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Abstract

For exact 3D shape correspondence (matching or alignment), i.e., the task of
matching each point on a shape to its exact corresponding point on the other shape
(or to be more specific, matching at geodesic error 0), most existing methods do
not perform well due to two main problems. First, on nearly-isometric shapes (i.e.,
low noise levels), most existing methods use the eigen-vectors (eigen-functions)
of the Laplace Beltrami Operator (LBO) or other shape descriptors to update
an initialized correspondence which is not exact, leading to an accumulation of
update errors. Thus, though the final correspondence may generally be smooth,
it is generally inexact. Second, on non-isometric shapes (noisy shapes), existing
methods are generally not robust to noise as they usually assume near-isometry. In
addition, existing methods that attempt to address the non-isometric shape problem
(e.g., GRAMPA) are generally computationally expensive and do not generalise to
nearly-isometric shapes. To address these two problems, we propose a 2D graph
convolution-based framework called 2D-GEM. 2D-GEM is robust to noise on
non-isometric shapes and with a few additional constraints, it also addresses the
errors in the update on nearly-isometric shapes. We demonstrate the effectiveness
of 2D-GEM by achieving a high accuracy of 90.5% at geodesic error 0 on the
non-isometric benchmark SHREC16, i.e., TOPKIDS (while being much faster than
GRAMPA), and on nearly-isometric benchmarks by achieving a high accuracy of
92.5% on TOSCA and 84.9% on SCAPE at geodesic error 0.

1 Introduction

3D shapes can undergo different types of deformations. Deformations can be rigid or non-rigid.
Rigid deformations include rotations, translations, reflections, or any composition of these resulting
in pose changes. They preserve geometric properties of the shape such as segment lengths, angles,
volumes, sizes, geodesic distances and others. Non-rigid deformations do not preserve geometric
properties of the shape, they include dilations, or a composition of dilations and rigid deformations
(e.g., stretching, scaling). In this work we focus on non-rigid shapes that are either nearly-isometric
(i.e., most geometric properties are preserved), or non-isometric (i.e., geometric properties are not
preserved, and contain strong topological noise).

Non-rigid shape matching is a very important task in machine learning, shape analysis and computer
vision. It has important applications such as shape registration, comparison, recognition, and retrieval.
3D shapes are usually represented as 2D manifolds embedded in R3. Given two three dimensional
shapes M1 and M2 with n vertices each, the goal of non-rigid shape matching is to find a meaningful
correspondence T : M1 → M2, where T is (a) bijective, (b) continuous in both directions in the
sense that nearby points on M1 should be matched to nearby points on M2 (vice versa), and (c)
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similar points should be matched to each other [42]. In the discrete setting the correspondence (map
or match) T can be represented as a permutation matrix P ∈ {0, 1}n×n [54, 4].

In more details, 3D shapes are usually represented using triangulations (e.g., the Delauney triangula-
tion [20]) and xyz-coordinates representations in R3 [80, 42]. It is hard to utilize these xyz-coordinates
and triangulations to directly perform 3D shape matching because of: (a) embedding ambiguities,
i.e. shapes sharing the same metric (isometry) or very similar metrics (nearly-isometric) can have
drastically different xyz-coordinates representations in R3 due to pose changes [80], and (b) non-
isometric shapes with strong topological noise will have even more different xyz-coordinates and
triangulations.

As such, these 3D-coordinates together with the triangulations are usually used to extract point-wise
descriptors (which encode the similarity between points), and pair-wise descriptors (which encode
global and/or local relations between pairs of points). Once these descriptors are built, the shape
matching problem is reduced to an alignment problem over (a) the point-wise descriptors, or (b) the
pair-wise descriptors, or (c) both (joint alignment). The joint alignment problem can be written as:

P = arg min
P∈Π

E(P) = arg min
P∈Π

F(P) + αH(P), (1)

where Π is the set of permutation matrices, E is the generalised energy, F is the energy over point-
wise descriptors, H is the energy over pair-wise descriptors, and α is a trade-off parameter [42].
Several algorithms have been proposed to address point-wise alignment, [4, 70, 11, 55, 64], pair-wise
alignment [20, 18], as well as joint alignment [59, 57, 56, 2, 79, 42, 54, 58]. Due to space constraints,
see Appendix A for more details on the different alignments as well as related works.

To measure the performance of an algorithm on the 3D shape matching task, the geodesic error
is usually used as the error metric [20, 80]. Given that a point x on shape M1 is mapped by an
algorithm to y as its correspondence on shape M2, the geodesic error measures how far the match
y is from the true matching position for x on M2 i.e., y∗ (given by the true map). When the map
returned by algorithm is exact, it significantly improves performance and efficiency of other tasks
such as registration, comparison, motion transfer, style transfer. However, most methods proposed in
each of the aforementioned categories for 3D shape matching do not perform well at geodesic error 0
(i.e., the task of exact matching where y is the same point y∗). This is mainly due to two factors.

