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A Appendix

This appendix first discusses the related works to cooperative learning methods. Second, we describe
the objective function for knowledge distillation employed in GAN compression algorithms [1–5].
Third, we describe the implementation details of VEM in terms of the architecture design of the
energy-based models. Finally, we present the additional qualitative results of VEM compared with
the state-of-the-art methods.

A.1 Related Work to Cooperative Learning Methods

The proposed method is related to cooperative learning mechanisms [6–9] in the sense that an energy-
based model is employed for a student such as variational auto-encoder frameworks [8], flow-based
models [9] or generic generators [6, 7] to achieve better generation performance. However, their
usages and roles are fairly different since we optimize the energy-based model to minimize the KL
divergence of the true conditional distribution from the variational one in order to precisely estimate
mutual information for effective knowledge distillation. On the other hand, the cooperative learning
methods simply learn the energy-based model to maximize the data likelihood. Moreover, our key
contributions lie in 1) the information-theoretic problem formulation of GAN compression using the
mutual information and 2) the introduction of EBMs to variational distributions and its successful
application to a practical problem.

A.2 GAN Compression Baseline Algorithms

To validate the benefit and generality of VEM, we optimize student generators with algorithm-specific
objective functions, Lalgo, by jointly considering the mutual information between teacher and student
models for effective knowledge distillation, as shown in (10). We present the algorithm-specific loss
functions for two online distillation approaches, OMGD [4] and GCC [5], and three offline methods,
GAN-Compression [1], CAT [2], and CAGC [3].

A.2.1 OMGD [4]

The algorithm-specific loss, denoted by Lalgo, is defined for OMGD as follows:

Lalgo = LOMGD-KD + λCDLCD + λTVLTV, (15)

where LOMGD-KD and LCD are the distillation losses for the final and intermediate outputs, respectively
while LTV denotes the total variation. The hyperparameters λCD and λTV determine the weights
of the corresponding loss terms. OMGD [4] employs the channel distillation loss [10, 11] for the
intermediate feature maps, which encourages the student network to mimic the channel-wise attention
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maps in the intermediate layers of the teacher. Specifically, the channel distillation loss, LCD, is given
by

LCD =

L∑
`=1

Ex

[
Latten

(
Gt

`(x;φ
t), f`(G

s
`(x;φ

s))
)]
, (16)

where Gt
`(·;φt) and Gs

`(·;φs) are the intermediate feature maps of the `th layer in the teacher and
student networks, and f`(·) denotes a 1× 1 convolution operator to match the dimensionality of the
two feature maps. In the above equation, the attention loss, Latten(·, ·), is given by

Latten(p, q) =
1

C
‖GAP(p)− GAP(q)‖22, (17)

where GAP(·) is an average pooling function over the spatial dimension and C is the number of
channels in p and q, which should be same.

For transferring the information in generated images, LOMGD-KD is defined as

LOMGD-KD = λSSIMLSSIM + λPLLPL + λreconEx‖Gs(x;φs)−Gt(x;φt)‖1,1, (18)

where LSSIM and LPL denote the structural similarity loss (SSIM) [12] and the perceptual loss [13],
respectively, while λSSIM, λPL, and λrecon are hyperparameters. In the above equation, ‖ · ‖1,1 is an
operator to sum the absolute values of all elements.

A.2.2 GCC [5]

For GCC, Lalgo is defined as follows:

Lalgo = LGAN + LGCC-KD, (19)

where LGAN is the adversarial loss for generators and discriminators while LGCC-KD is a distillation
loss for final and intermediate outputs, which is given by

LGCC-KD =

K∑
k=1

Ex

[
d(Dt
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]
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L∑
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]
+ λreconEx‖Gs(x;φs)−Gt(x;φt)‖1,1. (20)

Here, Dt
k(·;ψt) is the intermediate feature map of the kth layer in the teacher discriminator, and d(·, ·)

is given by

d(X,Y ) = λMSE‖X − Y ‖2F + λstyle‖Gram(X)− Gram(Y )‖2F , (21)

where λMSE and λstyle are hyperparameters and ‖ · ‖F denotes the Frobenius norm.

A.2.3 GAN-Compression [1]

Lalgo is defined as follows:

Lalgo = LGAN + λreconLrecon + λdistillLdistill, (22)

where λrecon and λdistill are hyperparameters while Lrecon and Ldistill are defined as

Lrecon =

{
Ex,y‖Gs(x;φs)− y‖1,1 for paired datasets,
Ex‖Gs(x;φs)−Gt(x;φt)‖1,1 for unpaired datasets,

(23)

Ldistill =

L∑
`=1

Ex‖f`(Gs
`(x;φ

s))−Gt
`(x;φ

t)‖2F . (24)

In the above equation, f`(·) indicates the 1× 1 convolution operator to match the dimensionality of
the two feature maps while y is the ground-truth output.
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A.2.4 CAT [2]

Lalgo is defined as follows:

Lalgo = LGAN + λreconLrecon + λKALKA, (25)

where λrecon and λKA are hyperparameters. In the above equation, LKA is given by

LKA = −
L∑

`=1

Ex

[
‖ρ(Gs
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s))Tρ(Gt

`(x;φ
t))‖2F
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s))Tρ(Gs
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s))‖F ‖ρ(Gt
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t))Tρ(Gt
`(x;φ

t))‖F

]
, (26)

where ρ(·) is a reshape operator from a 4D tensor (∈ Rn×c×h×w) into a 2D matrix (∈ Rn×chw).

