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Abstract

This paper considers the challenging tasks of Multi-Agent Reinforcement Learning
(MARL) under partial observability, where each agent only sees her own individual
observations and actions that reveal incomplete information about the underly-
ing state of system. This paper studies these tasks under the general model of
multiplayer general-sum Partially Observable Markov Games (POMGs), which is
significantly larger than the standard model of Imperfect Information Extensive-
Form Games (IIEFGs). We identify a rich subclass of POMGs—weakly revealing
POMGs—in which sample-efficient learning is tractable. In the self-play setting,
we prove that a simple algorithm combining optimism and Maximum Likelihood
Estimation (MLE) is sufficient to find approximate Nash equilibria, correlated
equilibria, as well as coarse correlated equilibria of weakly revealing POMGs, in a
polynomial number of samples when the number of agents is small. In the setting
of playing against adversarial opponents, we show that a variant of our optimistic
MLE algorithm is capable of achieving sublinear regret when being compared
against the optimal maximin policies. To our best knowledge, this work provides
the first line of sample-efficient results for learning POMGs.

1 Introduction

This paper studies Multi-Agent Reinforcement Learning (MARL) under partial observability, where
each player tries to maximize her own utility via interacting with an unknown environment as
well as other players. In addition, each agent only sees her own observations and actions, which
reveal incomplete information about the underlying state of system. A large number of real-world
applications can be cast into this framework: in Poker, cards in a player’s hand are hidden from the
other players; in many real-time strategy games, players have only access to their local observations;
in multi-agent robotic systems, agents with first-person cameras have to cope with noisy sensors and
occlusions. While practical MARL systems have achieved remarkable success in a set of partially
observable problems including Poker [9], Starcraft [40], Dota [6] and autonomous driving [36], the
theoretical understanding of MARL under partial observability remains very limited.

The combination of partial observability with multiagency introduces a number of unique challenges.
The non-Markovian nature of the observations forces the agent to maintain memory and reason
about beliefs of the system state, all while exploring to collect information about the environment.
Consequently, well-known complexity-theoretic results show that learning and planning in partially
observable environments is statistically and computationally intractable even in the single-agent
setting [35, 30, 41, 29]. The presence of interaction between multiple agents further complicates the
partially observable problems. In addition to dealing with the adaptive nature of other players who
can adjust their strategies according to the learner’s past behaviors, the learner is further required to
discover and exploit the information asymmetry due to the separate observations of each agent.
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As a result, prior theoretical works on partially observable MARL have been mostly focused on
a small subset of problems with strong structural assumptions. For instance, the line of works
on Imperfect Information Extensive-Form Games (IIEFG) [see, e.g., 45, 14, 13, 24] assumes tree-
structured transition with small depth1 as well as a special type of emission which can be represented
as information sets. In contrast, this paper considers a more general mathematical model known as
Partially Observable Markov Games (POMGs). POMGs are the natural extensions of both Partially
Observable Markov Decision Processes (POMDPs)—the standard model for single-agent partially
observable RL, and Markov Games [37]—the standard model for fully observable MARL. Despite
the complexity barriers of learning partially observable systems apply to POMGs, they are of a
worst-case nature, which do not preclude efficient algorithms for learning interesting subclasses of
POMGs. This motivates us to ask the following question:

Can we develop efficient algorithms that learn a rich class of POMGs?

In this paper, we provide the first positive answer to the highlighted question in terms of the sample
efficiency. 2 We identify a rich family of tractable POMGs—weakly revealing POMGs (see Section
3). The weakly revealing condition only requires the joint observations of all agents to reveal certain
amount of information about the latent states, which is satisfied in many real-world applications. The
condition rules out the pathological instances where no player has any information to distinguish
latent states, which prevents efficient learninig in the worst case.

In the self-play setting where the algorithm can control all the players to learn the equilibria by
playing against itself, this paper proposes a new simple algorithm—Optimistic Maximum Likelihood
Estimation for Learning Equilibria (OMLE-Equilibrium). As the name suggests, it combines opti-
mism, MLE principles with equilibria finding subroutines. The algorithm provably finds approximate
Nash equilibria, coarse correlated equilibria and correlate equilibria of any weakly-revealing POMGs
using a number of samples polynomial in all relevant parameters.

In the setting of playing against adversarial opponents, we measure the performance of our algorithm
by comparing against the optimal maximin policies. We first prove that learning in this setting is
hard if each player can only see her own observations and actions. Nevertheless, if the agent is
allowed to access other players’ observations and actions after each episode of play (e.g., watch
the replays of the games from other players’ perspectives afterwards), then we can design a new
algorithm OMLE-Adversary which achieves sublinear regret.

