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Abstract

The deployment constraints in practical applications necessitate the pruning of
large-scale deep learning models, i.e., promoting their weight sparsity. As illus-
trated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of
improving their generalization ability. At the core of LTH, iterative magnitude
pruning (IMP) is the predominant pruning method to successfully find ‘winning
tickets’. Yet, the computation cost of IMP grows prohibitively as the targeted
pruning ratio increases. To reduce the computation overhead, various efficient
‘one-shot’ pruning methods have been developed but these schemes are usually
unable to find winning tickets as good as IMP. This raises the question of how to
close the gap between pruning accuracy and pruning efficiency? To tackle it, we
pursue the algorithmic advancement of model pruning. Specifically, we formulate
the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO).
We show that the BLO interpretation provides a technically-grounded optimization
base for an efficient implementation of the pruning-retraining learning paradigm
used in IMP. We also show that the proposed bi-level optimization-oriented pruning
method (termed BIP) is a special class of BLO problems with a bi-linear problem
structure. By leveraging such bi-linearity, we theoretically show that BIP can
be solved as easily as first-order optimization, thus inheriting the computation
efficiency. Through extensive experiments on both structured and unstructured
pruning with 5 model architectures and 4 data sets, we demonstrate that BIP
can find better winning tickets than IMP in most cases, and is computationally
as efficient as the one-shot pruning schemes, demonstrating 2-7× speedup over
IMP for the same level of model accuracy and sparsity. Codes are available at
https://github.com/OPTML-Group/BiP.

1 Introduction

While over-parameterized structures are key to the improved generalization of deep neural networks
(DNNs) [1–3], they create new problems – the millions or even billions of parameters not only
increase computational costs during inference, but also pose serious deployment challenges on
resource-limited devices [4]. As a result, model pruning has seen a lot of research interest in recent
years, focusing on reducing model sizes by removing (or pruning) redundant parameters [4–8].
Model sparsity (achieved by pruning) also benefits adversarial robustness [9], out-of-distribution
generalization [10], and transfer learning [11]. Some pruning methods (towards structured sparsity)
facilitate model deployment on hardware [12, 13].
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Among various proposed model pruning algorithms [5, 9, 11, 14–27], the heuristics-based Iterative
Magnitude Pruning (IMP) is the current dominant approach to achieving model sparsity without
suffering performance loss, as suggested and empirically justified by the Lottery Ticket Hypothesis
(LTH) [17]. The LTH hypothesizes the existence of a subnetwork (the so-called ‘winning ticket’)
when trained in isolation (e.g., from either a random initialization [17] or an early-rewinding point of
dense model training [19]), can match the performance of the original dense model [5, 11, 17–20].
The core idea of IMP is to iteratively prune and retrain the model while progressively pruning
a small ratio of the remaining weights in each iteration, and continuing till the desired pruning
ratio has been reached. While IMP often finds the winning ticket, it incurs the cost of repeated
model retraining from scratch, making it prohibitively expensive for large datasets or large model
architectures [28, 29]. To improve the efficiency of model pruning, numerous heuristics-based
one-shot pruning methods [17, 21–25], e.g., one-shot magnitude pruning (OMP), have been proposed.
These schemes directly prune the model to the target sparsity and are significantly more efficient than
IMP. Yet, the promise of current one-shot pruning methods is dataset/model-specific [22, 30] and
mostly lies in the low pruning ratio regime [25]. As systematically studied in [22, 31], there exists
a clear performance gap between one-shot pruning and IMP. As an alternative to heuristics-based
schemes, optimization-based pruning methods [9, 15, 16, 26, 27] still follow the pruning-retraining
paradigm and adopt sparsity regularization [32, 33] or parameterized masking [9, 16, 27] to prune
models efficiently. However, these methods do not always match the accuracy of IMP and thus have
not been widely used to find winning tickets [17, 21, 23–25, 29]. The empirical results showing that
optimization underperforms heuristics motivate us to revisit the algorithmic fundamentals of pruning.
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Figure 1: A performance snapshot of the pro-
posed BIP method vs. the IMP baseline and the
original dense model across three pruned ResNet
models (ResNet-20, ResNet-56, and ResNet-18)
with 74% sparsity on CIFAR-10. The marker
size indicates the relative model size. The uni-
color region corresponds to the same model type
used by different pruning methods.

