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Abstract

The kernel Maximum Mean Discrepancy (MMD) is a popular multivariate distance
metric between distributions that has found utility in two-sample testing. The usual
kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has
an intractable limiting distribution. Hence, to design a level-α test, one usually
selects the rejection threshold as the (1−α)-quantile of the permutation distribution.
The resulting nonparametric test has finite-sample validity but suffers from large
computational cost, since every permutation takes quadratic time. We propose the
cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting
and studentization. We prove that under mild assumptions, the cross-MMD has a
limiting standard Gaussian distribution under the null. Importantly, we also show
that the resulting test is consistent against any fixed alternative, and when using the
Gaussian kernel, it has minimax rate-optimal power against local alternatives. For
large sample sizes, our new cross-MMD provides a significant speedup over the
MMD, for only a slight loss in power.

1 Introduction
We study the two-sample testing problem: given X = (X1, . . . , Xn)

i.i.d.∼ P and Y =

(Y1, . . . , Ym)
i.i.d.∼ Q, we test the null hypothesis H0 : P = Q against the alternative H1 : P ̸= Q.

This is a nonparametric hypothesis problem with a composite null hypothesis and a composite
alternative hypothesis. It finds applications in diverse areas such as testing microarray data, clinical
diagnosis, and database attribute matching (Gretton et al., 2012a).

A popular approach to solving this problem is based on the kernel-MMD distance between the two
empirical distributions (Gretton et al., 2006). Given a positive definite kernel k, the kernel-MMD
distance between two distributions P and Q on X , denoted by MMD(P,Q), is defined as

MMD(P,Q) = ∥µ− ν∥k, where µ(·) =
∫
X
k(x, ·)dP (x), and ν(·) =

∫
X
k(x, ·)dQ(x). (1)

Above, µ and ν are commonly called “kernel mean maps”, and denote the kernel mean embeddings
of the distributions P and Q into the reproducing kernel Hilbert space (RKHS) associated with the
positive-definite kernel k, and ∥ · ∥k denotes the corresponding RKHS norm. Under mild conditions
on the positive definite kernel k (Sriperumbudur et al., 2011), MMD is a metric on the space of
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probability distributions. Gretton et al. (2006) suggested using an empirical estimate of the squared
distance as the test statistic. In particular, given X and Y, define the test statistic

M̂MD
2
:=

1

n(n− 1)m(m− 1)

∑
1≤i ̸=i′≤n

∑
1≤j ̸=j′≤m

h(Xi, Xi′ , Yj , Yj′),

where h(x, x′, y, y′) := k(x, x′)−k(x, y′)−k(y, x′)+k(y, y′). The above statistic has an alternative
form that only takes quadratic time to calculate.

The MMD test rejects the null if M̂MD
2

exceeds a suitable threshold τ ≡ τ(α) that ensures the false
positive rate is at most α. For “characteristic kernels”, this test is consistent against fixed alternatives,
meaning the power (the probability of rejecting the null when P ̸= Q) increases to one as m,n→ ∞.

The difficulty in practically determining τ will play a key role in this paper. It is well known that

when P = Q, M̂MD
2

is an instance of a “degenerate two-sample U-statistic”, meaning that:

Under H0, EP [h(x,X
′, y, Y ′)] = EQ[h(X,x

′, Y, y′)] = 0.

(Above, x, y, x′, y′ are fixed, and the expectations are over X,Y,X ′, Y ′ i.i.d.∼ P .) As a consequence,
its (limiting) null distribution is unwieldy; it is an infinite sum of independent χ2 random variables
weighted by the eigenvalues of an operator that depends on the kernel k and the underlying distribution
P (see equation (10) in Appendix A). Since P is unknown, one cannot explicitly calculate τ .

In practice, a permutation-based approach is commonly used, where τ is set as the (1− α)-quantile
of the kernel-MMD statistic computed on B permuted versions of the aggregate data (X,Y). The
resulting test has finite-sample validity, but its practical applicability is reduced due to the high
computational complexity; if B = 200 permutations are used, the (permuted) test statistic must be
recomputed 201 times, rather than once (usually, B is chosen between 100 and 1000).

Due to the high computational complexity of the permutation test, some permutation-free alternatives
for selecting τ have been proposed. However, as we discuss in Section 1.2, these alternatives are
either too conservative in practice (using concentration inequalities), or heuristics with no theoretical
guarantees (Pearson curves and Gamma approximation) or are only shown to be consistent in the
setting where the kernel k does not vary with n (spectral approximation). We later recap some

computationally efficient alternatives to M̂MD
2
, but these have significantly lower power.

