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Abstract

Attention mechanisms average a data representation with respect to probability
weights. Recently, [23–25] proposed continuous attention, focusing on unimodal
exponential and deformed exponential family attention densities: the latter can
have sparse support. [8] extended to multimodality via Gaussian mixture attention
densities. In this paper, we propose using kernel exponential families [4] and our
new sparse counterpart, kernel deformed exponential families. Theoretically, we
show new existence results for both families, and approximation capabilities for
the deformed case. Lacking closed form expressions for the context vector, we
use numerical integration: we prove exponential convergence for both families.
Experiments show that kernel continuous attention often outperforms unimodal
continuous attention, and the sparse variant tends to highlight time series peaks.

1 Introduction

Attention mechanisms [3] are weighted averages of data representations used to make predictions.
Discrete attention 1) cannot easily handle irregularly spaced observations, and 2) attention maps may
be scattered, lacking focus. [23, 24] proposed continuous attention, showing that attention densities
maximize the regularized expectation of a function of the data location (i.e. time). Special cases
lead to exponential and deformed exponential families: the latter has sparse support. They form a
continuous data representation and take expectations with respect to attention densities. In [25] they
apply this to a transformer architecture.

[23–25] used unimodal attention densities, giving importance to one data region. [8] extended this to
multimodal Gaussian mixture attention densities. However 1) Gaussian mixtures lie in neither the
exponential nor deformed exponential families, and are difficult to study in the context of [23, 24];
and 2) they have dense support. Sparse support can say that certain regions of data do not matter: a
region of time has no effect on class probabilities, or a region of an image is not some object. We
would like to use multimodal exponential and deformed exponential family attention densities, and
understand how [8] relates to the framework of [23, 24].

This paper makes three contributions: 1) we introduce kernel deformed exponential families, a sparse
multimodal density class, and apply it along with the multimodal kernel exponential families [4]
as attention densities. The latter have been used for density estimation, but not weighting data
importance; 2) we theoretically analyze kernel exponential and deformed exponential family i)
normalization, ii) approximation and iii) context vector numerical integration properties; 3) we apply
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them to real world datasets, showing that multimodal continuous attention outperforms unimodal,
and that kernel deformed exponential family densities often highlight the peaks of time series.
Approximation properties for the kernel deformed case are challenging: similar kernel exponential
family results [33] relied on exponential and logarithm properties to bound the difference of the
log-partition functional at two functions: these do not hold for deformed analogues. We provide
similar bounds by using a mean value inequality and bounding a functional derivative.

We first review unimodal continuous attention [23, 24]. We motivate multimodal continuous attention
via time warping. We next describe kernel exponential families and give a novel normalization
condition relating kernel growth to the base density’s tail decay. We then propose kernel deformed
exponential families, new densities with support over potentially disjoint regions. We describe
normalization and approximation capabilities. Next we describe using these densities for continuous
attention, including numerical integration convergence analysis. We show experiments comparing
unimodal and multimodal attention, and conclude with limitations and future work.

2 Related Work

Attention Mechanisms closely related are [23–25, 8]. [23, 24] frame continuous attention as an
expectation of a value function with respect to a density, where the density solves an optimization
problem. They only used unimodal (deformed) exponential family densities: we extend this to the
multimodal setting by leveraging kernel exponential families and proposing a deformed counterpart.
[8] proposed a multimodal continuous attention mechanism via a Gaussian mixture. We show in
Appendix A that this solves a slightly different optimization problem from [23, 24]. A limitation
of Gaussian mixtures is lack of flexible tail decay. Finally, [25] apply continuous attention within
a transformer architecture to model long context. This is a new application of continuous attention
rather than an extension of specific continuous attention mechanisms.

Also relevant are [40, 30, 31]. [30] provide an attention mechanism for irregularly sampled time
series by use of a continuous-time kernel regression framework, but do not take an expectation of
a data representation over time with respect to a continuous pdf. Instead they evaluate the kernel
regression model at fixed time points. This describes importance of data at a set of points rather than
over continuous regions. [31] extend this to incorporate uncertainty quantification. Other papers
connect attention and kernels, but focus on discrete attention [40, 5]. Also relevant are temporal
transformer papers, including [45, 15, 17, 32]. However, none have continuous attention densities.

