
A Additional Related Work

Our work is most related to RAP [ABK+21], which leverages powerful differentiable optimization
methods for solving a continuous relaxation of their moment matching objective. [LVW21] also lever-
ages such differentiable optimization strategy, but their algorithm GEM optimizes over probability
distributions parametrized by neural networks. Both of them focus on categorical attributes.

The theoretical study of differentially private synthetic data has a long history [BLR08, DNR+09,
RR10, HT10, HR10, GRU12, NTZ13]. In particular, both RAP [ABK+21] and our work are inspired
by the the theoretically (nearly) optimal projection mechanism of Nikolov, Talwar, and Zhang
[NTZ13], which simply adds Gaussian noise to statistics of interest of the original dataset, and
then finds the synthetic dataset (the “projection”) that most closely matches the noisy statistics (as
measured in the Euclidean norm). The projection step is computationally intractable in the worst
case. Both RAP and our algorithm consider a continuous relaxation of their objective and leverage
differentiable optimization methods to perform projection efficiently.

It is known to be impossible to privately learn (or produce synthetic data for) even one-dimensional
interval queries over the real interval in the worst case over data distributions [BNSV15, ALMM19].
These worst case lower bounds need not be obstructions for practical methods for synthetic data
generation, however. Linear threshold functions over real valued data can be privately learned (and
represented in synthetic data) under a “smoothed analysis” style assumption that the data is drawn
from a sufficiently anti-concentrated distribution [HRS20].

B Missing from Preliminaries (section 2)

For completeness, we include the definition of prefix marginal queries:
Definition 13 (Prefix Marginal Queries). A k-way prefix query is defined by a set of numerical features

R of cardinality |R| = k and a set of real-valued thresholds ⌧ = {⌧j 2 R}j2R corresponding to

each feature j 2 R. Let X (R, ⌧) = {x 2 X : xj  ⌧j 8j2R} denote the set of points where each

feature j 2 R fall bellow its corresponding threshold value ⌧j . The prefix query is given by

qR,⌧ (x) = {x 2 X (R, ⌧)}.

Model performance is measured using F1 score which is a harmonic mean of precision and recall.
Also there isn’t a clear definition of the positive class in each task, so we report the macro F1 score,
which is the arithmetic mean of F1 scores per class.
Definition 14 (F1 score). Given a dataset with binary labels D = {(xi, yi)}Ni=1 where xi 2 Rd

and yi 2 {0, 1}, 8i 2 {1, 2, ..., N}, the F1-score of predictions produced by a classification model

f : Rd ! {0, 1} is defined as

F1(D, f) =
2

precision(f,D)�1 + recall(f,D)�1

where

precision(f,D) =

PN
i=1 (yi = 1, f(xi) = 1)
PN

i=1 (f(xi) = 1)
, recall(f,D) =

PN
i=1 (yi = 1, f(xi) = 1)

PN
i=1 (yi = 1)

C Differential Privacy Analysis

Here we state the privacy theorem of RAP++ (algorithm 2). We restate definition 6 and definition 7
here:
Definition (Differential Privacy [DMNS06]). A randomized algorithm M : Xn ! R satisfies

(✏, �)-differential privacy if for all neighboring datasets D,D0
and for all outcomes S ✓ R we have

Pr [M(D) 2 S]  e✏Pr [M(D0) 2 S] + �.

Definition (Zero-Concentrated Differential Privacy [BS16b]). A randomized algorithm M : Xn !
R satisfies ⇢-zero concentrated differential privacy (zCDP) if for any neighboring dataset D,D0

and

for all ↵ 2 (1,1) we have

D↵ (M(D) k M(D0))  ⇢↵

where D↵ is the ↵-Rényi divergence.
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We use the basic composition and post processing properties of zCDP mechanisms for our privacy
analysis.
Lemma 3 (Composition [BS16b]). Let A1 : Xn ! R1 be ⇢1-zCDP. Let A2 : Xn ⇥ R1 ! R2

be such that A2(·, r) is ⇢2-zCDP for every r 2 R1. Then the algorithm A(D) that computes

r1 = A1(D), r2 = A2(D, r1) and outputs (r1, r2) satisfies (⇢1 + ⇢2)-zCDP.

Lemma 4 (Post Processing [BS16b]). Let A : Xn ! R1 be ⇢-zCDP, and let f : R1 ! R2 be an

arbitrary randomized mapping. Then f �A is also ⇢-zCDP.