To this end, we put forth a novel perspective of model
pruning as a bi-level optimization (BLO) problem. In
this new formulation, we show that BLO provides a
technically-grounded optimization basis for an efficient
implementation of the pruning-retraining paradigm, the
key algorithmic component used in IMP. To the best
of our knowledge, we make the first rigorous connec-
tion between model pruning and BLO. Technically, we
propose a novel bi-level optimization-enabled pruning
method (termed BIP). We further show how BIP takes
advantage of the bi-linearity of the pruning problem to
avoid the computational challenges of common BLO
methods, and is as efficient as any first-order alternating
optimization scheme. Practically, we demonstrate the
superiority of the proposed BIP in terms of accuracy,
sparsity, and computation efficiency through extensive
experiments. BIP finds the best winning ticket nearly in all settings while taking time comparable
to the one-shot OMP. In Fig. 1, we present a snapshot of our empirical results for CIFAR-10 with
3 ResNet architectures at 74% pruning ratio. In all cases, BIP (⋆) finds winning tickets, improving
accuracy over the dense model (•) and matching IMP (▲), while being upto 5× faster than IMP.

Our contributions can be summarized as follows:

• (Formulation) We rethink the algorithmic foundation of model pruning through the lens of BLO
(bi-level optimization). The new BLO-oriented formulation disentangles pruning and retraining
variables, providing the flexibility to design the interface between pruning and retraining.

• (Algorithm) We propose the new bi-level pruning (BIP) algorithm, which is built upon the aforemen-
tioned BLO formulation and the implicit gradient-based optimization theory. Unlike computationally
intensive standard BLO solvers, we theoretically show that BIP is as efficient as any first-order
optimization by taking advantage of the bi-linear nature of the pruning variables.

• (Experiments) We conduct extensive experiments across 4 datasets (CIFAR-10, CIFAR-100, Tiny-
ImageNet and ImageNet), 5 model architectures, and 3 pruning settings (unstructured pruning,
filter-wise structured pruning, and channel-wise structured pruning). We show that (i) BIP achieves
higher test accuracy than IMP and finds the best winning tickets nearly in all settings, (ii) BIP is
highly efficient (comparable to one-shot pruning schemes), that is able to achieve 2-7× speedup over
IMP for the same level of model accuracy and sparsity, and (iii) BIP is able to find subnetworks that
achieve better performance than the dense model regardless of initialization rewinding.
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2 Related Work and Open Question

Neural network pruning. As neural networks become deeper and more sophisticated, model
pruning technology has gained increasing attention over the last decade since pruned models are
necessary for the deployment of deep networks in practical applications [4, 34, 35]. With the goal
of finding highly-sparse and highly-accurate subnetworks from original dense models, a variety
of pruning methods have been developed such as heuristics-based pruning [17, 21, 23–25, 29, 36]
and optimization-based pruning [9, 16, 26, 27]. The former identifies redundant model weights by
leveraging heuristics-based metrics such as weight magnitudes [6, 17, 19, 11, 22, 37, 31, 36, 38],
gradient magnitudes [21, 23, 24, 39, 40], and Hessian statistics [41–46].The latter is typically built on:
1) sparsity-promoting optimization [15, 33, 47–50], where model weights are trained by penalizing
their sparsity-inducing norms, such as ℓ0 and ℓ1 norms for irregular weight pruning, and ℓ2 norm
for structured pruning; 2) parameterized masking [16, 9, 51–55], where model weight scores are
optimized to filter the most important weights and achieve better performance.

Iterative vs. one-shot pruning, and motivation. Existing schemes can be further categorized into
one-shot or iterative pruning based on the pruning schedule employed for achieving the targeted model
sparsity. Among the iterative schemes, the IMP (Iterative Magnitude Pruning scheme) [17, 20, 56–
65, 36] has played a significant role in identifying high-quality ‘winning tickets’, as postulated
by LTH (Lottery Ticket Hypothesis) [18, 19]. To enable consistent comparisons among different
methods, we extend the original definition of winning tickets in [17] to ‘matching subnetworks’ [20]
so as to cover different implementations of winning tickets, e.g., the use of early-epoch rewinding for
model re-initialization [18] and the no-rewinding (i.e., fine-tuning) variant [66]. Briefly, the matching
subnetworks should match or surpass the performance of the original dense model [20]. In this work,
if a matching subnetwork is found better than the winning ticket obtained by the same method that
follows the original LTH setup [18, 19], we will also call such a matching subnetwork a winning
ticket throughout the paper.
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Figure 2: Illustration of the pros and cons of different pruning
methods executed over (ResNet-20, CIFAR-10). Left: test ac-
curacy vs. different pruning ratios of IMP and one-shot pruning
methods (OMP [17], GRASP [23], SNIP [21], SYNFLOW [24]).
Right: comparison of the efficiency with different sparsity.