As far as we are aware, there exists no method in literature based on the kernel-MMD that is (i)
permutation-free (does not require permutations), (ii) consistent against any fixed alternative, (iii)
achieves minimax rate-optimality against local alternatives, and (iv) is correct for both the fixed
kernel setting (k is fixed as m,n→ ∞) and the changing kernel setting (k changes as a function of
m,n, for instance, by selecting the scale parameter of a Gaussian kernel in a data-driven manner).

Our work delivers a novel and simple test satisfying all four desirable properties. We propose a
new variant of the kernel-MMD statistic that (after studentization) has a standard Gaussian limiting
distribution under the null in both the fixed and changing kernel settings, in low- and high-dimensional
settings. There is a computation-statistics tradeoff: our permutation-free test loses about a

√
2 factor

in power compared to the standard kernel-MMD test, but it is hundreds of times faster.
Remark 1. Let P(X ) denote the set of all probability measures on the observation space X , where
we often use X = Rd for some d ≥ 1. For simplicity, in the above presentation, the distributions
P,Q, kernel k and dimension d did not change with sample size, and this is the setting considered in
the majority of the literature. Later, we prove several of our results in a significantly more general
setting where P,Q, d, k can vary with n,m. Under the null, this provides a much more robust type-I
error control in high-dimensional settings, even with data-dependent kernels. Under the alternative,
this provides a more fine-grained power result. To elaborate on the latter, we assume that for every
n,m, the pair (P,Q) = (Pn, Qn) ∈ P(1)

n ⊂ P(X )× P(X ) for some sequence {P(1)
n : n,m ≥ 2}.

The class P(1)
n is such that with increasing n and m, it contains pairs (P ′, Q′) that are increasingly

closer in some distance measure ϱ; thus the alternatives can approach the null and be equal in the
limit. That is, ∆n,m := inf

(P ′,Q′)∈P(1)
n
ϱ(P ′, Q′) decreases with n,m, and such alternatives are

called local alternatives (as opposed to fixed alternatives). This framework allows us to characterize
the detection boundary of a test, that is, the smallest perturbation from the null (in terms of ∆n,m)
that can be consistently detected by a test.
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Paper outline. We present an overview of our main results in Section 1.1 and discuss related
work in Section 1.2. In Section 2, we present the cross-MMD statistic and obtain its limiting null
distribution in Section 2.1. We demonstrate its consistency against fixed alternatives and minimax rate-
optimality against smooth local alternatives in Section 2.2. Section 3 contains numerical experiments
that demonstrate our theoretical claims. All our proofs are in the supplement.

1.1 Overview of our main results

We propose a variant of the quadratic time kernel-MMD statistic of (1) that relies on two key ideas:
(i) sample splitting and (ii) studentization. In particular, we split the sample X of size n ≥ 2 into
X1 and X2 of sizes n1 ≥ 1 and n2 ≥ 1, respectively (and Y of size m ≥ 2 into Y1 and Y2 of sizes

m1 ≥ 1 and m2 ≥ 1), and define the two-sample cross kernel-MMD statistic xM̂MD
2

as follows:

xM̂MD
2
:=

1

n1m1n2m2

n1∑
i=1

n2∑
i′=1

m1∑
j=1

m2∑
j′=1

h(Xi, Xi′ , Yj , Yj′). (2)

Our final test statistic is x̄M̂MD
2
:= xM̂MD

2
/σ̂, where σ̂ is an empirical variance introduced in (4).

Our first set of results show that quite generally, x̄M̂MD
2

has an N(0, 1) asymptotic null distribution.
Theorem 4 obtains this result in the setting where both the kernel k and null distribution P are fixed.
This is then generalized to deal with changing kernels (for instance, Gaussian kernels with data-driven
bandwidth choices) in Theorem 5. Finally, in Theorem 15 in Appendix A, we significantly expand
the scope of these results by also allowing the null distribution to change with n, and also weakening
the moment conditions required by Theorem 5.
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Figure 1: The first figure shows the distribution of our proposed statistic x̄M̂MD
2

predicted by Theo-
rem 5 under the null for dimensions d = 10 and d = 100. The statistic is computed with Gaussian
kernel (ksn(x, y) = exp(−sn∥x − y∥22)) with scale parameter sn chosen by the median heuristic
for different choices of n, m and d, and with samples X and Y drawn from a multivariate Gaussian
distribution with identity covariance matrix. The second figure compares the power curves of the

two-sample test using the x̄M̂MD
2

statistic with the kernel-MMD permutation test (with 200 per-
mutations). The final figure plots the power vs computation time for the two tests. The size of the
markers are proportional to the sample-size used in the test.