To our best knowledge, this is the first line of provably sample-efficient results for learning rich classes
of POMGs. Importantly, the classes of problems that can be learned in this paper are significantly
larger than known tractable classes of MARL problems under partial observability.

1.1 Technical novelty

This paper builds upon the recent progress in learning single-agent POMDPs [26], which identifies
the class of weakly revealing POMDPs and develops OMLE algorithm for learning the optimal policy.
Besides obtaining a completely new set of results in the multi-agent setting, we here highlight a few
contributions and technical novelties of this paper comparing to [26].

• This paper rigorously formulates the models, related concepts and learning objectives of multi-
player general-sum POMGs, and provides the first line of sample-efficient learning results.

• Extending the weakly revealing conditions into the multiagent setting lead to two natural candidates:
either (a) joint observations or (b) individual observations are required to weakly reveal the state
information. This paper shows the former (the weaker assumption) suffices to guarantee tractability.

• Results in the self-play setting requires careful design of optimistic planning algorithms that
effectively address the game-theoretical aspects of the problem under partial observability. We
achieve this by Subroutine 1, which is even distinct from the standard techniques for learning MGs.

• The discussions and results in the setting of playing against adversarial opponents are completely
new, and unique to the multiagent setup.

1The sample complexity of learning IIEFGs scale polynomially with respect to the number of information
sets, which typically has an exponential growth in depth.

2For computational efficiency, due to the inherent hardness of planning in POMDPs, all existing provable
algorithms that learn large classes of POMDPs (single-agent version of POMGs) require super-polynomial time.
We leave the challenge of computationally efficient learning for future work.
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1.2 Related Works

Reinforcement learning has been extensively studied in the single-agent fully-observable setting [see,
e.g., 1, 10, 18, 23, 44, 17, 20, and the references therein] . For the purpose of this paper, we focus on
reviewing existing works on partially observable RL and multi-agent RL in the exploration setting.

Markov games In recent years, there has been growing interest in studying Markov games [37]
— the standard generalization of MDPs from the single-player setting to the multi-player setting.
Various sample-efficient algorithms have been designed for either two-player zero-sum MGs [e.g.,
8, 42, 3, 28, 5, 43, 22] or multi-player general-sum MGs [e.g., 28, 21, 38, 11]. However, all these
works rely on the states being fully observable, while the POMGs studied in this paper allow states to
be only partially observable, which strictly generalizes MGs.

POMDPs POMDPs generalize MDPs from the fully observable setting to the partially observable
setting. It is well-known that in POMDPs both planning [35, 41] and model estimation [29] are
computationally hard in the worst case. Besides, reinforcement learning of POMDPs is also known
to be statistically hard: [25] proved that finding a near-optimal policy of a POMDP in the worst
case requires a number of samples that is exponential in the episode length. The hard instances are
those pathological POMDPs where the observations contain no useful information for identifying the
system dynamics. Nonetheless, these hardness results are all in the worst-case sense and there are still
many intriguing positive results on sample-efficient learning of subclasses of POMDPs. For example,
[15, 2, 19] applied spectral methods to learning undercomplete POMDPs and [26] developed the
optimistic MLE approach for learning both undercomplete and overcomplete POMDPs. We refer
interested readers to [26] for a thorough review of existing results on POMDPs.

In terms of algorithmic design, our algorithms build upon the optimistic MLE methodology developed
in [26]. Compared to [26], our main algorithmic contribution lies in the design of the optimistic
equilibrium computation subroutine in the self-play setting and the optimistic maximin policy
design in the adversarial setting. In terms of analysis, our proofs requrie new techniques tailored to
controlling game-theoretic regret, in addition to the OMLE guarantees imported from [26]. For more
detailed explanations of our technical contribution, please refer to Section 1.1.

Imperfect-information extensive-form games In the literature on game theory, there is a long
history of learning Imperfect-Information Extensive-Form Games with perfect recall (IIEFGs),
[see, e.g., 45, 14, 12, 13, 24] and the references therein. IIEFGs can be viewed as special cases
of POMGs with tree-structured transition and deterministic emission (which are also known as
information sets). As a result, IIEFGs can not efficiently represent POMGs with general transition
and stochastic emission (see Appendix A), and thus sample-efficient learning results for IIEFGs does
not imply sample-efficient learning of POMGs. On the other hand, we show that all IIEFGs can be
efficiently represented by 1-weakly revealing POMGs (see Appendix A). Therefore, all algorithms and
theoretical results developed in this paper can immediately used to learn IIEFGs with a polynomial
sample complexity.

Decentralized POMDPs There is another classic model for studying multi-agent partially observ-
able RL, named decentralized POMDPs [e.g., 32, 33], which is a special subclass of POMGs where
all players share a common reward target. Compared to general POMGs, decentralized POMDPs can
only simulate cooperative relations among players, while general POMGs can model both cooperative
and competitive relations. Besides, most works [e.g., 31, 7, 34, 39] along this direction mainly focus
on the computational complexity of planning with known models or simulators instead of the sample
efficiency in the exploration setting.