For example, the current state-of-the-
art (SOTA) implementation of IMP in
[22] can lead to a pruned ResNet-20
on CIFAR-10 with 74% sparsity and
92.12% test accuracy, matching the per-
formance of the original dense model
(see red ⋆ in Fig. 2-Left). The IMP algo-
rithm typically contains two key ingre-
dients: (i) a temporally-evolving prun-
ing schedule to progressively increase
model sparsity over pruning iterations,
and (ii) the pruning-retraining learning
mechanism applied at each pruning iter-
ation. With a target pruning ratio of p%
with T pruning iterations, an example pruning schedule in (i) could be as follows – each iteration
prunes (p%)1/T of the currently unpruned model weights, progressively pruning fewer weights in
each iteration. For (ii), the unpruned weights in each pruning iteration are re-set to the weights
at initialization or at an early-training epoch [18], and re-trained till convergence. In brief, IMP
repeatedly prunes, resets, and trains the network over multiple iterations.

However, winning tickets found by IMP incur significant computational costs. The sparsest winning
ticket found by IMP in Fig. 2-Left (red ⋆) utilizes T = 6 pruning iterations. As shown in Fig. 2-Right,
this takes 3× more time than the original training of the dense model. To avoid the computational
cost of IMP, different kinds of ‘accelerated’ pruning methods were developed [17, 21, 23–25, 29],
and many fall into the one-shot pruning category: The network is directly pruned to the target sparsity
and retrained once. In particular, OMP (one-shot magnitude pruning) is an important baseline that
simplifies IMP [17]. It follows the pruning-retraining paradigm, but prunes the model to the target
ratio with a single pruning iteration. Although one-shot pruning schemes are computationally cheap
(Fig. 2-Right), they incur a significant accuracy drop compared to IMP (Fig. 2-Left). Even if IMP is
customized with a reduced number of training epochs per pruning round, the pruning accuracy also
drops largely (see Fig. A2). Hence, there is a need for advanced model pruning techniques to find
winning tickets like IMP, while being efficient like one-shot pruning.
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Different from unstructured weight pruning described above, structured pruning takes into consid-
eration the sparse patterns of the model, such as filter and channel-wise pruning [13, 48, 51, 67–
71]. Structured pruning is desirable for deep model deployment in the presence of hardware con-
straints [4, 34]. However, compared to unstructured pruning, it is usually more challenging to
maintain the performance and find structure-aware winning tickets [28, 29].

Open question. As discussed above, one-shot pruning methods are unable to match the predic-
tive performance of IMP, and structure-aware winning tickets are hard to find. Clearly, the best
optimization foundation of model pruning is underdeveloped. Thus, we ask:

Is there an optimization basis for a successful pruning algorithm that can attain high pruned
model accuracy (like IMP) and high computational efficiency (like one-shot pruning)?

The model pruning problem has a natural hierarchical structure – we need to find the best mask to
prune model parameters, and then, given the mask, find the best model weights for the unpruned
model parameters. Given this hierarchical structure, we believe that the bi-level optimization (BLO)
framework is one promising optimization basis for a successful pruning algorithm.

Bi-level optimization (BLO). BLO is a general hierarchical optimization framework, where the
upper-level problem depends on the solution to the lower-level problem. Such a nested structure
makes the BLO in its most generic form very difficult to solve, since it is hard to characterize the
influence of the lower-level optimization on the upper-level problem. Various existing literature
focuses on the design and analysis of algorithms for various special cases of BLO. Applications range
from the classical approximate descent methods [72–74], penalty-based methods [75, 76], to recent
BigSAM [77] and its extensions [78, 79]. It is also studied in the area of stochastic algorithms [80–82]
and back-propagation based algorithms [83–85]. BLO has also advanced adversarial training [86],
meta-learning [87], data poisoning attack generation [88], neural architecture search [89] as well as
reinforcement learning [90]. Although BLO was referred in [50] for model pruning, it actually called
an ordinary alternating optimization procedure, without taking the hierarchical learning structure of
BLO into consideration. To the best of our knowledge, the BLO framework has not been considered
for model pruning in-depth and systematically. We will show that model pruning yields a special
class of BLO problems with bi-linear optimization variables. We will also theoretically show that this
specialized BLO problem for model pruning can be solved as efficiently as first-order optimization.
This is in a sharp contrast to existing BLO applications that rely on heuristics-based BLO solvers
(e.g., gradient unrolling in meta learning [87] and neural architecture search [89, 91]).

3 BIP: Model Pruning via Bi-level Optimization

In this section, we re-investigate the problem of model pruning through the lens of BLO and develop
the bi-level pruning (BIP) algorithm. We can theoretically show that BIP can be solved as easily as
the first-order alternating optimization by taking advantage of the bi-linearity of pruning variables.