Our main methodological contribution is the “xMMD test”, denoted Ψ, which rejects the null if

x̄M̂MD
2

exceeds z1−α, which is the (1− α)-quantile of N(0, 1). Formally,

xMMD test: Ψ(X,Y) = 1
x̄M̂MD

2
≥z1−α

. (3)

By the previous results, Ψ has type-I error at most α, meaning that E[Ψ(X,Y)] ≤ α under the null.

We next study the power of the xMMD test Ψ in Section 2.2. First, in the fixed alternative case, i.e.,
when the distributions P ̸= Q do not change with n, we show in Theorem 7, that the xMMD test
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implemented with any characteristic kernel is consistent under a bounded fourth moment condition.
Next, we consider the more challenging case of local alternatives, i.e., when the distributions,
Pn ̸= Qn, change with n. In Theorem 8, we first identify general sufficient conditions for the
xMMD test to be uniformly consistent over a class of alternatives. Then, we specialize this to the
case when Pn and Qn admit densities pn and qn with ∥pn − qn∥L2 ≥ ∆n for some ∆n → 0. We
show in Theorem 9, that the xMMD test with a Gaussian kernel ksn(x, y) = exp(−sn∥x − y∥22),
with scale parameter sn increasing at an appropriate rate can consistently detect the local alternatives
{∆n : n ≥ 1} decaying at the minimax rate.

Finally, we note that while our primary focus in the paper is on the special case of kernel-MMD
statistic, the ideas involved in defining the xMMD statistic can be extended to the case of general
two-sample U-statistics. We describe this in Appendix D.1, and obtain sufficient conditions for
asymptotic Gaussian limit of the resulting statistic, possibly of independent interest.

1.2 Comparisons to related work

Attempts to avoid permutations. There have been some prior attempts to avoid permutations, but
they are either heuristics (no provable type-I error control) or have poor power (higher type-II error).

The first approach to obtaining a rejection threshold is based on large deviation bounds for the MMD
statistic (Gretton et al., 2006, § 3) or the permuted MMD statistic (Kim, 2021, § 5). The resulting tests
are distribution-free, but they tend to be too conservative (type-I error much less than α, resulting
in low power). Another approach involves choosing the threshold based on parametric estimates
of the limiting null distribution. For example, Gretton et al. (2006) suggested fitting to the Pearson
family of densities based on the first four moments, while Gretton et al. (2009) introduced a more
computationally efficient method using a two-parameter Gamma approximation. However, both of
these methods are heuristic and do not have any consistency guarantees.

Gretton et al. (2009) introduced a spectral method for approximating the null distribution using the
eigendecomposition of the gram matrix. They showed that the resulting distribution converges to the
true null distribution as long as the square roots of the eigenvalues associated with the kernel operator
are summable. While this method is asymptotically consistent, the conditions imposed on the kernel
are more stringent than that used in our work. Furthermore, this method was shown to be consistent
only in the fixed kernel (or low-dimensional) setting. Hence, it is unknown whether the results carry
over to the case of kernels varying with sample size or high-dimensional settings. This method is also
computationally nontrivial due to the need for a full eigendecomposition. Keeping only the top few
eigenvectors is another heuristic, but this introduces an extra hyperparameter and loses theoretical
guarantees; as a result this method is rarely used in practice. Our methods are simpler (no extra
hyperparameter), faster (closed-form threshold), and more robust (type I error guarantees also hold
for changing kernels, and in high-dimensional settings).

Changing the statistic: block-MMD and linear-MMD statistics. An idea more closely related to
ours is that changing the test statistic itself would help make it cheaper to compute and also yield a
tractable limiting distribution. One approach splits the observations into disjoint blocks, compute the
kernel-MMD statistic on every block, and the final test statistic averages over all the blocks. If the size
of each block is fixed, we get a linear-time kernel-MMD (Gretton et al., 2012a,b). The case of block
sizes increasing with n,m was studied by Zaremba et al. (2013); Ramdas et al. (2015). Depending on
the block size (b), the computational complexity of block-MMD statistic varies from linear (constant
b) to quadratic (b = Ω(n)). Further, if b = o(n), then one gets a Gaussian null distribution as well.

Our proposed statistic is fundamentally different from the block-MMD statistics, despite both being
incomplete U-statistics (Lee, 1990). In particular, the block-MMD statistics can be understood
as building a block-diagonal approximation of the gram matrix. On the other hand, our proposed
cross-MMD statistic uses the off-diagonal blocks of the gram matrix, exactly the blocks that the
block-MMD with two blocks (b = n/2) excludes! The reason that this is a sensible thing to do is
nontrivial, and our test is motivated quite differently from the block-MMD. In fact, when b = n/2,
the block-MMD does not have a Gaussian null, but the cross-MMD does.