2 Preliminary

In this paper, we consider Partially Observable Markov Games (POMGs) in its most generic—
multiplayer general-sum form. Formally, we denote a tabular episodic POMG with n players by
tuple (H,S, {Ai}ni=1, {Oi}ni=1;T,O, µ1; {ri}ni=1), where H denotes the length of each episode, S
the state space with |S| = S, Ai denotes the action space for the ith player with |Ai| = Ai. We
denote by a := (a1, · · · , an) the joint actions of all n players, and by A := A1 × . . .×An the joint
action space with |A| = A =

∏
iAi. T = {Th}h∈[H] is the collection of transition matrices, so that
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Th(·|s,a) ∈ ∆S gives the distribution of the next state if joint actions a are taken at state s at step
h. µ1 denotes the distribution of the initial state s1. Oi denotes the observation space for the ith
player with |Oi| = Oi. We denote by o := (o1, . . . , on) the joint observations of all n players, and
byO := O1× . . .×On with |O| = O =

∏
iOi. O = {Oh}h∈[H] ⊆ RO×S is the collection of joint

emission matrices, so that Oh(·|s) ∈ ∆O gives the emission distribution over the joint observation
space O at state s and step h. Finally ri = {ri,h}h∈[H] is the collection of known reward functions
for the ith player, so that ri,h(oi) ∈ [0, 1] gives the deterministic reward received by the ith player if
she observes oi at step h. 3 We remark that since the relation among the rewards of different players
can be arbitrary, this model of POMGs subsumes both the cooperative and the competitive settings in
partially observable MARL.

In a POMG, the states are always hidden from all players, and each player only observes her own
individual observations and actions. That is, each player can not see the observations and actions of
the other players. At the beginning of each episode, the environment samlpes s1 from µ1. At each step
h ∈ [H], each player i observes her own observation oi,h where oh := (o1,h, . . . , on,h) are jointly
sampled from Oh(· | sh). Then each player i receives reward ri,h(oi,h) and picks action ai,h ∈ Ai
simultaneously. After that the environment transitions to the next state sh+1 ∼ Th(·|sh,ah) where
ah := (a1,h, . . . , an,h). The current episode terminates immediately once sH+1 is reached.

Policy, value function To define different types of polices, we extend the conventions in fully
observable Markov games [21] to the partially observable settings. A (random) policy πi of the ith

player is a map πi : Ω ×
⋃H
h=1

(
(Oi ×Ai)h−1 ×Oi

)
→ Ai, which maps a random seed ω from

space Ω and a history of length h ∈ [H]—say τi,h := (oi,1, ai,1, · · · , oi,h), to an action in Ai. To
execute policy πi, we first draw a random sample ω at the beginning of the episode. Then, at each step
h, the ith player simply takes action πi(ω, τi,h). We note here ω is shared among all steps h ∈ [H].
ω encodes both the correlation among steps and the individual randomness of each step. We further
say a policy πi is deterministic if πi(ω, τi,h) = πi(τi,h) which is independent of the choice of ω.

By definition, a random policy is equivalent to a mixture of deterministic policies because given
a fixed ω the decision of πi on any history is deterministic. With slight abuse of notation, we use
πi(ω, ·) to refer to the deterministic policy realized by policy πi and a fixed ω. We denote the set of
all policies of the ith player by Πi and the set of all deterministic ones by Πdet

i .

A joint (potentially correlated) policy is a set of policies {πi}ni=1, where the same random seed
ω is shared among all agents, which we denote as π = π1 � π2 � . . . � πn. We also denote
π−i = π1 � . . . πi−1 � πi+1 � . . . � πn to be the joint policy excluding the ith player. A special
case of joint policy is the product policy where the random seed has special form ω = (ω1, . . . , ωn),
and for any i ∈ [n], πi only uses the randomness in ωi, which is independent of remaining {ωj}j 6=i,
which we denote as π = π1 × π2 × . . .× πn.

We define the value function V πi as the expected cumulative reward that the ith player will receive if
all players follow joint policy π:

V πi := Eπ
[∑H

h=1 ri,h(oi,h)
]
. (1)

where the expectation is taken over the randomness in the initial state, the transitions, the emissions,
and the random seed ω in policy π.

Best response and strategy modification For any strategy π−i, the best response of the ith player
is defined as a policy of the ith player, which is independent of the randomness in π−i and achieves
the highest value for herself conditioned on all other players deploying π−i. Formally, the best
response is the maximizer of maxπ′i V

π′i×π−i

i whose value we also denote as V †,π−i

i for simplicity.
By its definition, we know the best response can always be achieved by deterministic policies.