A BLO viewpoint on model pruning As described in the previous section, the pruning-retraining
learning paradigm covers two kinds of tasks: ❶ pruning that determines the sparse pattern of model
weights, and ❷ training remaining non-zero weights to recover the model accuracy. In existing
optimization-based pruning methods [92–95], the tasks ❶-❷ are typically achieved by optimizing
model weights, together with penalizing their sparsity-inducing norms, e.g., the ℓ1 and ℓ2 norms [96].
Different from the above formulation, we propose to separate optimization variables involved in the
pruning tasks ❶ and ❷. This leads to the (binary) pruning mask variable m ∈ {0, 1}n and the model
weight variable θ ∈ Rn. Here n denotes the total number of model parameters. Accordingly, the
pruned model is given by (m ⊙ θ), where ⊙ denotes the element-wise multiplication. As will be
evident later, this form of variable disentanglement enables us to explicitly depict how the pruning
and retraining process co-evolve, and helps customize the pruning task with high flexibility.

We next elaborate on how BLO can be established to co-optimize the pruning mask m and the
retrained sparse model weights θ. Given the pruning ratio p%, the sparsity constraint is given by
m ∈ S, where S = {m |m ∈ {0, 1}n,1Tm ≤ k} and k = (1 − p%)n. Our goal is to prune
the original model directly to the targeted pruning ratio p% (i.e., without calling for the IMP-like
sparsity schedule as described in Sec. 2) and obtain the optimized sparse model (m ⊙ θ). To this
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end, we interpret the pruning task (i.e., ❶) and the model retraining task (i.e., ❷) as two optimization
levels, where the former is formulated as an upper-level optimization problem, and it relies on the
optimization of the lower-level retraining task. We thus cast the model pruning problem as the
following BLO problem (with ❷ being nested inside ❶):

minimize
m∈S

ℓ(m⊙ θ∗(m))︸ ︷︷ ︸
❶: Pruning task

; subject to θ∗(m) = argmin
θ∈Rn

:= g(m, θ)︷ ︸︸ ︷
ℓ(m⊙ θ) +

γ

2
∥θ∥22︸ ︷︷ ︸

❷: Sparsity-fixed model retraining

, (1)

where ℓ denotes the training loss (e.g., cross-entropy), m and θ are the upper-level and lower-level
optimization variables respectively, θ∗(m) signifies the lower-level solution obtained by minimizing
the objective function g given the pruning mask m, and γ > 0 is a regularization parameter introduced
to convexify the lower-level optimization so as to stabilize the gradient flow from θ∗(m) to m and
thus the convergence of BLO [82, 97]. In a sharp contrast to existing single-level optimization-based
model pruning methods [92–95], the BLO formulation (1) brings in two advantages.

First, BLO has the flexibility to use mismatched pruning and retraining objectives at the upper and
lower optimization levels, respectively. This flexibility allows us to regularize the lower-level training
objective function in (1) and customize the implemented optimization methods at both levels. To be
more specific, one can update the upper-level pruning mask m using a data batch (called B2) distinct
from the one (called B1) used for obtaining the lower-level solution θ∗(m). The resulting BLO
procedure can then mimic the idea of meta learning to improve model generalization [98], where the
lower-level problem fine-tunes θ using B1, and the upper-level problem validates the generalization
of the sparsity-aware finetuned model (m⊙ θ∗(m)) using B2.

Second, BLO enables us to explicitly model and optimize the coupling between the retrained model
weights θ∗(m) and the pruning mask m through the implicit gradient (IG)-based optimization
routine. Here IG refers to the gradient of the lower-level solution θ∗(m) with respect to (w.r.t.)
the upper-level variable m, and its derivation calls the implicit function theory [76]. The use of IG
makes our proposed BLO-oriented pruning (1) significantly different from the greedy alternating
minimization [99] that learns the upper-level and lower-level variables independently (i.e., minimizes
one variable by fixing the other). We refer readers to the following section for the detailed IG theory.
We will also show in Sec. 4 that the pruning strategy from (1) can outperform IMP in many pruning
scenarios but is much more efficient as it does not call for the scheduler of iterative pruning ratios.