A.2.5 CAGC [3]

Lalgo is defined as follows:

Lalgo = LGAN + λreconLmask
recon + λdistillLmask

distill + λLPIPSLmask
LPIPS, (27)

where λrecon, λdistill, and λLPIPS are hyperparameters while Lmask
recon, Lmask

distill, and Lmask
LPIPS are given by

Lmask
recon = Ex‖M � (Gs(x;φs)−Gt(x;φt))‖1,1, (28)

Lmask
distill =

L∑
`=1

Ex‖M � (f`(G
s
`(x;φ

s))−Gt
`(x;φ

t))‖1,1, (29)

Lmask
LPIPS = Ex

[
LPIPS(M �Gs(x;φs),M �Gt(x;φt))

]
. (30)

Note that M is a binary mask and represents whether the corresponding pixel is located at the object
of interest while LPIPS(·, ·) [14] measures the perceptual difference between the two input patches.

A.3 More Implementation Details

Figure 4 illustrates the architecture design of the energy-based model in the form of a convolutional
neural network. In Figure 4, we set C, the number of channels in intermediate feature maps, to 8
for the Horse→ Zebra dataset while setting it to 32 for other datasets. “ConvBlock” consists of
a convolution with a kernel size of 3 and a LeakyReLU activation function while “ResBlock” is
composed of two convolutional layers with a kernel size of 3 and a LeakyReLU together with a
residual connection [15].

Following [16], we incorporate spectral normalizations [17] to the weights in all convolutional and
linear layers in order to alleviate sharp gradient changes in the energy-based models. In addition,
we minimize the squared output from the energy-based models as a regularization term since the
output is not bounded, which may also cause training instability. Without the regularization term, we
empirically observe that the output becomes numerically unstable. All of these techniques are helpful
to improve the training stability.

A.4 Limitation

VEM incurs an extra training cost because it requires to additional short-run MCMC steps. However,
the proposed approach quantitatively and qualitatively improves the performance when combined
with existing GAN compression approaches.

A.5 Additional Qualitative Results

We present more qualitative results of VEM and the state-of-the-art methods including the original
model in Figure 5, 6, 7, 8, 9, 10, 11, and 12 to demonstrate the effectiveness of VEM.

B Code

We attached the source code to facilitate understanding and reproduction of our algorithm. Please
check “README.md” in the supplementary material folder which contains how to run VEM.
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Concatenate two inputs

3 × 3 Avg Pooling (stride = 2)

ConvBlock, C

ResBlock, 2 × C
ResBlock, 4 × C
ResBlock, 4 × C
ResBlock, 4 × C
ResBlock, 4 × C
ResBlock, 4 × C
ResBlock, 4 × C
ReLU Activation

Global Average Pooling (GAP)

Linear layer, 1

Figure 4: Architecture design of the proposed energy-based model.

Table 6: Selected values of λMI for VEM.

Model Dataset Method λMI

Pix2Pix Edges→ Shoes OMGD [4] + VEM (Ours) 0.100
Cityscapes OMGD [4] + VEM (Ours) 0.200

CycleGAN Horse→ Zebra
OMGD [4] + VEM (Ours) 0.100

CAT [2] + VEM (Ours) 0.005
GAN-Compression [1] + VEM (Ours) 0.100

Summer→Winter OMGD [4] + VEM (Ours) 0.100

SAGAN CelebA GCC [5] + VEM (Ours) 0.100

StyleGAN2 FFHQ CAGC [3] + VEM (Ours) 0.050
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Figure 5: Qualitative results of Pix2Pix on the Cityscapes dataset. “Original” represents the images
generated by the uncompressed Pix2Pix.
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Figure 6: Qualitative results of Pix2Pix on the Edges→ Shoes dataset. “Original” represents the
images generated by the uncompressed Pix2Pix.
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Figure 7: Qualitative results of CycleGAN on the Horse→ Zebra dataset. “Original” represents the
images generated by the uncompressed CycleGAN.
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Figure 8: Qualitative results of CycleGAN on the Horse→ Zebra dataset. “Original” represents the
images generated by the uncompressed CycleGAN.
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Figure 9: Qualitative results of CycleGAN on the Horse→ Zebra dataset. “Original” represents the
images generated by the uncompressed CycleGAN.
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Figure 10: Qualitative results of CycleGAN on the Summer→Winter dataset. “Original” represents
the images generated by the uncompressed CycleGAN.
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Figure 11: Qualitative results of SAGAN on the CelebA dataset. “Real Images” represents the data
samples.
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Figure 12: Qualitative results of StyleGAN2 on the FFHQ dataset. “Original” represents the images
generated by the uncompressed StyleGAN2.
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