For the block-MMD with b = o(n), the Gaussian null distribution is achieved at the cost of suboptimal
power, as observed empirically in Zaremba et al. (2013), and proved by Reddi et al. (2015) for the
case of linear-MMD and Ramdas et al. (2015) for general block-MMD statistics. In particular, their
power is worse by factors scaling with n, which means that they are not minimax rate optimal. In
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contrast, our test uses exactly half the elements of the gram matrix, and its power is about a
√
2 worse

than the MMD test, independent of n and d, and we prove explicitly that it achieves the minimax rate.

Beyond the kernel-MMD. The literature on two-sample testing is vast, and one can move even
further away from the kernel-MMD (than the block-MMD) while retaining some of its intuition. For
example, Chwialkowski et al. (2015) proposed a linear-time test statistic by computing the average
squared-distance between the empirical kernel embeddings at J randomly drawn points. Jitkrittum
et al. (2016) proposed a variant of this statistic in which the J points are selected to maximize a
lower bound on the power. In both cases, when the kernel k being used is analytic, in addition to
being characteristic and integrable, the authors showed that the limiting distribution under null for
this statistic is a combination of J independent χ2 random variables. However, similar to the spectral
method of Gretton et al. (2009), the high-dimensional behavior of these statistics are unknown. In fact,
some preliminary experiments with d ≈ n in Appendix E.3 suggest that these linear-time statistics
have a different null distribution in this regime. Further, the authors only proved consistency of
these tests against fixed alternatives, but their power is not known to be minimax rate optimal. In
contrast, our statistic has the same limiting distribution in low- and high-dimensional settings even
with changing kernels, and is provably minimax rate optimal for smooth alternatives, and it is a much
more direct tweak of the usual MMD test.

One-sample (goodness-of-fit) testing. Kim and Ramdas (2020) proposed and analyzed a similar
studentized cross U-statistic in the simpler one-sample setting. Our work has different motivations:
our primary goal in this paper is to design a permutation-free kernel-MMD test that does not
significantly sacrifice the power, while Kim and Ramdas (2020) pursued the related but different
goal of dimension-agnostic inference, which means having the same limiting distribution in low-
dimensional and high-dimensional settings. Nevertheless, our results can be seen as an extension of
their methods to two-sample testing. Our proofs also build on their advances, but we require a more
involved analysis since in their case the second distribution is known (making it a point null).

2 Deriving the cross-MMD test

In this section, we present our test statistic and investigate its limiting distribution. First note that
the squared kernel-MMD distance between two probability measures P and Q can be expressed
as an inner product, namely ⟨µ − ν, µ − ν⟩k. The usual kernel-MMD statistic is obtained by
plugging the empirical kernel embeddings into this inner product expression and removing the
diagonal terms to make it unbiased. Our proposal instead considers pairs of empirical estimates
(µ̂1, µ̂2) and (ν̂1, ν̂2) constructed via sample splitting, and use the inner product between µ̂1 − ν̂1
and µ̂2 − ν̂2 instead. This careful construction allows us to obtain a Gaussian limiting distribution
after studentization. To elaborate, recall from Section 1.1 that we partition X into X1 and X2,
and similarly Y into Y1 and Y2. We then compute empirical kernel embeddings based on each
partition, yielding µ̂1 := n−1

1

∑n1

i=1 k(Xi, ·), µ̂2 := n−1
2

∑n2

i′=1 k(Xi′ , ·), ν̂1 := m−1
1

∑m1

j=1 k(Yj , ·)
and ν̂2 := m−1

2

∑m2

j′=1 k(Yj′ , ·). Using these embeddings coupled with the kernel trick, the cross U-

statistic (2) can be written as xM̂MD
2
= ⟨µ̂1 − ν̂1, µ̂2 − ν̂2⟩k. To further motivate our test statistic,

denote UX,i := ⟨k(Xi, ·), µ̂2 − ν̂2⟩k for i = 1, . . . , n1 and UY,j := ⟨k(Yj , ·), µ̂2 − ν̂2⟩k for
j = 1, . . . ,m1. Then the cross U-statistic can be viewed as the difference between two sample means:

xM̂MD
2
= 1

n1

∑n1

i=1 UX,i − 1
m1

∑m1

j=1 UY,j . Since the summands are independent conditional on

X2 and Y2, one may expect that xM̂MD
2

is approximately Gaussian after studentization. Our results
in Section 2.1 formalize this intuition under standard moment conditions, where it takes some care to
remove the above conditioning, since we care about the unconditional distribution.