Optimization foundation of BIP. The key optimization challenge of solving the BIP problem (1)
lies in the computation of IG (implicit gradient). Prior to developing an effective solution, we first
elaborate on the IG challenge, the unique characteristic of BLO. In the context of gradient descent,
the gradient of the objective function in (1) yields

dℓ(m⊙ θ∗(m))

dm︸ ︷︷ ︸
Gradient of objective

= ∇mℓ(m⊙ θ∗(m)) +
d(θ∗(m)⊤)

dm︸ ︷︷ ︸
IG

∇θℓ(m⊙ θ∗(m)), (2)

where ∇m and ∇θ denote the partial derivatives of the bi-variate function ℓ(m ⊙ θ) w.r.t. the
variable m and θ respectively, dθ⊤/dm ∈ Rn×n denotes the vector-wise full derivative, and for ease
of notation, we will omit the transpose ⊤ when the context is clear. In (2), the IG challenge refers to
the demand for computing the full gradient of the implicit function θ∗(m) = argminθ g(m,θ) w.r.t.
m, where recall from (1) that g(m,θ) := ℓ(m⊙ θ) + γ

2 ∥θ∥
2
2.

Next, we derive the IG formula following the rigorous implicit function theory [76, 82, 87]. Based
on the fact that θ∗(m) satisfies the stationarity condition for the lower-level objective function in (2),
it is not difficult to obtain that (see derivation in Appendix A)

dθ∗(m)

dm
= −∇2

mθℓ(m⊙ θ∗)[∇2
θℓ(m⊙ θ∗) + γI]−1, (3)

where∇2
mθℓ and∇2

θℓ denote the second-order partial derivatives of ℓ respectively, and (·)−1 denotes
the matrix inversion operation.

Yet, the exact IG formula (3) remains difficult to calculate due to the presence of matrix inversion and
second-order partial derivatives. To simplify it, we impose the Hessian-free assumption,∇2

θℓ = 0,
which is mild in general; For example, the decision boundaries of neural networks with ReLU
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activations are piece-wise linear in a tropical hyper-surface [100], and this assumption has been
widely used in BLO-involved applications such as meta learning [101] and adversarial learning [86].
Given ∇2

θℓ = 0, the matrix inversion in (3) can be then mitigated, leading to the IG formula
dθ∗(m)

dm
= − 1

γ
∇2

mθℓ(m⊙ θ∗). (4)

At the first glance, the computation of the simplified IG (4) still requires the mixed (second-order)
partial derivative ∇2

mθℓ. However, BIP is a special class of BLO problems with bi-linear variables
(m⊙ θ). Based on this bi-linearity, we can prove that IG in (4) can be analytically expressed using
only first-order derivatives; see the following theorem.

Proposition 1 Assuming∇2
θℓ = 0 and defining∇zℓ(z) := ∇zℓ(z) |z=m⊙θ∗ , the implicit gradient

(4) is then given by
dθ∗(m)

dm
= − 1

γ
diag(∇zℓ(z)); (5)

Further, the gradient of the objective function given by (2) becomes
dℓ(m⊙ θ∗)

dm
= (θ∗ − 1

γ
m⊙∇zℓ(z))⊙∇zℓ(z), (6)

where ⊙ denotes the element-wise multiplication.

Proof: Using chain-rule, we can obtain that
∇θℓ(m⊙ θ∗) = diag(m)∇zℓ(z) = m⊙∇zℓ(z); (7)

similarly, ∇mℓ(m⊙ θ∗) = diag(θ∗)∇zℓ(z) = θ∗ ⊙∇zℓ(z) (8)

where diag(·) represents a diagonal matrix with · being the main diagonal vector. Further, we can
convert (4) to

∇2
mθℓ(m⊙ θ∗)

(7)
= ∇m [m⊙∇zℓ(z)]

chain rule
= diag(∇zℓ(z)) + diag(m)[∇m(∇zℓ(z))]

(8)
= diag(∇zℓ(z)) + diag(m)[diag(θ∗)∇2

zℓ(z)] = diag(∇zℓ(z)), (9)

where the last equality holds due to the Hessian-free assumption. With (9) and (4) we can prove (5).

Next, substituting the IG (5) to the upper-level gradient (2), we obtain that

dℓ(m⊙ θ∗)

dm
= ∇mℓ(m⊙ θ∗)− 1

γ
∇zℓ(z)⊙∇θℓ(m⊙ θ∗)

(7),(8)
= θ∗ ⊙∇zℓ(z)−

1

γ
∇zℓ(z)⊙ (m⊙∇zℓ(z)) = (θ∗ − 1

γ
m⊙∇zℓ(z))⊙∇zℓ(z),

which leads to (6). The proof is now complete. □

The key insight drawn from Prop. 1 is that the bi-linearity of pruning variables (i.e., m⊙ θ∗) makes
the IG-involved gradient (2) easily solvable, and the computational complexity is almost the same as
that of computing the first-order gradient∇zℓ(z) just once, as supported by (6)

BIP algorithm and implementation. We next formalize the BIP algorithm based on Prop. 1 and
the alternating gradient descent based BLO solver [82]. At iteration t, there are two main steps.

