] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks,”
Journal of Machine Learning Research, vol. 22, no. 241, pp. 1–124, 2021.

[95] Hao Wang, Xiangyu Yang, Yuanming Shi, and Jun Lin, “A proximal iteratively reweighted
approach for efficient network sparsification,” IEEE Transactions on Computers, vol. 71, no.
1, pp. 185–196, 2020.

[96] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al., “Optimization
with sparsity-inducing penalties,” Foundations and Trends® in Machine Learning, vol. 4, no.
1, pp. 1–106, 2012.

[97] Uri Shaham, Yutaro Yamada, and Sahand Negahban, “Understanding adversarial train-
ing: Increasing local stability of neural nets through robust optimization,” arXiv preprint
arXiv:1511.05432, 2015.

[98] Xiang Deng and Zhongfei Mark Zhang, “Is the meta-learning idea able to improve the
generalization of deep neural networks on the standard supervised learning?,” in 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 150–157.

[99] Imre Csiszár, “Information geonetry and alternating minimization procedures,” Statistics and
decisions, vol. 1, pp. 205–237, 1984.

[100] Motasem Alfarra, Adel Bibi, Hasan Hammoud, Mohamed Gaafar, and Bernard Ghanem, “On
the decision boundaries of neural networks: A tropical geometry perspective,” arXiv preprint
arXiv:2002.08838, 2020.

[101] Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” arXiv preprint arXiv:1703.03400, 2017.

16

[102] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[103] Ya Le and Xuan Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7,
pp. 3, 2015.

[104] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[106] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section .
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec C.4
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Sec C.4
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3 and

Appendix A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sec. 4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Table A2

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

17

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The licences of used datasets are

provided in the cited references
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our code is included in the supplementary material
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18

	Introduction
	Related Work and Open Question
	BiP: Model Pruning via Bi-level Optimization
	Experiments
	Experiment Setup
	Experiment Results

	Conclusion