(a) Sample map on TOPKIDS (b) Plot of sample on TOPKIDS

Figure 1: A non-isometric example. Illustrating the performance of 2D-GEM and other methods on a
sample shape from the TOPKIDS dataset. For DIR we used DIR-500 with all LMD thresholds set
to 5 since geodesic distances are not conserved on TOPKIDS (note that here, DIR performs much
worse with lower thresholds). For ZoomOut we used 200 eigen-values and started from 20 with a
step size of 1. For 2D-GEM and GRAMPA we followed the parameters in Section D.4

First, on non-isometric shapes, given that most existing methods assume near-isometry, they cannot
handle noisy shapes (e.g., shapes with strong topological noise such as mesh “gluing” in areas of
contact as in the TOPKIDS dataset [42]), since in this case geometric properties such as geodesic
distances are not preserved and hence the shapes are not nearly isometric. An illustration can be seen
in Figures 1(a) and 1(b), where the existing methods that assume near-isometry such as ZoomOut
[54] and DIR [80] do not perform well at geodesic error 0 on the sample shape from TOPKIDS. They
even produce a non-smooth map in the case of DIR. Moreover, those methods that try to address
this noise are computationally very expensive and do not generalize well to nearly-isometric shapes,
because for nearly-isometric shapes stronger constraints (such as preserving geodesic distances)
are needed for the match. To illustrate this point, the spectral method GRAMPA is very expensive
as it needs to compute all the eigen-values and eigen-vectors of the adjacency matrices obtained
from the triangulations of each shape (see more details in Appendix B and time comparison with
2D-GEM in Figures 2(a) and 2(b)). Moreover, GRAMPA cannot generalize to cases of near-isometry
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as illustrated in Figure 3(a), which shows the matching of GRAMPA in an example from SCAPE, a
nearly-isometric shape dataset).

(a) Times on TOPKIDS (b) Times on SCAPE

Figure 2: Time taken by 2D-GEM and GRAMPA for each of the 90 shapes on TOPKIDS and 71 on
SCAPE.

(a) Sample map on SCAPE (b) Plot of sample on SCAPE

Figure 3: An isometric example. Illustrating the performance of 2D-GEM and other methods on a
sample shape from the SCAPE dataset (using same settings as in figure 1).
Second, for nearly-isometric shapes, most existing methods attempt to first find an initial correspon-
dence and then iteratively improve this initial correspondence using all points and the eigen-vectors
corresponding to lower frequencies (eigen-values) of the LBO [4, 58, 54] or using other shape
descriptors [64]. However, such an approach leads to an accumulation of errors in the correspondence,
since the initial correspondence is mostly not accurate. This problem has been discussed in details
by Xiang et al. [80], which attempted to address this via the Dual Iterative Refinement (DIR). DIR
finds well matched points using the notion of Local Mapping Distortion (LMD) to identify points for
which the geodesic distances are well preserved by the correspondence, and then use these points to
update the correspondences of the other points via the notion of Functional maps [56]. Thus, DIR
reduces the error accumulation. However, the DIR approach only works for nearly-isometric shapes
and not for non-isometric shapes since it is based on the assumption of preserving geodesic distances
which are not preserved in the case of non-isometries (see Figure 1(a), which shows that DIR does not
perform well at geodesic 0 for non-isometric shapes). Finally, even on nearly-isometric shapes, DIR,
though effective, requires a lot of eigen-vectors of the LBO in order to perform well at geodesic error
0. This can be seen in Figure 3(b), where using up to 500 eigen-vectors gives only 25% accuracy at
geodesic error 0 on the sample shape from SCAPE, and even with up to 1000 eigen-vectors it only
achieves 69.5% correspondence accuracy on SCAPE and a 59.8% on TOSCA at geodesic error 0 (as
reported in the experiments in Section 5).

Given these problems, we propose to utilize 2D graph convolution for (a) non-isometric shape
matching (since it is a de-noising operation), and (b) for isometric shape matching by further
constraining our framework to preserve geodesic distances.

To this end:

• we show how graph matching can be done via the 2D graph convolution, and re-define noise
in the context of graph matching. We further show empirically that this approach can match
the recent spectral method GRAMPA on Erdos Regny random graph matching, as well as
outperform it in the presence of informative node features (see Appendix D),

• we propose a new 2D graph convolution-based approach to shape matching, called 2D-GEM,
which is (a) robust to noise, and achieves high accuracy on exact matching of non-isometric
shapes while being orders of magnitude faster than GRAMPA, and (b) with some additional
constraints also achieves high accuracy on exact matching of nearly-isometric shapes.
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2 2D graph Convolution for Joint Alignment

To the best of our knowledge, we are the first to propose a 2-D graph convolution for graph alignment
and shape matching. The most closely related work is the work that uses graph convolution neural
networks for graph alignment [22] (See Appendix A.2) Here, we revisit the traditional graph convolu-
tion, show how the joint alignment problem can be done via 2D graph convolution, and finally we
re-define noise in the context of graph matching.