A strategy modification for the ith player is a map φi : Πdet
i → Πdet

i , which maps a deterministic
policy in Πdet

i to another one in it. For any such strategy modification φi, we can naturally extend its
domain and image to include random policies, i.e., define its extension φi : Πi → Πi as follows: by
definition, a random policy π can be expressed as a mixture of deterministic policies, i.e., as π(ω, ·)
(a deterministic policy for a fixed ω) with a distribution over ω. Then if we apply map φi on random

3This is equivalent to assuming the reward information is contained in the observation.
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policy π, we can define the resulting random policy (denoted as φi � πi) as φi(πi(ω, ·)) (again a
deterministic policy for a fixed ω) with the same distribution over ω. For any joint policy π, we define
the best strategy modification of the ith player as the maximizer of maxφi

V
(φi�πi)�π−i

i .

Different from the best response, which is completely independent of the randomness in π−i, the best
strategy modification changes the policy of the ith player while still utilizing the shared randomness
among πi and π−i. Therefore, the best strategy modification is more powerful than the best response:
formally one can show that maxφi

V
(φi�πi)�π−i

i ≥ maxπ′i V
π′i×π−i

i for any policy π.

2.1 Learning objectives

We focus on three classic equilibrium concepts in game theory—Nash Equilibrium, Correlated
Equilibrium (CE) and Coarse Correlated Equilibrium (CCE). First, a Nash equilibrium is defined as a
product policy in which no player can increase her value by changing only her own policy. Formally,

Definition 1 (Nash Equilibrium). A product policy π is a Nash equilibrium if V †,π−i

i = V πi for all
i ∈ [n]. A product policy π is an ε-approximate Nash equilibrium if V †,π−i

i ≤ V πi + ε for all i ∈ [n].

The Nash-regret of a sequence of product policies is the cumulative violation of the Nash condition.
Definition 2 (Nash-regret). Let πk denote the (product) policy deployed by an algorithm in the kth

episode. After a total of K episodes, the Nash-regret is defined as

RegretNash(K) =
∑K
k=1 maxi∈[n] (V

†,πk
−i

i − V πk

i ).

Second, a coarse correlated equilibrium is defined as a joint (potentially correlated) policy where no
player can increase her value by unilaterally changing her own policy. Formally,

Definition 3 (Coarse Correlated Equilibrium). A joint policy π is a CCE if V †,π−i

i ≤ V πi for all
i ∈ [n]. A joint policy π is an ε-approximate CCE if V †,π−i

i ≤ V πi + ε for all i ∈ [n].

The only difference between Definition 1 and Definition 3 is that a Nash equilibrium has to be a
product policy while a CCE can be correlated. Therefore, CCE is a relaxed notion of Nash equilibrium,
and a Nash equilibrium is always a CCE. Similarly, we can define the CCE-regret for a sequence of
potentially correlated policies as the cumulative vilolation of the CCE condition.
Definition 4 (CCE-regret). Let πk denote the policy deployed by an algorithm in the kth episode.
After a total of K episodes, the CCE-regret is defined as

RegretCCE(K) =
∑K
k=1 maxi∈[n] (V

†,πk
−i

i − V πk

i ).

Finally, a correlated equilibrium is defined as a joint (potentially correlated) policy where no player
can increase her value by unilaterally applying any strategy modification. Formally,

Definition 5 (Correlated Equilibrium). A joint policy π is a CE if maxφi
V

(φi�πi)�π−i

i = V πi for all
i ∈ [n]. A joint policy π is an ε-approximate CE if maxφi

V
(φi�πi)�π−i

i ≤ V πi + ε for all i ∈ [m].

In Partially Observable Markov games, we always have that a Nash equilibrium is a CE, and a CE is
a CCE. Finally, we define the CE-regret to be the cumulative violation of the CE condition.
Definition 6 (CE-regret). Let πk denote the policy deployed by an algorithm in the kth episode. After
a total of K episodes, the CE-regret is defined as

RegretCE(K) =
∑K
k=1 maxi∈[n] maxφi

(V
(φi�πk

i )�πk
−i

i − V πk

i ).

3 Weakly Revealing Partially Observable Markov Games

In this section, we define the class of weakly revealing POMGs. To begin with, we consider
undercomplete POMGs where there are more observations than hidden states, i.e., O ≥ S. Formally,
the family of α-weakly revealing POMGs includes all POMGs, in which the Sth singular value of
each emission matrix Oh is lower bounded by α > 0.
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Algorithm 1 OMLE-Equilibrium

1: Initialize: B1 = {θ̂ ∈ Θ : minh σS(Ôh) ≥ α}, D = {}
2: for k = 1, . . . ,K do
3: compute πk =Optimistic_Equilibrium(Bk)
4: follow πk to collect a trajectory τk = (ok1 ,a

k
1 , . . . ,o

k
H ,a

k
H)

5: add (πk, τk) into D and update

Bk+1 =

{
θ̂ ∈ Θ :

∑
(π,τ)∈D

logPπ
θ̂
(τ) ≥ max

θ′∈Θ

∑
(π,τ)∈D

logPπθ′(τ)− β
}⋂

B1

6: output πout that is sampled uniformly at random from {πk}k∈[K]

Assumption 1 (α-weakly revealing condition). There exists α > 0, such that minh σS(Oh) ≥ α.