Kernel Exponential Families [4] proposed kernel exponential families: [33] analyzed theory for
density estimation. [44] parametrized the kernel with a deep neural network. Other density estimation
papers include [1, 6, 36]. We apply kernel exponential families as attention densities to weight a
value function which represents the data, rather than for density estimation. Further, [44] showed a
condition for an unnormalized kernel exponential family density to have a finite normalizer. However,
they used exponential power base densities. We instead relate kernel growth rates to the base density
tail decay, allowing non-symmetric base densities.

To summarize our theoretical contributions: 1) showing that multimodal continuous attention is
required to represent time warping 2) introducing kernel deformed exponential families with approxi-
mation and normalization analysis 3) improved kernel exponential family normalization results 4)
stability and convergence analysis of numerical integration for kernel-based continuous attention 5)
characterizing [8] in terms of the framework of [23, 24].

3 Continuous Attention Mechanisms

An attention mechanism has: 1) a value function: a raw or learned data representation 2) an attention
density chosen to be ‘similar’ to another data representation, encoding it into a density 3) a context c
[23] taking an expectation of the value function with respect to the attention density:

c = ET⇠p[V (T )]. (1)

The value function V : S ! RD is a data representation, T ⇠ p(t) is the random variable or vector
for locations (temporal, spatial, etc) in domain S, and p(t) is the attention density (potentially with
respect to a discrete measure). For discrete attention, one could have V (t) be a time series where
t 2 S a finite set of time points. One then weights the time series with a probability vector to
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obtain the context vector. An example of this for irregularly sampled time series is [30]. For each
attention mechanism (eqn. 3 in their paper), S is the set of observed time points, the value function
maps the observed time points to their respective observation values, and the attention probability
mass function is the output of normalized kernel evaluations between observation time points and a
reference time point.

In the continuous setting V (t) could be a curve or realization of a continuous-time stochastic process,
and S could be [0, ⌧ ] where ⌧ is a study end time. One then weights it with a continuous probability
density. If S is a set of spatial locations and one has image data, then the value function could be a
raw image or learned representation of an image. Finally, for self-attention [18, 42], V is a linear
transformation of a sequence, and the expectation is conditional on a transformation of a specific
token (query).

To choose p, one takes a data representation f and finds p ‘similar’ to f , but regularizing p. [23, 24]
did this, formalizing attention mechanisms. Given a measure space (S,A, Q), let M1

+(S) be the
set of probability densities with respect to Q. Assume Q is dominated by a �-finite measure ⌫ (i.e.
Lebesgue) and that it has Radon Nikodym derivative q0 = dQ

d⌫
with respect to ⌫. Let S ✓ RD, F be a

function class, and ⌦ : M1
+(S) ! R be a lower semi-continuous, proper, strictly convex functional.

Given f 2 F , an attention density [23] p̂ : S ! R�0 solves

p̂[f ] = arg max
p2M

1
+(S)

Z

S

p(t)f(t)dQ(t)� ⌦(p). (2)

This maximizes regularized L2 similarity between p and a data representation f . If ⌦(p) =R
S
p(t) log p(t)dQ(t) is the negative differential entropy, the attention density is Boltzmann Gibbs

p̂[f ](t) = exp(f(t)�A(f)), (3)

where A(f) ensures
R
S
p̂[f ](t)dQ = 1 (see [23] for proof). If f(t) = ✓T�(t) for parameters and

statistics ✓ 2 RM ,�(t) 2 RM respectively, Eqn. 3 becomes an exponential family density. For f in
a reproducing kernel Hilbert space (RKHS) H, it becomes a kernel exponential family density [4],
which we propose as an alternative attention density.

One desirable class would be heavy or thin tailed exponential family like densities. In exponential
families, the support, or non-zero region of the density, is controlled by the measure Q. Letting ⌦(p)
be the ↵-Tsallis negative entropy ⌦↵(p) [41],

⌦↵(p) =

(
1

↵(↵�1)

�R
S
p(t)↵dQ� 1

�
,↵ 6= 1;R

S
p(t) log p(t)dQ,↵ = 1,

then p̂[f ] for f(t) = ✓T�(t) lies in the deformed exponential family [41, 27]

p̂⌦↵ [f ](t) = exp2�↵
(✓T�(t)�A↵(f)), (4)

where A↵(f) again ensures normalization and the density uses the �-exponential

exp
�
(t) =

(
[1 + (1� �)t]1/(1��)

+ ,� 6= 1;
exp(t),� = 1.

(5)

For � < 1, Eqn. 5 and thus deformed exponential family densities for 1 < ↵  2 can return 0 values.
Values ↵ > 1 (and thus � < 1) give thinner tails than the exponential family, while ↵ < 1 gives
fatter tails. Setting � = 0 is called sparsemax [22]. In this paper, we assume 1 < ↵  2, which is the
sparse case studied in [23]. We again propose to replace f(t) = ✓T�(t) with f 2 H, which leads to
the novel kernel deformed exponential families.