2.1 Graph Convolution

From the Graph Signal Processing [67] perspective, graph convolution is regarded as a frequency
filtering operator over node attributes. Given a graph, with node attribute matrix X ∈ Rn×d, its
normalized symmetric Laplacian (referred to as Laplacian in the rest of the paper) can be eigen-
decomposed as L = UΛUT , where Λ = diag(λ1, · · · , λn) ∈ Rn×n are the eigen-values in
increasing order, and U = [u1, · · · ,un] ∈ Rn×n are the associated orthogonal eigen-vectors.
The graph convolution operation applied to the graph signal x (a column of X) consists of three
steps [45, 24, 29, 30]: (1) transform node attributes into the spectral domain (i.e., z = UTx);
(2) remove attribute noise by scaling the spectrum with a function defined on eigen-values (i.e.,
z̄i = g(λi)zi); (3) perform inverse transformation on the scaled spectrum (i.e., x̄ = Uz̄), where
g(λ) is a scalar-valued function on the eigen-values λ. In short, graph convolution is able to remove
the noisy signals by assigning smaller weight on higher eigen-value spectrum with a well defined
function g(λ). For convenience, we denote g(L) = Ug(Λ)UT , so that we have the convolution as
g ∗ X = g(L)X. We refer to g(L) as the convolution function and g(Λ) as the filter function or
simply filter.

2.2 Joint Alignment via 2D graph Convolution

Following previous works [22, 71] and Appendix C, the graph convolution is invariant to permutation.
As such, given two graphs A and B with graph convolution functions MA = g(LA),MB = h(LB) ∈
Rn×n, features XA,XB ∈ Rn×d, and having the functions g and h to be the same function, the joint
alignment problem in Equation (1) can instead be performed as:

min
P

||PMAXA −MBXB ||2F , (2)

see Appendix C for more details. We observe that (2) reduces to the Linear Assignment Problem
(LAP):

max
P

Tr(PMAXAX
T
BMB), (3)

where Tr(·) is the matrix trace operator, the convolution functions capture the pair-wise descriptors,
and the features capture the point-wise descriptors. The first benefit of the convolution is to help do the
joint alignment as a Linear Assignment Problem (LAP), which is much cheaper than the traditional
Quadratic Assignment Problem (QAP) [23] used for graph matching. Note that, MA = Ug(Λ)UT =∑

i g(λi)uiu
T
i and MB = Vh(M)VT =

∑
j h(µj)vjv

T
j , where U,V are the orthogonal eigen-

vectors of MA and MB , and Λ,M are the diagonal matrices of their respective eigen-values. Given
these, one can rewrite our cost matrix C = MAXAX

T
BMB in (3) as:

C =
∑
i,j

g(λi)h(µj)uiu
T
i XAX

T
Bvjv

T
j , (4)

When node features are not available, one can initialize all nodes with the same features in (3), i.e.,
XA = JA ∈ Rn1×d, and XB = JB ∈ Rn2×d, where n1 may or may not be equal to n2 for different
size graphs, and JA,JB are all one rectangular matrices. This is equivalent to assuming that nodes
have the same probability of being matched to each other. Moreover, to save cost in the case when
there is no feature, one could simply initialize the similarity matrix XAX

T
B = JA,B ∈ Rn1×n2 (given

that JAJ
T
B = JA,B ∈ Rn1×n2 , where JA,B is a scalar matrix with constant [JA,B ]ij =

∑d
i=1 1 = d)

for all entries. In the case where there is no feature, (4) becomes:

C =
∑
i,j

g(λi)h(µj)uiu
T
i JA,Bvjv

T
j . (5)
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(a) 1-hop low-pass (b) 2-hop low-pass (c) redefining noise

Figure 4: 2D graph filters. Figure 4(a) uses the convolution functions g(LA) = g(LB) = (I− 1
2L),

Figure 4(b) uses the convolution functions g(LA) = g(LB) = (I− 1
2L)

2, and Figure 4(c) uses the
noise robust filter defined in Section 3 with e = 1.

Our cost matrices in equations (4) and (5) can be seen as 2D graph convolution on the 2D graph signals
XAX

T
B (or JA,B in the case of no features) [46], where we: (1) transform the 2D graph signals into

the spectral domain to obtain the 2D graph spectrum (i.e., Z = UTXAX
T
BV or Z = UTJT

A,BV)
[46]; (2) remove noise (de-noise) from the 2D graph signals by scaling the 2D spectrum with a
function defined on each pair of eigen-values (i.e., z̄ij = w(λi, µj)zij); and (3) perform inverse
transformation on the scaled 2D spectrum (C = UZ̄VT ). Thus, our cost matrices are 2D filtering
operation on the 2D graph signals, where w(λi, µj) = g(λi)h(µj) is the 2D filter (see Figures 4(a),
4(b) and 4(c) for different 2D filters).