Let us further denote the sample means of UX,i’s and UY,j’s by ŪX and ŪY , respectively, and define

σ̂2
X :=

1

n1

n1∑
i=1

(
UX,i − ŪX

)2
, σ̂2

Y :=
1

m1

m1∑
j=1

(
UY,j − ŪY

)2
and σ̂2 :=

1

n1
σ̂2
X +

1

m1
σ̂2
Y . (4)

Now we have completed the description of our studentized cross U-statistic x̄M̂MD
2
= xM̂MD

2
/σ̂,

and the resulting test Ψ in (3). The asymptotic validity of the xMMD test is guaranteed by Theorem 15

that establishes the asymptotic normality of x̄M̂MD
2

under the null.
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Kernel-MMD Block-MMD Cross-MMD

Figure 2: The figures visually illustrate the main differences in computing the usual quadratic-time
kernel-MMD statistic (left), block-MMD (center) statistic, and our new cross-MMD statistic. In
particular, the quadratic-time kernel-MMD statistic considers all pairwise kernel evaluations, with the
exception of the diagonal terms. For block-MMD, we obtain the statistic by partitioning the data into
several disjoint blocks; and then taking the average of the kernel-MMD statistic calculated over these
disjoint blocks. Finally, our cross-MMD statistic first splits the data into two disjoint parts (red and
black), and then uses the pairwise kernel evaluations with data from different splits. Interestingly, the
observation pairs included by our cross-MMD statistic are exactly complementary to those included
by the block-MMD statistic.

Remark 2 (Computational Complexity). The overall cost of computing the statistic x̄M̂MD
2

is

O
(
(n+m)2

)
, and in particular, both xM̂MD

2
and σ̂ have quadratic complexity. To see this, note

that xM̂MD
2

can be expanded into ⟨µ̂1, µ̂2⟩k + ⟨ν̂1, ν̂2⟩k − ⟨µ̂1, ν̂2⟩k − ⟨ν̂1, µ̂2⟩k. Each of these
terms can be computed in O

(
(n+m)2

)
. Similarly, each term in the summations defining σ̂2

X and
σ̂2
Y also require O

(
(n+m)2

)
computation, implying that the σ̂ also has O((n+m)2) complexity.

Remark 3. To simplify notation in what follows, we denote m as mn, where mn is some unknown
nondecreasing sequence such that limn→∞mn = ∞. This still permitsm,n to be separate quantities
growing to infinity at potentially different rates, but it allows us to index the sequence of problems
with the single index n (rather than m,n). We will use kn, dn, Xn, Pn and Qn to indicate that
quantities could (but do not have to) change as n increases, and drop the subscript when they are fixed.
Furthermore, unless explicitly stated, we will focus on the balanced splitting scheme, i.e., n1 = ⌊n/2⌋
and m1 = ⌊m/2⌋ in what follows, because we currently see no apriori reason to split asymmetrically.

2.1 Gaussian limiting distribution under the null hypothesis
As shown in Figure 1, the empirical distribution of x̄M̂MD

2
resembles a standard normal distribution

for various choices of m, n and dimension d under the null. In this section, we formally prove this
statement. Recalling the mean embedding µ from (1), define

k̄(x, y) := ⟨k(x, ·)− µ, k(y, ·)− µ⟩k. (5)

Theorem 4. Suppose that k and P do not change with n. If 0 < EP [k̄(X,X
′)4] < ∞ for

X,X ′ i.i.d.∼ P , then x̄M̂MD
2 d−→ N(0, 1).

We next present a more general result that implies Theorem 4.

Theorem 5. Suppose P is fixed, but the kernel kn changes with n. If

lim
n→∞

EP [k̄n(X1, X2)
4]

EP [k̄n(X1, X2)2]2

(
1

n
+

1

mn

)
= 0, and lim

n→∞

λ21,n∑∞
l=1 λ

2
l,n

exists, (6)

where (λl,n)
∞
l=1 denote the eigenvalues of k̄ introduced in (16), then we have x̄M̂MD

2 d−→ N(0, 1).