Assumption 1 is simply a robust version of the condition that the rank of each emission matrix is
S, which guarantees that no two different latent state mixtures can generate the same observation
distribution, i.e., Ohν1 6= Ohν2 for any different ν1, ν2 ∈ ∆S . Intuitively, this guarantees that the
joint observations of all agents contain sufficient information to distinguish any two different state
mixtures. We remark that this is much weaker than requiring the individual observations of each agent
contain sufficient information about the latent states. The weakly revealing condition is important
in excluding those pathological POMGs where the observations contain no useful information for
identifying the key parts of model dynamics.

Note that Assumption 1 never holds in the overcomplete setting (S > O) as it is impossible to
distinguish any two latent state mixtures by only inspecting the observation distribution in a single
step. To address this issue, we can instead inspect the observations for m-consecutive steps. To
proceed, we define the m-step emission-action matrices

{Mh ∈ R(Am−1Om)×S}h∈[H−m+1]

as follows: Given an observation sequence ō of length m, initial state s and action sequence ā of
length m− 1, we let [Mh](ā,ō),s be the probability of receiving ō provided that the action sequence ā
is used from state s and step h:

[Mh](ā,ō),s = P(oh:h+m−1 = ō | sh = s, ah:h+m−2 = ā), ∀(ā, ō, s) ∈ Am−1 ×Om × S. (2)

Similar to the undercomplete setting, the weakly-revealing condition in the over-complete setting
simply assumes the Sth singular value of each m-step emission-action matrix is lower bounded.
Assumption 2 (multistep α-weakly revealing condition). There exists m ∈ N, α > 0 such that
minh σS(Mh) ≥ α where Mh is the m-step emission matrix defined in (2).

Assumption 2 ensures that m-step consecutive observations shall contain sufficient information to
distinguish any two different latent state mixtures. Note that Assumption 1 is a special case of
Assumption 2 with m = 1. Finally, we remark that the single-agent versions of Assumption 1 and 2
were first identified in [19] and [26] as sufficient conditions for sample-efficient learning of single-step
and multi-step weakly revealing POMDPs (the single-agent version of POMGs), respectively.

4 Learning Equilibria with Self-play

In this section, we study the self-play setting where the algorithm can control all the players to
learn the equilibria by playing against itself. We propose a new algorithm — Optimistic Maximum
Likelihood Estimation for Learning Equilibria (OMLE-Equilibrium) that can provably find Nash
equilibria, coarse correlated equilibria and correlate equilibria in any weakly-revealing partially
observable Markov games using a number of samples polynomial in all relevant parameters.

4.1 Undercomplete partially observable Markov games

We first present the algorithm and results for learning undercomplete POMGs under Assumption 1.
We will see in the later section that with a minor modification the same algorithm also applies to
learning overcomplete POMGs under Assumption 2.
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Subroutine 1 Optimistic_Equilibrium(B)

1: for i ∈ [n] do
2: let V i ∈ R|Πdet

1 |×···×|Π
det
n | with its πth entry equal to supθ̂∈B V

π
i (θ̂) for π ∈ Π1 × · · · ×Πn

3: return EQUILIBRIUM(V 1, . . . , V n)

Algorithm description To condense notations, we will use θ = (T,O, µ1) to denote the parameters
of a POMG. Given a policy π and a trajectory τ , we denote by V πi (θ) the ith player’s value
and by Pπθ (τ) the probability of observing trajectory τ , both under policy π in the POMG model
parameterized by θ. We describe OMLE-Equilibrium in Algorithm 1. In each episode, the algorithm
executes the following two key steps:

• Optimistic equilibrium computation (Line 3) We first invoke Optimistic_Equilibrium
(Subroutine 1) with confidence set Bk to compute a joint (potentially correlated) policy πk.
Formally, subroutine Optimistic_Equilibrium(Bk) consists of two components:

– Optimisic value estimation (Line 1-2 of Subroutine 1) For each player i ∈ [n] and
deterministic joint policy π ∈ Πdet

1 × · · · ×Πdet
n , we compute an upper bound V

π

i for
the ith player’s value under policy π by using the most optimistic POMG model in the
confidence set Bk.