3 Redefining Noise in the Context of Graph Matching

In this section, we redefine noise in the context of graph matching and propose a suitable filter for
graph convolution with regards to the graph matching task . It can be shown that graph convolution is
a solution to the graph signal de-noising problem [24]. Formally, assuming that (1) the ground-truth
node features X̂ are smooth w.r.t. a graph G with adjacency A and Laplacian L, and that (2) the node
feature noise has small magnitude, then the total variation of X̂ should be small by assumption (1),
and ||X̂ − X|| can be upper-bounded by assumption (2). Thus, we can model the problem of
recovering the ground-truth signal as:

X̂∗ = argmin
X̂

Tr
(
X̂⊤LX̂

)
s.t.||X̂−X||2F ≤ ϵ1, (6)

It can clearly be observed that X̂∗ = (I+ αL)−1X, where α is a hyperparameter. This is a graph
convolution with graph convolution function given by (I+αL)−1. This function can be decomposed
as U(I + αΛ)−1UT . As well studied in [45, 78, 36], one can see that the filter (I + αΛ)−1 is
decaying, i.e., g(λi) is lower for higher λi, which will mostly reduce the amplitude zi of graph
signals ui belonging to larger eigen-values λi. Thus, one can conclude that noise corresponds to
higher order frequencies (eigen-values). This kind of filter is commonly known as a low-pass filter
[45]. It can be shown that for the 2D graph convolution, filters of the form w(λi, µj) = g(λi)h(µi),
where g(λi) = (1− αλi)

k and h(µj) = (1− αµj)
k will result in a 2D low-pass filter as well (see

Figures 4(a) and 4(b)). These filters are referred to as k-hop low-pass filters (aggregating information
from the k-hop neighborhood of a node).

However, in the context of graph matching, graphs are isomorphic when they have the same eigen-
value, and in this case we want to align the eigen-vectors since two graphs A and B are isomorphic
iff their eigen-vectors are permutations of each other up to a sign [72, 37].

This leads us to redefine noise in the graph matching context. Given two graphs A and B, with
convolution functions MA, MB whose eigen-values are λi and µj respectively, noise in graph
matching corresponds to 2D graph signals zi,j = uT

i XAX
T
Bvj or zi,j = uT

i JA,Bvj such that
λi ̸= µj , i.e., eigen-values that differ. Thus, we should use a filter that kills off these signals
corresponding to eigen-values that do not match. We choose the filter w(λi, µj , e) =

1
(λe

i−µe
j )

2+1

instead of g(λi)h(µj). This filter exactly kills off these signals corresponding to eigen-values that
differ (see Figure 4(c) to see an illustration of its action on signals). A note here is that the amplitude
and the width of the filter response in Figure 4(c) depends on the spectra of the graphs to be matched
as well as on e. For simplicity, we denote this filter as w(λi, µj) in the rest of the paper. Thus, a
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Algorithm 1 : 2D-GEM
1. input An initial correspondence P0, Uk, Vk,Λk,Mk, e, maximum iteration iter, and the
LMD error {ϵi}iteri=1 thresholds.
while 0 ≤ i ≤ iter do

2. use one round of the 2-Hop algorithm. i.e., set t = 1 in Algorithm 2
3. use the LMD to locate well anchored pairs (landmarks) l
4. use these well anchored pairs to update the 2D graph spectrum as in (9)
5. use the updated spectrum for updating the correspondence of poorly matched points p:

maxPp
Tr(PpCp), with Cp as in (10)

end while

Algorithm 2 : 2-Hop
1. input An initial correspondence P, 2-hop adjacency matrices A2, B2, maximum iteration t.
while 0 ≤ i ≤ t do

2. Pi+1 = GMWM(W), where W = A2P
iB2

end while
3. return Pt

noise robust 2D graph convolution based cost matrix for graph matching is given as:

C =
∑
i,j

w(λi, µj)uiu
T
i XAX

T
Bvjv

T
j . (7)

Moreover, to reduce the time complexity, one may use the first k eigen-values Λk = diag(λi, · · · , λk),
Mk = diag(µi, · · · , µk) and eigen-vectors Uk = [ui, · · · ,uk], Vk = [vi, · · · ,vk], instead of the
full spectrum. Doing so, the noise robust 2D graph convolution based cost matrix for graph matching
becomes:

C =

k∑
i,j

w(λi, µj)uiu
T
i XAX

T
Bvjv

T
j . (8)

Due to space constraints, we refer the reader to Appendix D for the experimental validation of the 2D
graph convolution approach for graph matching.