Together, these lemmas mean that we can construct zCDP mechanisms by modularly combining
zCDP sub-routines. Finally, we can relate differential privacy with zCDP:
Lemma 5 (Conversions [BS16b]).

1. If A is ✏-differentially private, it satisfies ( 12✏
2)-zCDP.

2. If A is ⇢-zCDP, then for any � > 0, it satisfies (⇢+ 2
p
⇢ log(1/�), �)-differential privacy.

We restate theorem 1 with its proof.
Theorem (Privacy analysis of RAP++(algorithm 2)). For any dataset D, any query class Q, any set of

parameters K, T , n̂, �1, and any privacy parameters ✏, � > 0, Algorithm 2 satisfies (✏, �)-differential

privacy.

Proof. The proof follows from the composition and post-processing properties of ⇢-zCDP (see
lemma 3 and lemma 4), together with the privacy of both the RN (definition 9) and Gaussian
mechanisms (definition 8) (see lemma 2 and lemma 1 respectively).

Algorithm 2 takes as input privacy parameters ✏, � and chooses a zCDP parameter ⇢ such that
✏ = ⇢+2

p
⇢ log(1/�). Then, algorithm 2 makes T calls to the RN mechanism with zCDP parameter

⇢/2T , and makes T ·K calls to the Gaussian mechanism with zCDP parameters ⇢/(2TK) to sample
a sequence of statistical queries, which is then used in step 9 to generate a sequence of synthetic
datasets bD1, . . . , bDT . By the composition property, releasing this sequence of statistical queries
satisfies ⇢-zCDP and by post-processing the sequence of synthetic datasets satisfies ⇢-zCDP.

Therefore, algorithm 2 satisfies ⇢-zCDP and by the way ⇢ was set in step 2 and the conversion
lemma 5 proves the theorem.

D ACS Datasets

Missing details describing the datasets used in our experiments. We use datasets and tasks released
by the American Community Survey (ACS) from [DHMS21]. We focus primarily on the five largest
states in the U.S. Each single-task dataset defines a label column that is the target for a prediction
task and a set of both categorical and numerical features. Refer to table 1 for the number of features
and rows on each single-task dataset considered in our experiments. The set of multitasks datasets
combines the features of all single-task datasets and contain five label columns. See table 4 for a
description of all features used and for details about how each task is constructed.

Features Rows
Task Categorical Numerical NY CA TX FL PA
income 9 9 100513 183941 127039 91438 66540
employment 18 10 196276 372553 254883 192673 127859
coverage 19 10 74985 152676 100949 75715 48341
travel 13 9 88035 160265 111545 80314 58060
mobility 20 10 40173 78900 50962 32997 23824

Table 1: Single Task ACS datasets. This table describes the number of categorical and numerical features for
each ACS task. The last five columns in the table, describes the number of rows of each dataset corresponding to
the state.
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Figure 6: Comparison on five datasets of the Maximum error (left) and the Mean error (right) of mixed
marginals using our temperature annealing (red line) and those using a fixed � parameter (blue curve). It is
clear that annealing the � parameter strategically during optimization leads to lower error than using a fixed �
parameter on answering marginal queries.

Figure 7: Summary of average error for Categorical and Mixed Marginals (MM) on five tasks and aggregated
over five ACS states. Each column represents different task. We only compare against the most competitive
approach PGM . See appendix for other approaches and CM queries. RAP++ consistently achieves lower error,
specially as ✏ decreases.

E Implementation Details

Our algorithm is implemented in JAX [BFH+18] with GPU support. DP-MERF and GAN-based
algorithms are implemented in PyTorch [PGM+19] with GPU support as well. PGM provides
support on both CPU and GPU, however, in our experiments, we found that the algorithm ran
significantly faster on CPU, so results for PGM were obtained on CPUs. To provide error bars, each
algorithm is run four times with different random seeds. For fair comparison, after running several
hyperparameter combinations for each algorithm, a single hyperparameter setting that works the best
across various tasks and epsilon values is selected, and its results are presented in the following plots.
An additional privacy budget of ✏ = 5 was allocated for the preprocessing stage of CTGAN ; the
reported budget for each experiment is solely used for private gradient optimization. We used the
OpenDP implementation of CTGAN [GHV20] and tuned the learning rate, batch size, and noise
scaling hyperparameters.