– Equilibira computation (Line 3 of Subroutine 1) Given the optimistic value estimates
for all deterministic joint policies and all players, we can view the POMG as a normal-
form game where the ith player’s pure strategies consist of all her deterministic policies
(i.e., Πdet

i ) and the payoff she receives under a joint deterministic policy π ∈ Πdet
1 ×· · ·×

Πdet
n is equal to the corresponding optimistic value estimate V

π

i . Then we compute a
EQUILIBRIUM πk for this normal-form game, which is a mixture of all the deterministic
joint policies in Πdet

1 × · · · ×Πdet
n .

• Confidence set update (Line 4-5) We first follow πk to collect a trajectory, and then utilize
the newly collected data to update the model confidence set via MLE principle.

Here we highlight two algorithmic designs in OMLE-Equilibrium: the flexibility of equilibrium
computation and the MLE confidence set construction. In the step of equilibrium computation, we
can choose EQUILIBRIUM to be Nash equilibrium or correlated equilibrium (CE) or corase correlated
equilibrium (CCE) of the normal-form game depending on the target type of equilibrium we aim to
learn for the POMG. With regard to the confidence set design, we adopt the idea from [26] to include
all the POMG models whose likelihood on the historical data is close to the maximum likelihood.
This can be viewed as a relaxation of the classic MLE method, with the degree of relaxation controlled
by parameter β. One important benefit of this relaxation is that although the groundtruth POMG
model is in general not a solution of MLE, its likelihood ratio is rather close to the maximal likelihood.
By doing so, we can guarantee the true model is included in the confidence set with high probability.
Finally, we remark that Algorithm 1 is computationally inefficient in general due to the steps of
optimistic value estimation and equilibrium computation.

Theoretical guarantees Below we present the main theorem for OMLE-Equilibrium.
Theorem 7. (Regret of OMLE-Equilibrium) Under Assumption 1, there exists an abso-
lute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 1 with β =
c
(
(S2A+ SO) log(SAOHK) + log(K/δ)

)
and EQUILIBRIUM being one of {Nash, CCE, CE}

satisfies (respectively) that with probability at least 1− δ,

Regret{Nash,CCE,CE}(k) ≤ poly(S,A,O,H, α−1, log(Kδ−1)) ·
√
k for all k ∈ [K].

Theorem 7 claims that if all players follow OMLE-Equilibrium, then the cumulative {Nash,CCE,CE}-
regret is upper bounded by Õ(

√
k) for any weakly-revealing POMGs that satisfy Assumption 1,

where the growth rate w.r.t k is optimal. By the standard online-to-batch conversion, it directly
implies the following sample complexity result:
Corollary 8. (Sample Complexity of OMLE-Equilibrium) Under the same setting as Theorem 7,
when K ≥ poly(S,A,O,H, α−1, log(ε−1δ−1)) · ε−2, then with probability at least 1/2, πout is an
ε-{Nash, CCE, CE} policy.
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Algorithm 2 multi-step OMLE-Equilibrium

1: Initialize: B1 = {θ̂ ∈ Θ : minh σS(M̂h) ≥ α}, D = {}
2: for k = 1, . . . ,K do
3: compute πk =Optimistic_Equilibrium(Bk)
4: for h = 0, . . . ,H −m do
5: execute policy πk1:h ◦ uniform(A) to collect a trajectory τk,h

then add (πk1:h ◦ uniform(A), τk,h) into D
6: update

Bk+1 =

{
θ̂ ∈ Θ :

∑
(π,τ)∈D

logPπ
θ̂
(τ) ≥ max

θ′∈Θ

∑
(π,τ)∈D

logPπθ′(τ)− β
}⋂

B1

7: output πout that is sampled uniformly at random from {πk}k∈[K]

Here the dependence on the precision parameter ε is optimal. Finally, notice that the upper bound
in Theorem 7 depends polynomially on the inverse of α — a lower bound for the minimal singular
value of the joint emission matrix Oh in Assumption 1. This dependence is shown to be unavoidable
even in the single-player setting (POMDPs) [26].

4.2 Overcomplete partially observable Markov games

In this subsection, we extend OMLE-Equilibrium to the more challenging setting of learning over-
complete POMGs, where there can be much less observations than latent states. We prove that
a simple variant of OMLE-Equilibrium still enjoys polynomial sample-efficiency guarantee for
learning any multi-step weakly revealing POMGs.