4 Our Algorithm

Having formulated the 2D graph convolution-based approach for graph matching as well as redefined
noise in the context of graph matching, we now formulate 2D-GEM (2D Graph convolution-based
framework for attempting Exact shape Matching) for non-isometric and nearly-isometric 3D shape
matching.
4.1 2D-GEM

For our framework, given the xyz coordinates of two shapes M1 and M2, we build suitable point-wise
descriptors XA and XB , as well as graph laplacians LA and LB using their triangulations. We then
initialize the correspondence using the point-wise descriptors. Then at each iteration, we first follow
GRAMPA and update the correspondence using the 2-hop neighborhood graph matching algorithm
[84], which makes use of the Greedy Maximum Weight Matching (GMWM) with computational
complexity O(n2 log n) (see Algorithm 2 and Appendix B). The 2-hop adjacency matrices A2 and
B2 of the shapes M1 and M2, respectively, are such that [A2]i,j = 1 and [B2]i,j = 1 if i and
j are 2-hop neighbors, and 0 otherwise. Second, we use the notion of conservation of geodesic
distances [64] to further constrain 2D-GEM, we capture this via LMD[80]. Finally, we adopt the 2D
graph convolution in Equation (8) to filter the correspondence P rather than the feature similarity
matrix XAX

T
B in Equation (8), i.e., we use P rather than XAX

T
B as our 2D graph signals. This can be

seen as de-noising the correspondence at each iteration following the state-of-the-art Kernel-Matching
method [42].

In details (see Algorithm 1), we initialize the correspondence via SHOT[70] (though other descriptors
and algorithms could also be used as in Appendices D, and F), and then at each iteration (iter):
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• we update the correspondence using the 2-Hop Algorithm (2) with t = 1,

• we find l anchor pairs and p non-anchor pairs via LMD (see Section 4.2) and use them to
update the 2D graph spectrum as

Zl = UT
k [l]PlVk[l], (9)

where Uk[l], Vk[l] ∈ Rl×k and Pl ∈ Rl×l are the eigen-vectors and correspondence of the
l-anchor pairs (landmarks) found, and Zl is the updated k × k 2D graph spectrum.

• we use the updated spectrum for updating the correspondence of poorly matched points as
maxPp

Tr(PpCp), where

Cp =

k∑
i,j

w(λi, µj)ui[p][Zl]i,jv
T
j [p], (10)

and ui[p],vj [p] ∈ Rp are the eigen-vectors of the non-landmark points p.

Computation complexity. The complexity for computing k leading eigen-vectors of a n × n
sparse matrix is O(kn log n). The complexity for checking LMD is O(n) following DIR [80].
The GMWM has a computational complexity of O(n2 log n). Thus, our method is of complexity
O((iter)n2 log n) = O(n2 log n), since iter is usually small, e.g., 10 or 60 in our experiments.

4.2 Local Mapping Distortion (LMD)

Here, we describe the LMD employed by 2D-GEM to get landmarks. The LMD was introduced
by [80] and [79] for nearly-isometric shapes. Let T : M1 → M2 be a map function between two
shapes. The LMD of the map T at the point xi is given as follows:

Dγ(T )(xi) =

∑
xj∈Bγ(xi)

A1(j)DET (xi, xj)∑
xj∈Bγ(xi)

A1(j)
, (11)

where Bγ(x) = {y ∈ M1 | dM1
(x, y) ≤ γ} is the γ-geodesic ball of x, A1 is the area element of

the mesh of shape M1, and DET (x, y) = |dM1(x, y)−dM2(T (x), T (y))|/γ represents a pair-wise
distance distortion of mapping nearby points xi and xj to T (xi) and T (xj). A smaller value of
Dγ(T )(xi) means a better map continuity of T at the point xi, in other words, the local distance at
the point xi is well preserved. Based on the above definition of LMD, one can check that if T is an
isometric map, then Dγ(T )(x) = 0,∀x ∈ M1, γ > 0. Conversely, if Dγ(T )(x) = 0,∀x ∈ M1 for
some γ > 0, then T is isometric. We use the LMD to find well matched pairs, i.e., pairs for which
{(xi, T (xi))|Dγ(T )(xi) ≤ ϵi}, where ϵi is a threshold. We call them anchor points (landmarks l),
and others non-anchor points (poor-points p). We use the landmarks to update the 2D graph spectrum
Skl, which we use to update the correspondence of non-landmark points (see Section 4.1). It is
important to note that at every iteration we gradually decrease the threshold following Xiang et al.
[80], and hence not only is the correspondence T updated, but also the landmarks l. For non-isometric
shapes we relax this constraint by setting the thresholds ϵi arbitrarily large, such as 100 for 2D-GEM
in the experiments (see Section 5.5).