It is easy to check that condition (6) is trivially satisfied if the kernels {kn : n ≥ 1} are uniformly
bounded by some constant; prominent examples are the Gaussian or Laplace kernel with a sample size
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dependent bandwidth. Thus, the above condition really exists to handle unbounded kernels and heavy-
tailed distributions. To motivate this requirement, we recall Bentkus and Götze (1996) (see Fact 11
in Appendix A) who proved a studentized CLT for i.i.d. random variables in a triangular array

setup: W1,n,W2,n, . . . ,Wn,n
i.i.d.∼ Pn. Define Vn =

√
n
∑n

i=1Wi,n/
√∑

i(Wi,n − W̄n)2 where

W̄n = (
∑

iWi,n)/n. They showed that a sufficient condition for the asymptotic normality of Vn is

that limn→∞ EPn
[W 3

1,n]/
√
EPn

[W 2
1,n]

3n = 0. (This last condition is trivially true if Pn does not
change with n, meaning that the triangular array setup is irrelevant and W1,n can be replaced by W1.)

Our requirement is slightly stronger: condition (6) with k̄n(X1, X2) replaced by W1,n implies the
previous condition of Bentkus and Götze (1996) (details in Remark 12 in Appendix A). We need

this stronger condition, because the terms in the definition of xM̂MD
2

are not i.i.d. (indeed, not even
independent), and thus we cannot directly apply the result of Bentkus and Götze (1996). Instead,
we take a different route by first conditioning on the second half of data (X2,Y2), then showing the

conditional asymptotic normality of the standardized xM̂MD
2

(i.e., divided by conditional standard
deviation instead of empirical), and finally showing that the ratio of conditional and empirical standard
deviations converge in probability to 1 (see Appendix B).

Finally, we note that the result of Theorem 5 can be further generalized in several ways: (i) instead of
a fixed P and changing kn, we can consider a sequence of pairs {(Pn, kn) : n ≥ 1} changing with
n, (ii) we can let Pn ∈ P(0)

n , for a class of distributions changing with n, and obtain the Gaussian
limit uniformly over all elements of P(0)

n , and finally, (iii) the moment requirements on k̄n stated in
condition in (6) can also be slightly weakened. We state and prove this significantly more general
version of Theorem 5 in Appendix B.
Remark 6. In the statement of the two theorems of this section, the splits (X1,Y1) and (X2,Y2)
are assumed to be drawn i.i.d. from the same distribution P . However, a closer look at the proof
of Theorem 5 indicates that the conclusions of the above two theorems hold even when the two
splits are independent and drawn i.i.d. from possibly different distributions; that is (X1,Y1) and
(X2,Y2) are independent of each other and drawn i.i.d. from distributions P1 and P2 respectively,

with P1 ̸= P2. In particular, under this more general condition, the asymptotic normality of x̄M̂MD
2

still holds, and the resulting test Ψ still controls the type-1 error at the desired level. This may be
useful for two-sample testing in settings where the entire set of data is not i.i.d., but two different
parts of the data were collected in two different situations. The usual MMD can also handle such
scenarios by using a subset of permutations that do not exchange the data across the two situations.

2.2 Consistency against fixed and local alternatives

Here, we show that the xMMD test Ψ introduced in (3) is consistent against a fixed alternative and
also has minimax rate-optimal power against smooth local alternatives separated in L2 norm.

We first show that analogous to Theorem 4, xMMD is consistent against fixed alternatives.
Theorem 7. Suppose P,Q, k do not change with n, and P ̸= Q. If k is a characteristic kernel
satisfying 0 < EP [k̄(X1, X2)

4] < ∞, and 0 < EQ[k̄(Y1, Y2)
4] < ∞, then the xMMD test is

consistent, meaning it has asymptotic power 1.

The moment conditions required above are mild, and are satisfied trivially, for instance, by bounded
kernels such as the Gaussian kernel. The “characteristic” condition is also needed for the consistency
of the usual MMD test (Gretton et al., 2012a), and is also satisfied by the Gaussian kernel.

Recalling Remark 1, we next consider the more challenging setting where dn, kn can change with
n, and (Pn, Qn) can vary within a class P(1)

n ⊂ P(Xn)× P(Xn) that can also change with n. We
present a sufficient condition under which the xMMD test Ψ is consistent uniformly over P(1)

n . Define
γn := MMD(Pn, Qn), which is assumed nonzero for each n but could approach zero in the limit.
Theorem 8. Let {δn : n ≥ 2} denote any positive sequence converging to zero. If

lim
n→∞

sup
(Pn,Qn)∈P(1)

n

EPn,Qn [σ̂
2]

δnγ4n
+

VPn,Qn
(xM̂MD

2
)

γ4n
= 0, where V denotes variance, (7)
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then limn→∞ sup
(Pn,Qn)∈P(1)

n
EPn,Qn [1−Ψ(X,Y)] = 0, meaning the xMMD test is consistent.

Note that while any sequence {δn} converging to zero suffices for the general statement above, the
condition (7) is easiest to satisfy for slowly decaying δn, such as δn = 1/ log log n for instance.