Algorithm description We describe the multi-step generalization of OMLE-Equilibrium in Al-
gorithm 2, which inherits the key designs from Algorithm 1 and additionally makes two important
modifications to address the challenge of insufficient information from single-step observation. The
first change is to utilize a more active sampling strategy for exploration. Instead of simply following
the optimistic policy πk, we will iteratively execute H −m+ 1 policies of form πk1:h ◦ uniform(A)
where the players first follow policy πk from step 1 to step h, then pick actions uniformly at ran-
dom to finish the remaining H − h steps. Intuitively, by actively trying random action sequences
after executing policy πk, the algorithm can acquire more information about the system dynamics
corresponding to those latent states that are frequently visited by πk, and therefore help address the
challenge of lacking sufficient information from single-step observation. The second change made
by Algorithm 2 is that in constructing the confidence set, we require the minimal singular value of
the multistep emission matrix to be lower bounded, which enforces the multistep weakly revealing
condition in Assumption 2.

Theoretical guarantee Below we present the main theorem for multi-step OMLE-Equilibrium.
Theorem 9. (Total suboptimality of multi-step OMLE-Equilibrium) Under Assumption 2, there
exists an absolute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 1 with β =
c
(
(S2A+ SO) log(SAOHK) + log(K/δ)

)
and EQUILIBRIUM being one of {Nash, CCE, CE}

satisfies (respectively) that with probability at least 1− δ,

Regret{Nash,CCE,CE}(k) ≤ poly(S,Am, O,H, α−1, log(Kδ−1)) ·
√
k for all k ∈ [K],

where the regret is computed for policy π1, . . . , πk.

Theorem 9 claims that the total {Nash,CCE,CE}-“regret” (that are computed on policy π1, . . . , πk)
of multi-step OMLE-Equilibrium is upper bounded by Õ(

√
k) for any multi-step weakly revealing

POMGs satisfying Assumption 2. We remark that, strictly speaking, Theorem 9 is not a standard
regret guarantee since the policies executed by multi-step OMLE-Equilibrium are compositions of
π1, . . . , πk and random actions, instead of purely π1, . . . , πk. Nevertheless, we can still utilize the
standard online-to-batch conversion to obtain the following sample complexity guarantee:
Corollary 10. (sample complexity of multi-step OMLE-Equilibrium) Under the same setting as
Theorem 9, when K ≥ poly(S,Am, O,H, α−1, log(ε−1δ−1)) · ε−2, then with probability at least
1/2, πout is an ε-{Nash, CCE, CE} policy.
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Algorithm 3 OMLE-Adversary

1: Initialize: B1 = {θ̂ ∈ Θ : σS(Ô) ≥ α}, D = {}
2: for k = 1, . . . ,K do
3: learner computes (·, πk1 ) = argmaxθ̂∈Bk,π̂1∈Π1

minπ̂−1∈Π−1 V
π̂1×π̂−1

1 (θ̂)

4: opponents pick policies πk−1

5: execute policy πk = πk1 × πk−1 to collect τk = (ok1 ,a
k
1 , . . . ,o

k
H ,a

k
H)

6: add (πk, τk) into D and update

Bk+1 =

{
θ̂ ∈ Θ :

∑
(π,τ)∈D

logPπ
θ̂
(τ) ≥ max

θ′∈Θ

∑
(π,τ)∈D

logPπθ′(τ)− β
}⋂

B1 (3)

Here the dependence on the precision parameter ε is optimal up to poly-logarithmic factors. Finally,
observe that the sample complexity has Am dependency that is exponential in m, which is unavoid-
able in general even in the single-player setting (POMDPs) [26]. Nonetheless, in order to make
minh rank(Mh) = S possible (Assumption 2), we only need to make (OA)m & S, i.e., m & logS
which is very small. In this paper, when we claim the sample complexity is polynomial, we consider
m to be small enough so that Am ≤ poly(S,A,O,H, α−1).

5 Playing against Adversarial Opponents

In this section, we turn to the online setting where the learner only controls a single player and the
remaining players can execute arbitrary strategies. In this setting, we no longer target at learning
game-theoretic equilibria because if other players keep playing some highly suboptimal policies
then the learner may never be able to explore the environment thoroughly and thus lacks sufficient
information to compute equilibria. Instead, we consider the standard goal for online setting, which
is to achieve low regret in terms of cumulative rewards even if all other players play adversarially
against the learner. Without loss of generality, we assume the learner only controls the 1st player
throughout this section.

5.1 Statistical hardness for the standard setting

We first consider the standard POMG setting where each player can only observe her own observations
and actions. We prove that achieving low regret in this setting is impossible in general even if (i)
the POMG is two-player zero-sum and satisfies Assumption 1 with α = 1, (ii) the opponent keeps
playing a fixed deterministic policy known to the learner, and (iii) the only parts of the model unknown
to the learner are the emission matrices.
Theorem 11. For any L, k ∈ N+, there exist (i) a two-player zero-sum POMG of size S,A,O,H =
O(L) and satisfying Assumption 1 with α = 1, and (ii) a fixed opponent who keeps playing a known
deterministic policy π2, so that with probability at least 1/2∑k

t=1

(
maxπ̃1 minπ̃2 V

π̃1×π̃2
1 − V π

t
1×π2

1

)
≥ Ω

(
min{2L, k}

)
,

where πt1 is the policy played by the learner in the tth episode.