4.3 Relationship Between 2D-GEM and Functional Maps

Here we show the relationship between 2D-GEM and the popular Functional Map [56]. The notion
of Functional Maps [56] was introduced in order to solve the notoriously difficult QAP resulting from
pair-wise alignment. A Funcitonal Map is a map between functional spaces P : L2(M1) −→ L2(M2),
which can be discretized as an n× n matrix P (assuming that each of the shapes M1 and M2 has n
vertices). Given a pair of orthonormal basis U = [u1, · · · ,un] and V = [v1, · · · ,vn] for L2(M1)
and L2(M2), respectively, we have P = USVT , where S acts as a basis transformation matrix. On
the other hand, recalling 2D-GEM’s cost matrix for iteratively de-noising the Permutation matrix in
Algorithm 1, i.e.,

C =

k∑
i,j

w(λi, µj)uiu
T
i Pvjv

T
j =

k∑
i,j

w(λi, µj)uisi,jv
T
j , (12)
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where si,j = uT
i Pvj . This means that one can interpret the matrix Sk ∈ Rk×k containing the si,j’s

as a low-pass approximation of the permutation matrix P in the truncated Laplacian eigen-basis, i.e.,
P ≈ USkV

T [42]. Equation (12) can thus be interpreted as applying a graph matching-suitable
filter to the functional map matrix Sk [56, 42]. 2D-GEM 1 can thus be regarded as denoising the
functional map in the graph laplacian basis while enforcing the preservation of neighborhood using
2-hop witnesses [84], as well as ensuring the preservation of geodesic distances (distortions) via the
LMD [80]. This interpretation leads to the beautiful connection between the 2D-graph spectrum
and the functional map. Essentially they are the same when we take the 2D-graph signals as the
columns of the correspondence matrix. As such the 2D-graph convolution approach is intricately
connected to methods such as ZoomOut [54], ICP [4] and BCICP [58], which use the functional map
together with the truncated Laplacian eigen-basis to update the correspondence P. Moreover, recent
works such as Structured Regularization of Functional Map Computations [59], and DIR[80] tried to
address some problems with the traditional functional map approaches (namely, (a) penalizing the
functional map update only when it fails to commute with the LBO’s of the source and target shapes
often fails to produce a good functional map, (b) accumulation of errors in the map update due to
poor initial correspondence) by introducing regularizers in the functional map update step. Following
these works, 2D-GEM can also be seen as a framework for further constraining the functional map
and the point-wise map updates using the LMD and the 2-hop neighborhood witnesses. Another
line of work, namely Fast Sinkhorn Filters [57] tried to explain functional map based approaches as
spectral alignment regularized algorithms, and as such, 2D-GEM can also be viewed as a spectral
alignment regularized algorithm.

5 Experiments

We report experimental results that validate the effectiveness and efficiency of 2D-GEM on exact
matching of non-isometric and nearly-isometric 3D shapes.

5.1 Experimental Set-up

Time comparison between 2D-GEM and GRAMPA is conducted in Matlab on a Windows 10 system
with 16GB RAM and Intel(R) i5 11400 CPU @ 2.60-4.4GHz.

5.2 Datasets

We conduct experiments to evaluate the performance of our method on two nearly isometric bench-
mark datasets TOSCA [10], and SCAPE [5], as well as a benchmark non-isometric dataset SHREC’16
(TOPKIDS) [42]. TOSCA consists of 80 shapes in 8 different categories (human and animal shapes)
with vertex numbers ranging from 4k to 50k. SCAPE has 71 shapes (12,500 vertices for each) of the
same person with different poses. TOPKIDS contains 25 shapes of the same class with up to 12K
vertices, undergoing near-isometric deformations in addition to large topological shortcuts (noise).

5.3 Evaluation Metrics

We use the geodesic error as our error metric [20]. Given that the correspondence of an algorithm
maps x ∈ M1 to y ∈ M2, and the true correspondence maps x to y∗, the geodesic error is defined as
e(x) =

dM2
(y,y∗)

diam(M2)
, where dM2 denotes the geodesic distance on M2, and diam(M2) is the geodesic

diameter of M2.

5.4 Baselines

For non-isometric shape matching, i.e., for matching on the TOPKIDS dataset, we compare 2D-GEM
with the following methods: EM [62], GE [41], RF [61], PFM [60], FSPM [49], Kernel-Matching
[42], and GRAMPA [20].

For near-isometric shape matching, i.e., for matching on the SCAPE and TOSCA datasets, we
compare 2D-GEM to the following methods: SGMDS[2], FM[56], BIM[34], Mobius[48], Best-
Conformal [34], Kernel-Matching [42], DIR-500 [80] which uses 500 eigen-vectors, DIR-1000 [80]
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Figure 5: Performance comparison on TOPKIDS 5(a), SCAPE 5(b), and TOSCA 5(c).

which uses 1000 eigen-vectors, and GRAMPA (on SCAPE, not on TOSCA due to its time complexity
and the fact that 2D-GEM significantly outperforms it as shown on TOPKIDS and SCAPE).