Computing Eqn. 1’s context vector requires parametrizing V (t). [23] parametrize V : S ! RD

with B 2 RD⇥N as V (t;B) = B (t) and estimate B 2 RD⇥N via regularized multivariate linear
regression. Here  = { n}

N

n=1 is a set of basis functions. Let L be the number of observation
locations (times in a temporal setting), D be the observation dimension, and N be the number of basis
functions. Using Frobenius norm k · kF , this involves regressing the observation matrix H 2 RD⇥L

on a matrix F 2 RN⇥L of basis functions { n}
N

n=1 evaluated at observation locations {tl}Ll=1

B⇤ = argmin
B

kBF � Hk
2
F
+ �kBk2

F
, (6)
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4 Time Warping

We now draw a connection to time warping [28] to show an advantage of our method. One summary
statistic for classification is a global weighted average pooling: an expectation of temporal features.
However in many processes features may not be aligned in time, and we only observe unaligned
curves due to a discrepancy between individual system times and clock time: this is known as
phase variation [21]. For instance, electrocardiogram (ECG) heartbeat curves have a P-wave, a QRS
complex and a T-wave. These have similar patterns between heartbeats, but may have different
durations and peak locations. Here we show that the expectation of a temporally aligned curve with
respect to a global density is equivalent to the expectation of the unaligned curve with respect to an
individualized density. However even if the global density is unimodal, the individualized density
may not be. We first define the function that aligns a set of features to common reference times.
Definition 4.1. (Time Warping Function) Given references times {t0k}Kk=1 and individualized times
{tik}Kk=1, both in [0, ⌧ ], a time warping function hi : S ! R for S ✓ R�0 is a strictly increasing,
differentiable, invertible function where

hi(0) = 0, hi(⌧) = ⌧

hi(t0k) = tik, k = 1, . . . ,K

hi(t) = t if t 62 [0, ⌧ ]

Let {Xi}
n

i=1, Xi : S ! R be observed curves, each with K features occurring at individualized
times {tik}Kk=1 ⇢ [0, ⌧ ] increasing in k. A set of time warping functions {hi}

n

i=1 map reference
times to individualized feature times. One can then compute aligned X⇤

i
(t) = Xi(hi(t)). Each

X⇤

i
has relevant features at the same times {t0k}Kk=1. Classically, this requires handcrafting and

locating important features and estimating a warping function. We could then compute an expectation
of the time warped curve with respect to a global fixed density p(t) to obtain a summary statistic
ET⇠pX⇤

i
(T ) of the aligned curve. The following states that multimodal continuous attention can

represent such an expectation with an attention density pi, avoiding computing X⇤

i
(t).

Lemma 4.2. (Continuous Attention can Represent Time Warping) Let h be a time warping function,

g = h�1
and Xi : R ! R with support on [0, ⌧ ]. Assume that Q is dominated by Lebesgue measure ⌫

and let q0 = dQ

d⌫
. Then for any fixed density p wrt Q, if g,Xi, q0, p are continuous almost everywhere

we have

EU⇠pX
⇤

i
(U) = ET⇠piXi(T ) (7)

where pi(t) = p(gi(t))
q0(gi(t))
q0(t)

g0
i
(t) and pi(t) is a valid probability density function.

See Appendix B.1 for proof. Even if p(t) is unimodal, pi(t) may not be: see Appendix B.2 for an
example. Thus we require multimodal continuous attention to represent such statistics.

5 Kernel Exponential and Deformed Exponential Families

We use kernel exponential families and a new deformed counterpart to obtain flexible attention
densities solving Eqn. 2 with the same regularizers. We first review kernel exponential families.
We then give a novel theoretical result describing when an unnormalized kernel exponential family
density can be normalized. This says that the normalizing constant exists when the base density
has fast enough tail decay relative to kernel growth. This result allows us to verify that a choice of
base measure and kernel lead to a valid attention density and thus attention mechanism. Next we
introduce kernel deformed exponential families, extending kernel exponential families to have either
sparse support, our focus, or fatter tails. These can attend to non-overlapping time intervals. We show
similar normalization results based on kernel choice and base density. The normalizing constant
exists when the unnormalized density has compact support and the kernel grows sufficiently slowly.
Following this we show approximation theory. We conclude by showing how to compute attention
densities in practice.