Theorem 11 claims that when the learner is not allowed to access the opponent’s observations and
actions, there exists exponential regret lower bound for competing with the max-min value (i.e., Nash
value in two-player zero-sum POMGs) even in the very benign scenario as described above. We
remark that this lower bound directly implies competing with the best fixed policy in hindsight is also
hard because the max-min value is always no larger than the value of the best-response to π2:

maxπ̃1
minπ̃2

V π̃1×π̃2
1 ≤ maxπ̃1

V π̃1×π2
1 = V †,π2

1 .

5.2 Positive results for the game-replay setting

In this section, we consider the game-replay setting where after each episode of play, every player
will reveal their observations and actions in this episode to other players. In other words, every player
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is able to observe the whole trajectory τk = (ok1 ,a
k
1 , . . . ,o

k
H ,a

k
H) after the kth episode is finished.

The motivation for considering this setting is in many real-world games, e.g., Dota, StarCraft and
Poker, players are usually allowed to watch the replays of the games they have played, in which they
can freely view other players’ observations and actions. Below, we show that a simple variant of
OMLE-Equilibrium enjoys sublinear regret when playing against adversarial opponents.

Algorithm description We provide the formal description of OMLE-Adversary in Algorithm 3.
Same as OMLE-Equilibrium, OMLE-Adversary utilizes the relaxed MLE approach to construct
the confidence set. The key modification lies in the computation of player 1’s (stochastic) policy πk1
(Line 3). Specifically, the learner will compute the most optimistic model θk in the confidence set Bk
by examining player 1’s max-min value in each model. Then choose player 1’s policy to be the one
with the highest value under θk, assuming all other players jointly play against player 1.

Finally, we remark that although the confidence set construction in Line 6 seems to involve the
joint policies π of all players, the confidence set itself is in fact independent of the joint policies π.
Therefore, the 1st player can still construct the confidence set without knowledge of other players’
policies. This is because the dependency of the loglikelihood function on policy π are equal on both
sides of (3), and thus they cancel with each other. Formally, for any θ̂, θ′ ∈ Θ, we have∑k

t=1

(
logPπt

θ̂
(τ t)− logPπt

θ′ (τ
t)
)

=
∑k
t=1

(
logPθ̂(o

t
1:H | at1:H)− logPθ′(ot1:H | at1:H)

)
.

Theoretical guarantees Below we present the main theorem for OMLE-Adversary.
Theorem 12. (Regret of OMLE-Adversary) Under Assumption 1, there exists an abso-
lute constant c such that for any δ ∈ (0, 1] and K ∈ N, Algorithm 3 with β =
c
(
(S2A+ SO) log(SAOHK) + log(K/δ)

)
satisfies that with probability at least 1− δ,∑k

t=1

(
maxπ̃1

minπ̃2
V π̃1×π̃2

1 − V πt

1

)
≤ poly(S,A,O,H, α−1, log(Kδ−1))·

√
k for all k ∈ [K].

Theorem 12 claims that the regret of OMLE-Adversary is upper bounded by Õ(
√
k) in any weakly

revealing POMGs that satisfy Assumption 1, no matter what adversarial strategies other players might
take. Here the regret is defined by comparing the cumulative rewards received by player 1 to the
max-min value maxπ̃1 minπ̃2 V

π̃1×π̃2
1 that is the largest value she could receive if all other players

jointly play against her. Notice that this regret is weaker than the typical version of regret considered
in online learning literature, which typically competes with the best response in hindsight, i.e.,

maxπ̃1

∑k
t=1

(
V
π̃1×πt

−1

1 − V πt

1

)
.

Therefore, it is natural to ask whether we can obtain similar sublinear regret in terms of the above
regret definition. Unfortunately, previous work [27] proved that there exists exponential regret lower
bound for competing with the best response in hindsight even in fully observable two-player zero-sum
Markov games, which are special cases of POMGs satisfying Assumption 1 with α = 1. As a result,
achieving low regret in the above sense is also intractable in POMGs.

Generalization to multi-step weakly revealing POMGs So far, we only derive the positve
result (Theorem 12) for single-step weakly revealing POMGs. A reader might wonder whether
similar results can be obtained in the more general setting of multi-step weakly revealing POMGs.
Unfortunately, this generalization turns out to be impossible in general, even if (i) the POMG satisfies
Assumption 2 with m = 2 and α ≥ 1, and (ii) the learner can directly observe the opponents’ actions
and observations. We defer the formal statement of this hardness result and its proof to Appendix
D.3.
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