★ Lower-level SGD for model retraining: Given m(t−1), θ(t−1), and z(t−1) := m(t−1)⊙θ(t−1), we
update θ(t) by randomly selecting a data batch with the learning rate α and applying SGD (stochastic
gradient descent) to the lower-level problem of (1),

θ(t) = θ(t−1) − α∇θg(m
(t−1),θ(t−1))

(7)
= θ(t−1) − α[m(t−1) ⊙∇zℓ(z) | z=z(t−1) + γθ(t−1)], (θ-step)

★ Upper-level SPGD for pruning: Given m(t−1), θ(t), and z(t+1/2) := m(t−1) ⊙ θ(t), we update
m using SPGD (stochastic projected gradient descent) along the IG-enhanced descent direction (2),

m(t) =PS

[
m(t−1) − β

dℓ(m⊙ θ(t))

dm
|m=m(t−1)

]
(6)
=PS

[
m(t−1) − β

(
θ(t) − 1

γ
m(t−1) ⊙∇zℓ(z) | z=z(t+1/2)

)
⊙∇zℓ(z) | z=z(t+1/2)

]
, (m-step)
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Figure 3: Visualization of pruning pipeline comparison between IMP and BIP. Edge refers to the mask update
and color refers to the weight update.

where β > 0 is the upper-level learning rate, and PS(·) denotes the Euclidean projection onto the
constraint set S given by S = {m |m ∈ {0, 1}n,1Tm ≤ k} in (1) and is achieved by the top-k
hard-thresholding operation as will be detailed later.

In BIP, the (θ-step) and (m-step) steps execute iteratively. For clarity, Fig. 3 shows the difference
between the pruning pipelines of BIP and IMP. In contrast to IMP that progressively prunes and
retrains a model with a growing pruning ratio, BIP directly prunes the model to the targeted sparsity
level without involving costly re-training process. In practice, we find that both the upper- and lower-
level optimization routines of BIP converge very well (see Fig. A12 and Fig. A13). It is also worth
noting that both (θ-step) and (m-step) only require the first-order information∇zℓ(z), demonstrating
that BIP can be conducted as efficiently as first-order optimization. In Fig. A1, we highlight the
algorithmic details on the BIP pipeline. We present more implementation details of BIP below and
refer readers to Appendix B for a detailed algorithm description.

✦ Discrete optimization over m: We follow the ‘convex relaxation + hard thresholding’ mechanism
used in [9, 16]. Specifically, we relax the binary masking variables to continuous masking scores
m ∈ [0,1]. We then acquire loss gradients at the backward pass based on the relaxed m. At the
forward pass, we project it onto the discrete constraint set S using the hard thresholding operator,
where the top k elements are set to 1s and the others to 0s. See Appendix B for more discussion.

✦ Data batch selection for lower-level and upper-level optimization: We adopt different data batches
(with the same batch size) when implementing (θ-step) and (m-step). This is one of the advantages
of the BLO formulation, which enables the flexibility to customize the lower-level and upper-level
problems. The use of diverse data batches is beneficial to generalization as shown in [98].

✦ Hyperparameter tuning: As described in (θ-step)-(m-step), BIP needs to set two learning rates α
and β for lower-level and upper-level optimization, respectively. We choose α = 0.01 and β = 0.1 in
all experiments, where we adopt the mask learning rate β from Hydra [9] and set a smaller lower-level
learning rate α, as θ is initialized by a pre-trained dense model. We show ablation study on α
in Fig. A8(c). BLO also brings in the low-level convexification parameter γ. We set γ = 1.0 in
experiments and refer readers to Fig. A8(b) for a sanity check.

✦ One-step vs. multi-step SGD: In (θ-step), the one-step SGD is used and helps reduce the computa-
tion overhead. In practice, we also find that the one-step SGD is sufficient: The use of multi-step
SGD in BIP does not yield much significant improvement over the one-step version; see Fig. A8(a).

✦ Extension to structured pruning: We formulate and solve the BIP problem in the context of
unstructured (element-wise) weight pruning. However, if define the pruning mask m w.r.t. model’s
structural units (e.g., filters), BIP is easily applied to structured pruning (see Fig. 6 and Fig. A10).
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Figure 4: Unstructured pruning trajectory given by test accuracy (%) vs. sparsity (%) on various dataset-model
pairs. The proposed BIP is compared with HYDRA [9], IMP [22], OMP [22], GRASP [23]. And the performance
of dense model and that of the best winning ticket are marked using dashed lines in each plot. The solid line and
shaded area of each pruning method represent the mean and variance of test accuracies over 3 independent trials.
We observe that BIP consistently outperforms the other baselines. Note in the (ImageNet, ResNet-50) setting,
we only compare BIP with our strongest baseline IMP due to computational resource constraints.