Kernel exponential families [4] extend exponential families, replacing f(t) = ✓T�(t) with f 2 H a
reproducing kernel Hilbert space H [2]. Densities can be written

p(t) = exp(f(t)�A(f))

= exp(hf, k(·, t)iHi �A(f)). (8)
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Figure 1: Rescaled continuous attention densities for a) kernel deformed exponential families on an
engine noise example b) kernel deformed exponential families on an ECG example. Both examples
are multimodal and highlight salient features of a signal, and the ECG example in particular highlights
the waves, which describe the electrical signal passing through the heart conduction system. It first
highlights the R wave, the largest peak, then the T wave, and next the R wave again.

Eqn. 8 follows from the reproducing property. A challenge is to choose H, Q so that a normalizing
constant exists, i.e.,

R
S
exp(f(t))dQ < 1. These densities can approximate any continuous density

over a compact domain arbitrarily well in KL divergence, Hellinger, and Lp distance [33]. However
relevant integrals including the normalizing constant require numerical integration.

To avoid infinite dimensionality one generally assumes a representation of the form f =P
I

i=1 �ik(·, ti), where for density estimation [33] the ti are the observation locations and this
is the solution to a regularized empirical risk minimization problem. This requires using one parame-
ter per observation value. This model complexity may not be necessary, and often one chooses a set
of inducing points [38] {ti}Ii=1 where I is less than the number of observation locations.

For a given pair H, k, how can we choose Q to ensure that the normalization constant exists? We
first give a simple example of H, f and Q where it does not.
Example 1. Let Q be the law of a N (0, 1) distribution and S = R. Let H = span{t3, t4} with
k(t, s) = t3s3 + t4s4 and f(t) = t3 + t4 = k(t, 1). Then the following integral diverges.

Z

S

exp(f(t))dQ =

Z

R

1
p
2⇡

exp

✓
�
t2

2
+ t3 + t4

◆
dt

5.1 Theory for Kernel Exponential Families

We provide sufficient conditions for Q and H so that A(f) the log-partition functional exists. We
relate H’s kernel growth rate to the tail decay of the random variable or vector TQ with law Q.
Proposition 5.1. Let p̃(t) = exp(f(t)) where f 2 H an RKHS with kernel k. Assume k(t, t) 

Lkktk
⇠

2 + Ck for constants Lk, Ck, ⇠ > 0. Let Q be the law of a random vector TQ, so that

Q(A) = P (TQ 2 A). Assume 8u s.t. kuk2 = 1, z > 0

P (|uTTQ| � z)  Cq exp(�vz⌘) (9)

for some constants ⌘ > ⇠

2 , CQ, v > 0. Then

Z

S

p̃(t)dQ < 1.

See Appendix C.1 for proof. Based on k(t, t)’s growth, we can vary what tail decay rate for TQ

ensures we can normalize p̃(t). [44] also proved normalization conditions, but focused on exponential
power density for a specific growth rate of k(t, t) rather than relating tail decay to growth rate. By
focusing on tail decay, our result can be applied to non-symmetric base densities. Specific kernel
bound growth rate terms ⇠ lead to allowing different tail decay rates.
Corollary 5.2. For ⇠ = 4, TQ can be any sub-Gaussian random vector. For ⇠ = 2 it can be any

sub-exponential. For ⇠ = 0 it can be any probability density.

See Appendix C.2 for proof.
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5.2 Kernel Deformed Exponential Families

We now propose kernel deformed exponential families, which are flexible sparse non-parametric
densities: these can be multimodal. They take deformed exponential families and extend them to use
kernels in the deformed exponential term. This mirrors kernel exponential families. We write

p(t) = exp2�↵
(f(t)�A↵(f)),

where f 2 H with kernel k. Fig. 1 shows that they can have support over disjoint intervals.

5.2.1 Normalization Theory

We construct a valid kernel deformed exponential family density from Q and f 2 H. We first discuss
the deformed log-normalizer. In exponential family densities, the log-normalizer is the log of the
normalizer. For deformed exponentials, the following holds.
Lemma 5.3. Let Z > 0 be a constant. Then for 1 < ↵  2,

1

Z
exp2�↵

(Z↵�1f(t)) = exp2�↵
(f(t)� log

↵
Z)

where

log
�
t =

8
><

>:

t
1��

�1
1��

if t > 0,� 6= 1;

log(t) if t > 0,� = 1;
undefined if t  0.