F Additional plots

The main body of the paper only shows results for a subset of the ACS datasets. This section we
shows the remaining results for all ACS tasks and all five states. Figure 6 shows experiments for
the sigmoid temperature optimization technique described in section 3 that include more states than
presented in fig. 1. We also include more results for error on marginal queries. Figure 7 shows that
the main advantage of RAP++ over PGM is on answering mixed marginal queries. The error over
categorical marginals is comparable for both methods.

Then fig. 8 and fig. 9 we have machine learning performance on all states and all tasks. The plots
show that on a large number of datasets our mechanism performs better or no much worse than all
of our benchmark algorithms. See table 2 for a description of all mechanism used for comparison.
In particular RAP++ over performs on the income tasks where numerical features have the most
importance. To show importance of numerical features, we conduct an experiment where we train a
model that ignores numerical features and compare its performance in terms of F1 score against a
model trained on all features. Table 3 shows the magnitude of performance drop on each tasks when
numerical features are not used to train the model. Since the income task has the largest drop we
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conclude that numerical features are important for the income tasks, whereas categorical features are
enough to train a linear model for other tasks.

Algorithm PGM DP-MERF DP-CTGAN RAP RAP++
Citation [MSM19] [HAP21] [FDK22] [ABK+21] (This work)

Input Data Type Categorical Numerical Mixed-Type Categorical Mixed-Type
Table 2: Synthetic data mechanisms in our evaluations. Other than GAN-based approaches, most previous work
only support discrete data as input, whereas RAP++ supports mixed-type data .

Task F1 score
Train data Column Type Income Employment Coverage Travel time Mobility
Categorical Only 0.77 1 0.77 0.78 0.57
Categorical and Numerical 0.93 1 0.82 0.79 0.58

Table 3: This table compares the F1 scores for predicting five tasks on ACS NY(multi-task) of a linear model
trained only on categorical features and a linear model trained on all features. It shows that for some tasks
(i.e., Employment, Travel time, and Mobility), numerical features are not very informative, whereas for others
(especially Income) they are crucial.

Figure 8: ACS Single-task ML: Comparison of synthetic data generation approaches by the F1 score achieved
on linear models trained on synthetic data and F1 score achieved by training on original dataset(black dotted
line). Results averaged across 25 single-task datasets for different privacy levels.
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Figure 9: ACS Multitask ML: Comparison of synthetic data generation approaches using multitask datasets
for five states by the F1 scores achieved on linear models trained on synthetic data and F1 score achieved by
training on original dataset(black dotted line).
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COW CAT Class of worker X X X
SCHL CAT Educational attainment X X X X X X
MAR CAT Marital status X X X X X X
RELP CAT . X X X X X
SEX CAT Male or Female. X X X X X X
RAC1P CAT Race X X X X X X
WAOB CAT World area of birth X X X X X X
FOCCP CAT Occupation X X X X X X
DIS CAT Disability X X X X X
ESP CAT Employment status of parents X X X X X
CIT CAT Citizenship status X X X X X
JWTR CAT Means of transportation to work X X X
MIL CAT Served September 2001 or later X X X X
ANC CAT Ancestry X X X X
NATIVITY CAT Nativity X X X X
DEAR CAT Hearing difficulty X X X X
DEYE CAT Vision difficulty X X X X
DREM CAT Cognitive difficulty X X X X
GCL CAT Grandparents living with grandchildren X X
FER CAT Gave birth to child within the past 12 months X X X
WKHP NUM Usual hours worked per week past 12 months X X X X X X
PINCP NUM Total person’s income X X X X
AGEP NUM Age of each person X X X X X X
PWGTP NUM Person weight X X X X X X
INTP NUM Interest, dividends, and net rental income past 12 months. X X X X X X
JWRIP NUM Vehicle occupancy X X X X X X
SEMP NUM Self-employment income past 12 months X X X X X X
WAGP NUM Wages or salary income past 12 months X X X X X X
POVPIP NUM Income-to-poverty ratio X X X X X X
JWMNP NUM Travel time to work X X X X
JWMNP(binary) CAT Commute > 20 minutes X X
PINCP(binary) CAT Income > $50K X X
ESR CAT Employment status X X X X
MIG CAT Mobility status (lived here 1 year ago) X X X X X
PUBCOV CAT Public health coverage X X

Table 4: Features in both single-task and multitask datasets. Each rows shows the name, type (numeric or
categorical) and description of each ACS feature. The check mark indicates whether a features is included for a
tasks. Note that all tasks included as many numeric features as possible and the multitask datasets included all
features and all five labels. Features description can be found here: ACS PUMS Data Dictionary.
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https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2016-2020.pdf
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