The sufficient conditions for consistency of Ψ stated in terms of σ̂ and xM̂MD
2

in (7) can also be
translated into equivalent conditions on the kernel function kn, similar to (6), and we present the
details in Appendix C. Importantly, if Pn, Qn, dn are fixed and kn is bounded, then both E[σ̂2] and

V(xM̂MD
2
) are O(1/n), and γn is a constant, so the condition is trivially satisfied, and in fact the

above condition is even weaker than the fourth-moment condition of the previous theorem.

2.3 Minimax rate optimality against smooth local alternatives

We now apply the general result of Theorem 8 to the case where the distributions Pn and Qn admit
Lebesgue densities pn and qn that lie in the order β Sobolev ball for some β > 0, defined as
Wβ,2(M) := {f : X → R | f is a.s. continuous, and

∫
(1 + ω2)β/2∥F(f)(ω)∥2dw < M < ∞}.

Formally, we define the null and alternative class of distributions as follows:

P(0)
n = {P with density p : p ∈ Wβ,2(M)}, and

P(1)
n = {(P,Q) with densities p, q ∈ Wβ,2(M) : ∥p− q∥L2 ≥ ∆n},

for some sequence ∆n decaying to zero. In particular, we assume that under H0, Pn = Qn and
Pn ∈ P(0)

n , while under H1, we assume that (Pn, Qn) ∈ P(1)
n .

Our next result shows that for suitably chosen scale parameter, the xMMD test Ψ with the Gaussian
kernel is minimax rate-optimal for the above class of local alternatives. For simplicity, we state
this result with n = m, noting that the result easily extends to the case when there exist constants
0 < c ≤ C, such that c ≤ n/m ≤ C.

Theorem 9. Consider the case when n = m, and let {∆n : n ≥ 1} be a sequence such that
limn→∞ ∆nn

2β/(d+4β) = ∞. On applying the xMMD test Ψ with the Gaussian kernel ksn(x, y) =
exp(−sn∥x− y∥22), if we choose the scale as sn ≍ n4/(d+4β), then we have

lim
n→∞

sup
Pn∈P(0)

n

EPn
[Ψ(X,Y)] ≤ α and lim

n→∞
inf

(Pn,Qn)∈P(1)
n

EPn,Qn
[Ψ(X,Y)] = 1. (8)

The proof of this statement is in Appendix C, and it follows by verifying that the conditions required
by Theorem 8 are satisfied for the above choices of ∆n and sn.

Remark 10. Li and Yuan (2019, Theorem 5 (ii)) showed a converse of the above statement: if
limn→∞ ∆nn

2β/(d+4β) <∞, then there exists an α ∈ (0, 1) such that any asymptotically level α test
Ψ̃ must have limn→∞ inf(P,Q)∈P(∆n) EP,Q[Ψ̃(X,Y)] < 1. Hence, the sequence of {∆n : n ≥ 1}
used in Theorem 9 represents the smallest L2-deviations that can be detected by any test, and (8)
shows that our xMMD test Ψ can detect such changes, establishing its minimax rate-optimality.

3 Experiments

We now present experimental validation of the theoretical claims of the previous section. In particular,

our experiments demonstrate that (i) the limiting null distribution of x̄M̂MD
2

is N(0, 1) under a
wide range of choices of dimension d, sample sizes n,m and the kernel k, and (ii) the power of our
xMMD test is competitive with the kernel-MMD permutation test. We now describe the experiments
in more detail. Additional experimental results are reported in Appendix E.

Limiting null distribution of x̄M̂MD
2
. We showed in Theorem 15 that the statistic x̄M̂MD

2
has a

limiting normal distribution under some mild assumptions. We empirically test this result when X
and Y are drawn from N(0, Id) with 0 denoting the all-zeros vector in Rd, and in particular, study
the effects of (i) dimension: d = 10 versus d = 500, (ii) skewness of the samples: n/m = 1 versus
n/m = 0.1, and (iii) choice of kernel: Gaussian versus Quadratic, both with data-dependent scale
parameters using median heuristic.
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As shown in the first row of Figure 3, the distribution of x̄M̂MD
2

is robust to all these effects, and is
close to N(0, 1) in all cases. In contrast, the distribution of the kernel-MMD statistic scaled by its
empirical standard deviation (obtained using 200 bootstrap samples) in the bottom row of Figure 3
shows strong changes with these parameters. We present additional figures and details of the
implementation in Appendix E.
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Figure 3: The first two columns show the null distribution of the x̄M̂MD
2

statistic (top row) and

the M̂MD
2

statistic scaled by its empirical standard deviation (bottom row) using the Gaussian
kernel with scale-parameter chosen using the median heuristic. The last two columns show the null
distribution for the two statistics using the Quadratic kernel with scale parameter chosen using the

median heuristic. The figures demonstrate that the null distribution of M̂MD
2

changes significantly
with dimension (d), the ratio n/m and the choice of the kernel, unlike our proposed statistic.