See Appendix D.1 for proof. We now describe a normalization sufficient condition analagous to
Proposition 5.1 for deformed kernel exponential families. With Lemma 5.3 and an unnormalized
exp2�↵

(f̃(t)) we derive a valid normalized kernel deformed exponential family density. We only
require that an affine function of the terms in the deformed-exponential is negative for large ktk2.

Proposition 5.4. For 1 < ↵  2 assume p̃(t) = exp2�↵
(f̃(t)) with f̃ 2 H, H is a RKHS with

kernel k. If 9Ct > 0 s.t. for ktk2 > Ct, (↵� 1)f̃(t) + 1  0 and k(t, t)  Lkktk
⇠

2 + Ck for some

⇠ > 0, then
R
S
exp2�↵

(f̃(t))dQ < 1.

See Appendix D.2 for proof. We now construct a valid kernel deformed exponential family density
using the finite integral.

Corollary 5.5. Under proposition 5.4’s conditions, assume exp2�↵
(f̃(t)) > 0 on a set A ✓ S where

Q(A) > 0, then 9 constants Z > 0, A↵(f) 2 R such that for f(t) = 1
Z↵�1 f̃(t), the following holds

Z

S

exp2�↵
(f(t)�A↵(f))dQ = 1.

See Appendix D.3 for proof. We thus estimate f̃(t) = Z↵�1f(t) and normalize to obtain a density
of the desired form.

5.2.2 Approximation Theory

Kernel deformed exponential families can approximate continuous densities satisfying a tail condition
on compact domains arbitrarily well in Lp norm, Hellinger distance, and Bregman divergence.
Theorem 5.6. Let q0 2 C(S), such that q0(t) > 0 for all t 2 S, where S ✓ Rd

is locally compact

Hausdorff and q0 is the Radon Nikodym derivative of measure Q with respect to a dominating measure

⌫. Suppose there exists l > 0 such that for any ✏ > 0, 9R > 0 satisfying |p(t)� l|  ✏ for any t with

ktk2 > R. Define

Pc = {p 2 C(S) :

Z

S

p(t)dQ = 1, p(t) � 0, 8t 2 S and p� l 2 C0(S)}.

Suppose k(t, ·) 2 C0(S)8t 2 S and the kernel integration condition (Eqn. 12) holds. Then kernel

deformed exponential families are dense in Pc wrt Lr
norm, Hellinger distance and Bregman

divergence for the ↵-Tsallis negative entropy functional.
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The proof (Appendix D.4) idea is that under a kernel integrability condition, deformed exponential
families parametrized by f 2 H are dense in those parametrized by f 2 C0(S) 2 (we denote
those parametrized by f 2 C0(S) as P0). We can approximate C(S) densities satisfying the tail
condition with P0 densities, and thus with deformed exponential family densities. This extends [33]’s
approximation to the deformed case: standard log and exponential rules cannot be applied. It requires
bounding functional derivatives and applying a mean value inequality.

5.3 Using Kernels for Continuous Attention

Here we describe how to compute continuous attention mechanisms with attention densities
parametrized by functions in an RKHS H in practice. Algorithm 1 shows the kernel deformed
exponential family case: the kernel exponential family case involves a similar algorithm. Given a
base measure, kernel, and inducing point locations, we start by computing kernel weights �̃i for
f̃(t) = Z↵�1f(t) =

P
I

i=1 �̃ik(t, ti) and estimating the matrix B for basis weights for the value
function V (t) = B (t). Unlike density estimation, this form for f is simply a practical way to obtain
f in an RKHS, rather than a solution to an empirical risk minimization problem. We then compute the
normalizing constant Z =

R
S
exp2�↵

(f̃(t))dQ via numerical integration and use it to normalize f̃(t)
to obtain the attention density p(t). Finally we compute the context c = ET⇠p[V (T )] = BEp[ (t)]
by taking the expectation of  (T ) with respect to a deformed kernel exponential family density p.
Unlike [23, 24], we lack closed form expressions and use numerical integration. In the backwards
pass we use automatic differentiation. Note that in some cases we have numerical underflow when
computing the normalizing constant. We also found that using FP16 precision, the default on some
newer GPUs for Pytorch up to 1.11, leads to worse performance, sometimes dramatically so, and
thus recommend using FP32. We discuss solutions for the underflow issue in Appendix E.1.