5.5 Parameter Settings

For 2D-GEM, we initialize the correspondence by the GMWM on SHOT [70], and use e = 10 (see
Appendix D for more analysis on e). For nearly-isometric shapes (TOSCA and SCAPE), we use
500 eigen-vectors of the LBO. Following Xiang et al. [80], we use the second ring neighborhood
size for LMD criterion and set the maximum iteration number to iter = 10. We also set the LMD
thresholds, we use [0.5280, 0.4560, 0.3840, 0.3120, 0.2400, 0.1680, 0.1680, 0.1680, 0.1680, 0.1680].
For non-isometric shapes (TOPKIDS), we set the thresholds to 100 for all iterations, use iter = 60,
and 10 LBO eigen-vectors.

For other baselines, we report their results as reported in their papers i.e., we use their curves. Except
for GRAMPA where we re-run using the 2-hop improvement algorithm instead which performs much
better than the 1-hop, i.e., the adjacency. For fair comparison with 2D-GEM , we set t = 60 for this
improvement on GRAMPA.

5.6 Performance Analysis

Comparison on non-isometric shapes. 2 GRAMPA is the state-of-the-art non-isometric shape
matching method that achieves an excellent performance on the exact matching task on the noisy
dataset TOPKIDS (Figure 5(a)). It achieves 84.6% on this dataset at geodesic error 0. This shows
that GRAMPA is very robust to noise as expected (note that this performance is much higher than
the 60% reported in their original paper because we used the 2-hop adjacency instead of the 1-hop
for refinement as explained in Appendix B.2). However, our method 2D-GEM further outperforms
GRAMPA and all other methods, including GRAMPA at geodesic error 0. As reported in Figure 5(a),
where 2D-GEM achieves a 90.5% accuracy. Moreover, Figures 2(a) and 2(b) show that 2D-GEM is
significantly faster than GRAMPA since 2D-GEM only needs to compute a subset of the eigen-vectors,
unlike GRAMPA which needs the whole spectrum and thus has a complexity of O(n3).

Comparison on nearly-isometric shapes. DIR is the state-of-the-art model for nearly-isometric
shape matching. DIR outperforms all the other baselines except 2D-GEM. The better DIR-1000 using
1000 eigen-vectors achieves 69.5% accuracy at geodesic error 0 on SCAPE, and 59.8% accuracy
at geodesic error 0 on TOSCA. Using the LMD proposed for the DIR model by Xiang et al. [80]
for extra constraints on 2D-GEM, 2D-GEM not only generalizes to nearly-isometric shapes, but it
achieves the state-of-the-art results using only 500 eigen-vectors, outperforming even DIR-1000.
2D-GEM achieves 92.5% accuracy (outperforming DIR-1000 by more than 40%) at geodesic error 0
on the TOSCA dataset, as well as 84.9% accuracy on the SCAPE dataset (outperforming DIR-1000 by
almost 20%) . Note that these 2D-GEM’s accuracy improves using more eigen-vectors or increasing
iter, but this also increases the running time. Moreover, 2D-GEM’s gain over GRAMPA (the state-of-
the-art non-isometric shape matching method) can also be seen to extend to nearly-isometric shapes.
As noted earlier in Section 1, GRAMPA does not generalize to nearly-isometric shapes since the

2Ablation studies on 2D-GEM in Appendix E. Code at: https://github.com/BarakeelFanseu/2D-GEM
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assumptions for nearly-isometric shape matching are different from those of non-sometric shape
matching given that isometries preserve geometric properties which are lost by non-isometries. This
is seen by its poor performance on the SCAPE dataset (Figure 5(b), where even for exact matching,
i.e., at geodesic error 0, it only achieves around 10%). In contrast, 2D-GEM (using the LMD for extra
constraints) generalizes to nearly-isometric shapes and achieves the state-of-the-art performance. We
do not attempt to use the LMD on GRAMPA since (1) it is not clear how to use GRAMPA in an
iterative way as it is usually only used as an initialization for other algorithms (see Appendix B),
(2) 2D-GEM outperforms GRAMPA even without the LMD as shown on the noisy TOPKIDS dataset
(Figure 5(a)), and (3) 2D-GEM with or without the LMD is still faster than GRAMPA without the
LMD (see Figures 2(a) and 2(b)).

5.7 Limitations of 2D-GEM

There are three main limitations to this work. First, for nearly-isometric shapes (shown in Figure 3(a)),
2D-GEM sometimes produces maps that are not continuous (smooth), though much more accurate
than the other baselines. Second, although the time complexity O(n2 log n) of 2D-GEM is much
lower than the O(n3) of GRAMPA, it is much worse than the O(n log n) of other methods such as
ZoomOut and DIR. Lastly, unlike GRAMPA, we do not provide rigorous theoretical exact recovery
guarantees for 2D-GEM on random graph matching.