4 Experiments

In this section, we present extensive experimental results to show the effectiveness of BIP across
multiple model architectures, various datasets, and different pruning setups. Compared to IMP,
one-shot pruning, and optimization-based pruning baselines, we find that BIP can find better winning
tickets in most cases and is computationally efficient.

4.1 Experiment Setup

Datasets and models. Following the pruning benchmark in [22], we consider 4 datasets including
CIFAR-10 [102], CIFAR-100 [102], Tiny-ImageNet [103], ImageNet [104], and 5 architecture types
including ResNet-20/56/18/50 and VGG-16 [105, 106]. Tab. A1 summarizes these datasets and
model configurations and setups.

Baselines, training, and evaluation. As baselines, we mainly focus on 4 SOTA pruning methods,
① IMP [17], ② OMP [17], ③ GRASP [23] (a one-shot pruning method by analyzing gradient
flow at initialization), and ④ HYDRA [9] (an optimization-based pruning method that optimizes
masking scores). It is worth noting that there exist various implementations of IMP, e.g., specified
by different learning rates and model initialization or ‘rewinding’ strategies [18]. To make a fair
comparison, we follow the recent IMP benchmark in [22], which can find the best winning tickets over
current heuristics-based pruning baselines. We also remark that HYDRA is originally proposed for
improving the adversarial robustness of a pruned model, but it can be easily customized for standard
pruning when setting the adversary’s strength as 0 [9]. We choose HYDRA as a baseline because
it can be regarded as a single-level variant of BIP with post-optimization weight retraining. When
implementing BIP, unless specified otherwise, we use the 1-step SGD in (θ-step), and set the learning
rates (α, β) and the lower-level regularization parameter γ as described in the previous section. When
implementing baselines, we follow their official repository setups. We evaluate the performance
of all methods mainly from two perspectives: (1) the test accuracy of the sub-network, and (2) the
runtime of pruning to reach the desired sparsity. We refer readers to Tab. A3 and Appendix C.2 for
more training and evaluation details, such as training epochs and learning rate schedules.

4.2 Experiment Results

BIP identifies high-accuracy subnetworks. In what follows, we look at the quality of winning
tickets identified by BIP. Two key observations can be drawn from our results: (1) BIP finds winning
tickets of higher accuracy and/or higher sparsity than the baselines in most cases (as shown in Fig. 4
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Table 1: The sparsest winning tickets found by different methods at different data-model setups. Winning
tickets refer to the sparse models with an average test accuracy no less than the dense model [20]. In each cell,
p% (acc±std%) represents the sparsity as well as the test accuracy. The test accuracy of dense models can be
found in the header. ✗ signifies that no winning ticket is found by a pruning method. Given the data-model setup
(i.e., per column), the sparsest winning ticket is highlighted in bold.

Method
CIFAR-10 CIFAR-100

ResNet-18 ResNet-20 ResNet-56 VGG-16 ResNet-18 ResNet-20
(94.77%) (92.12%) (92.95%) (93.65%) (76.67%) (68.69%)

IMP 87% (94.77±0.10%) 74% (92.15±0.15%) 74% (92.99±0.12%) 89% (93.68±0.05%) 87% (76.91±0.19%) ✗
OMP 49% (94.80±0.10%) ✗ ✗ 20% (93.79±0.06%) 74% (76.99±0.07%) ✗

GRASP ✗ ✗ 36% (93.07±0.34%) ✗ ✗ ✗
HYDRA ✗ ✗ ✗ 87% (93.73±0.03%) ✗ 20% (68.94±0.17%)

BIP 89% (94.79±0.15%) 67% (92.14±0.15%) 74% (93.13±0.04%) 93% (93.75±0.15%) 89% (76.69±0.18%) 49% (68.78±0.10%)
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Figure 6: Filter pruning given by test accuracy (%) vs. pruning ratio (%). The visual presentation setting is the
same as Fig. 4. We observe that BIP identifies winning tickets of structured pruning in certain sparsity regimes.

and Tab. 1); (2) The superiority of BIP holds for both unstructured pruning and structured pruning (as
shown in Fig. 6 and Fig. A10). We refer to more experiment results in Appendix C.3.