Evaluation of the power of Ψ. For d ≥ 1 and j ≤ d, let aϵ,j denote the element of Rd with
first j coordinates equal to ϵ, and others equal to 0. We consider the two-sample testing problem
with P = N(0, Id) Q = N(aϵ,j , Id) for different choices of ϵ and d and j. We compare the
performance of our proposed test Ψ with the kernel-MMD permutation test, implemented with
B = 200 permutations, and plot the power-curves (using 200 trials) in Figure 4. We also propose
a heuristic for predicting the power of the permutation test (denoted by ρperm) using the power of
Ψ (denoted by ρΨ) as follows (with Φ denoting the standard normal cdf, and zα its α-quantile):

ρ̂perm = Φ
(
zα +

√
2
(
Φ−1(ρΨ)− zα

))
. (9)

This heuristic is motivated by the power expressions derived by Kim and Ramdas (2020) for the
problems of one-sample Gaussian mean and covariance testing (we discuss this further in Appendix E).
The term

√
2 in the above expression quantifies the price to pay for sample-splitting. As shown

in Figure 4, this heuristic gives us an accurate estimate of the power of the kernel-MMD permutation
test, without incurring the computational burden.

We now use ROC curves to compare the tradeoff between type-I and type-II errors for the usual MMD,

linear and block-MMDs with our x̄M̂MD
2
. We use the same distributions P = N(0, Id) and Q =

N(aϵ,j , Id) as before, and plot results for (d, j, ϵ) ∈ {(10, 5, 0.2), (100, 20, 0.15), (500, 100, 0.1)}
in Figure 5. Due to sample splitting, the tradeoff achieved by our proposed statistic is slightly

worse than that of M̂MD
2
, but significantly better than other computationally efficient variants of

kernel-MMD statistics. More details about the implementation are presented in Appendix E.

4 Conclusion and future work
We proposed a variant of the kernel-MMD statistic, called cross-MMD, based on the ideas of sample-
splitting and studentization, and showed that it has a standard normal limiting null distribution. Using
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Figure 4: Curves showing the variation in power versus sample-size for the xMMD test and the
kernel-MMD permutation test. X are drawn from N(0, Id) i.i.d. and Y is drawn from N(aϵ,j , Id)
where aϵ,j is obtained by perturbing the first j ≤ d coordinates of 0 by ϵ, the kernel used is the
Gaussian kernel with scale parameter chosen via the median heuristic. The dashed curve shows the
predicted power of the kernel-MMD permutation test using the heuristic defined in (9).
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Figure 5: ROC curves highlighting the trade-off between type-I and type-II errors achieved by the
MMD, cross-MMD, batch-MMD with batch sizes n1/2 and n1/3, and linear-MMD statistics. In all
the figures, we use n = m = 200.

this key result, we introduced a permutation-free (and hence computationally efficient) MMD test
for the two-sample problem. Experiments indicate that the power achieved by our test is within a√
2-factor of the power of the kernel-MMD permutation test (that requires recomputing the statistic

hundreds of times). In other words, our results achieve the following favorable tradeoff: we get a
significant reduction in computation at the price of a small reduction in power.

Sejdinovic et al. (2013) establish in some generality that distance-based two-sample tests (like the
energy distance (Székely and Rizzo, 2013)) can be viewed as kernel-MMD tests with a particular
choice of kernel k. Hence our results are broadly applicable to distance-based statistics as well.
Since two-sample testing and independence testing can be reduced to each other, it is an interesting
direction for future work to see if the ideas developed in our paper can be used for designing
permutation-free versions of kernel-based independence tests like HSIC (Gretton et al., 2007) or
distance covariance (Székely and Rizzo, 2009; Lyons, 2013). Our techniques seem to rely on the
specific structure of two-sample U-statistics of degree 2. Extending these to more general U-statistics
of higher degrees is another important question for future work. A final question is to figure out
whether it is possible to achieve minimax optimal power using a sub-quadratic time test statistic. One
potential approach would be to work with a kernel approximated by random Fourier features (Rahimi
and Recht, 2007; Zhao and Meng, 2015). Depending on the number of random features, our test
statistic can be computed in sub-quadratic time and it would be interesting to see whether the resulting
test can still be minimax optimal in power. We leave this important question for future work.
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