6 Conclusions

We presented how the 2D graph convolution could be used for graph matching. Using this 2D graph
convolution, we re-defined noise in the context of graph matching and proposed a model (2D-GEM)
that addresses the task of exact 3D shape matching on non-isometric (noisy) datasets as well as
on nearly-isometric datasets. We then showed that 2D-GEM significantly outperforms existing
methods on both non-isometric shapes and nearly-isometric shapes. For future work, we propose to
address two key limitations of 2D-GEM, i.e., further reducing the time complexity of O(n2 log n)
and providing theoretical guarantees on its exact recovery performance. Moreover, we also propose to
explore the generalization of 2D-GEM for correspondence tasks that allow using graph representation
such as partial shape matching, image matching, and network de-anonymization. Besides, it is also
promising to consider the potential distribution shifts [12], as well as the optimization trade-offs [13].

7 Broader Impact

Given that our method needs no training, is unsupervised and based on intrinsic shape properties, it
can positively benefit the industry and society as a whole in that; (a) it may be easily generalized,
and most importantly (b) it needs no human labels nor training, which can help reduce the cost and
time taken for the shape correspondence problems in different crucial fields such as medicine, and
computer graphics.
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[73] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. accepted as poster.

[74] Mario Vento and Pasquale Foggia. Graph matching techniques for computer vision. Graph-
Based Methods in Computer Vision: Developments and Applications, 1:1–41, 01 2012. doi:
10.4018/978-1-4666-1891-6.ch001.

[75] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed
graph clustering: a deep attentional embedding approach. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, pages 3670–3676, 2019. doi:
10.24963/ijcai.2019/509.

[76] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Oct 2019. doi: 10.1109/iccv.2019.00315.

[77] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 349–357, Brussels, Belgium, 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1032.

[78] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In Proceedings of the 36th International Conference
on Machine Learning, pages 6861–6871. PMLR, 2019.

[79] Rui Xiang, Rongjie Lai, and Hongkai Zhao. Efficient and robust shape correspondence via
sparsity-enforced quadratic assignment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9513–9522, 2020.

[80] Rui Xiang, Rongjie Lai, and Hongkai Zhao. A dual iterative refinement method for non-rigid
shape matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15930–15939, June 2021.

[81] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[82] Lei Xu and Irwin King. A pca approach for fast retrieval of structural patterns in attributed graphs.
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the
IEEE Systems, Man, and Cybernetics Society, 31:812–7, 02 2001. doi: 10.1109/3477.956043.

[83] Lyudmila Yartseva and Matthias Grossglauser. On the performance of percolation graph
matching. In COSN ’13, 2013.

[84] LIREN YU, Jiaming Xu, and Xiaojun Lin. Graph matching with partially-correct seeds. J.
Mach. Learn. Res., 22:280:1–280:54, 2021.

[85] Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2684–2693, 2018. doi: 10.
1109/CVPR.2018.00284.

15



[86] Jiawei Zhang and Philip S. Yu. Multiple anonymized social networks alignment. In 2015 IEEE
International Conference on Data Mining, pages 599–608, 2015. doi: 10.1109/ICDM.2015.114.

[87] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via
adaptive graph convolution. In IJCAI, 2019.

[88] Zhen Zhang and Wee Sun Lee. Deep graphical feature learning for the feature matching problem.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 5086–5095,
2019. doi: 10.1109/ICCV.2019.00519.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] see Sections 1, 3 4, 5 and Appendix D
(b) Did you describe the limitations of your work? [Yes] see Section 5.7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see

Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] see Sections 3,
2.2 and Appendix C

(b) Did you include complete proofs of all theoretical results? [Yes] see Sections listed in
Question 2 (a) above.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] see code in
supplementary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Section 5.5 amd Appendix D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see Section 5.1

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] see Section 5.5 and

Appendix D.4
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

see code in supplementary material
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] see Section 5.5 and Appendix D.4
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16


	Introduction
	2D graph Convolution for Joint Alignment
	Graph Convolution
	Joint Alignment via 2D graph Convolution

	Redefining Noise in the Context of Graph Matching
	Our Algorithm
	2D-GEM
	Local Mapping Distortion (LMD)
	Relationship Between 2D-GEM and Functional Maps

	Experiments
	Experimental Set-up
	Datasets
	Evaluation Metrics
	Baselines
	Parameter Settings
	Performance Analysis
	Limitations of 2D-GEM

	Conclusions
	Broader Impact
	Acknowledgements
	Related work
	point-wise Alignment
	pair-wise Alignment.
	Joint Alignment (Both)

	GRAMPA for Pair-wise Alignment
	Formulation
	2-Hop Iterative improvement
	Relationship Between 2D-GEM and GRAMPA

	On the In-variance of the Graph Convolution to Permutation
	Review of Isomorphism from Linear algebra

	Validation of 2D Graph Convolution for Graph Matching on Erdos Regny Random Graphs
	Datasets
	Evaluation Metrics
	Baselines
	Parameter Settings
	Performance Analysis

	Ablation Studies on 2D-GEM
	Set-up
	Comparison
	Ablation Conclusion

	More Comments and Initialization Studies
	On Non-Smooth Final Maps Returned By 2D-GEM
	2D-GEM's Sensitivity to LMD Thresholds