Fig. 4 shows the unstructured pruning trajectory (given by test accuracy vs. pruning ratio) of BIP
and baseline methods in 8 model-dataset setups. For comparison, we also present the performance of
the original dense model. As we can see, the proposed BIP approach finds the best winning tickets
(in terms of the highest accuracy) compared to the baselines across all the pruning setups. Among the
baseline methods, IMP is the most competitive method to ours. However, the improvement brought
by BIP is significant with respect to the variance of IMP, except for the 60%-80% sparsity regime
in (CIFAR-10, ResNet-20). In the case of (CIFAR-100, ResNet-20), where IMP can not find any
winning tickets (as confirmed by [22]), BIP still manages to find winning tickets with around 0.6%
improvement over the dense model. In Tab. 1, we summarize the sparsest winning tickets along the
pruning trajectory identified by different pruning methods. BIP can identify the winning tickets with
higher sparsity levels than the other methods, except in the case of (CIFAR-10, ResNet-20).
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Figure 5: Time consumption comparison on
(CIFAR-10, ResNet-18) with different prun-
ing ratio p.

Fig. 6 demonstrates the structured pruning trajectory on
the CIFAR-10/100 datasets. Here we focus on filter prun-
ing, where the filter is regarded as a masking unit in (1).
We refer readers to Fig. A10 for channel-wise pruning re-
sults. Due to the page limit, we only report the results
of the filter-wise pruning in the main paper and please
refer to Appendix C.3 for channel-wise pruning. Com-
pared to Fig. 4, Fig. 6 shows that it becomes more difficult
to find winning tickets of high accuracy and sparsity in
the structured pruning, and the gap among different meth-
ods decreases. This is not surprising, since filter pruning
imposes much stricter pruning structure constraints than
irregular pruning. However, BIP still outperforms all the
baselines. Most importantly, it identifies clear winning
tickets in the low sparse regime even when IMP fails.

BIP is computationally efficient. In our experiments, another key observation is that BIP yields
sparsity-agnostic runtime complexity while IMP leads to runtime exponential to the target sparsity.
Fig. 5 shows the computation cost of different methods versus pruning ratios on (CIFAR-10, ResNet-
18). For example, BIP takes 86 mins to find the sparsest winning ticket (with 89% sparsity in Tab. 1).
This yields 7× less runtime than IMP, which consumes 620 mins to find a comparable winning ticket
with 87% sparsity. Compared to the optimization-based baseline HYDRA, BIP is more efficient as it
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Figure 7: The sensitivity of BIP to rewinding epoch numbers on different datasets and model architectures.
"N/A" in the x-axis indicates BIP without retraining.

does not rely on the extra post-optimization retraining; see Tab. A2 for a detailed summary of runtime
and number of training epochs required by different pruning methods. Further, BIP takes about 1.25
× more computation time than GRASP and OMP. However, the latter methods lead to worse pruned
model accuracy, as demonstrated by their failure to find winning tickets in Tab. 1, Fig. 4, and Fig. 6.

BIP requires no rewinding. Another advantage of BIP is that it insensitive to model rewinding to
find matching subnetworks. Recall that rewinding is a strategy used in LTH [19] to determine what
model initialization should be used for retraining a pruned model. As shown in [22], an IMP-identified
winning ticket could be sensitive to the choice of a rewinding point. Fig. 7 shows the test accuracy
of the BIP-pruned model when it is retrained at different rewinding epochs under various datasets
and model architectures, where ‘N/A’ in the x-axis represents the case of no retraining (and thus
no rewinding). As we can see, a carefully-tuned rewinding scheme does not lead to a significant
improvement over BIP without retraining. This suggests that the subnetworks found by BIP are
already of high quality and does not require any rewinding operation.

Additional results. We include more experiment results in Appendix C.3. In particular, we show
more results in both unstructured and structured pruning settings in Fig. A4, Fig. A5, Fig. A6 and
Fig. A7, where we compare BIP with more baselines and cover more model architectures. We also
study the sensitivity of BIP to the lower-level step number, lower-level regularization coefficient,
the significance of the implicit gradient term (2), learning rate, and batch size, as shown in Fig. A8
and Fig. A9. To demonstrate the convergence of the upper-level and lower-level optimization in BIP,
we show the training trajectory of BIP for accuracy (Fig.A12) and mask score (Fig.A13), and show
how the lower-level step number affects the convergence speed (Fig. A14)). Further, we show the
performance of BIP vs. the growth of training epochs (Fig. A15), and its performance vs. different
data batch schedulers (see Fig. A16).

5 Conclusion

We proposed the BIP method to find sparse networks through the lens of BLO. Our work advanced
the algorithmic foundation of model pruning by characterizing its pruning-retraining hierarchy
using BLO. We theoretically showed that BIP can be solved as easily as first-order optimization
by exploiting the bi-linearity of pruning variables. We also empirically showed that BIP can find
high-quality winning tickets very efficiently compared to the predominant iterative pruning method.
In the future, we will seek the optimal curriculum of training data at different optimization levels of
BIP, and will investigate the performance of our proposal for actual hardware acceleration.
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