Algorithm 1 Continuous Attention Mechanism via Kernel Deformed Exponential Families
Choose q0(t) and kernel k. Inducing point locations {ti}Ii=1

Parameters {�̃i}Ii=1 the weights for f̃(t) = (Z)↵�1f(t) =
P

I

i=1 �̃ik(t, ti), matrix B for basis
weights for value function V (t) = B (t). I is number of inducing points.
Forward Pass
Compute Z =

R
exp2�↵

(f̃(t))dQ(t) to obtain p(t) = 1
Z
exp2�↵

(f̃(t)) via numerical integration
Compute ET⇠p[ (T )] via numerical integration
Compute c = ET⇠p[V (T )] = BEp[ (T )]
Backwards Pass use automatic differentiation

5.3.1 Numerical Integration Convergence

The trapezoidal rule’s standard one-dimensional convergence rate is O( 1
N2 ) for an integral over a fixed

interval, where N is the number of grid points. We would like better convergence guarantees. We
can achieve exponential convergence for the numerical integrals of kernel exponential and deformed
exponential family attention. We focus on numerical integration over the real line, leaving truncation
analysis and higher dimensions to future work. We let h > 0 be the grid size.

For functions holomorphic in a strip with rapid decay, the trapezoidal rule has exponential convergence.
For kernel exponential family attention, this gives us O(exp(�C/h)) or exponential convergence for
some C > 0 with appropriate choice of q0, V , and k. Technical details are in E.2, and are based on
extending real-valued analytic functions to complex functions analytic/holomorphic on a strip.

Kernel deformed exponential families, however, are not even differentiable, but we can construct
a sequence of differentiable approximations by replacing the positive part/ReLU function in the
deformed exponential with softplus for increasing values of the softplus parameter. Each differentiable
approximation has exponential convergence, and by taking limits as the softplus parameter tends to
infinity we can show that the numerical integral for kernel deformed exponential family attention
itself has exponential convergence. Technical details are in E.3.

We also show empirical convergence analysis in Appendix E.4 and figure 2 in that appendix. Both
kernel exponential and deformed exponential families see rapid convergence for 1d attention, pro-

2continuous function on domain S vanishing at infinity
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Attention Accuracy
Cts Softmax 77.72±14.20

Cts Sparsemax 77.96±9.64
Kernel Softmax (ours) 85.71 ± 11.98

Kernel Sparsemax (ours) 88.1 ± 1.50

Table 1: Results for 100 runs each of synthetic time warping classification experiment, N = 64. This
involves generating 10, 000 trajectories, each of length 95 of unaligned curves.

viding excellent integral approximations with only 5-10 grid points. Further, the numerical integral
using softplus is a very close approximation to that using ReLU for softplus parameters 5 and 10.

6 Experiments

We investigate how often multimodal continuous attention outperforms unimodal, given the same
architecture. We also investigate whether these methods learn rich multimodal densties. We denote
kernel exponential family attention as kernel softmax and the deformed case as kernel sparsemax.
Our architectures have: 1) an encoder maps a discrete time series representation to attention density
parameters. 2) The value function V (t;B) expresses an embedding of a time series as a linear
transformation of basis functions. 3) The context is c = Ep[V (T )], which is used in 4) a classifier.
Fig. 3 in the Appendices visualizes this. For kernel softmax/sparsemax the encoder outputs are the
weights for the kernel evaluations. For the Gaussian mixture case, the encoder’s outputs are the
mixture weights and components means and variances. Here we describe one synthetic and three
real data experiments. In Appendix E we provide an additional ECG classification experiment. We
provide confidence intervals for our three smaller experiments (at most 10, 000 samples). Our UWave
and ECG experiments were done on a Titan X GPU, IMDB on a 1080, and FordA on an A40. We
found that the A40 provides very different results out of the box for both accuracy/F1 and attention
densities. As an example, Figure 8 was done on a Titan X with an older version of Pytorch, while
Figure 7 was done with an A40 with Pytorch 1.12. Code is in our repository3, where we discuss the
flags used to control precision on recent GPUs and Pytorch versions. We discuss computational/
memory complexity in Appendix F, and give a summary in Table 5. We provide wall clock times in
Table 6.

6.1 Synthetic Experiment: Time Warping

We simulate time warping and do prediction for unimodal vs multimodal attention densities. Details of
the original time aligned stochastic process and inverse warping function are in Appendix B.3. Given
global densities for classes p1, p2 and aligned X⇤, the class is argmax(hp1, X⇤

i, hp2, X⇤
i). We

generate 10, 000 trajectories of length 95 observed at evenly spaced time points in the interval [0, 1].
We use two attention mechanisms (heads), one for each class. Letting V be the value function fit to
observed data, the classifier is softmax([hpi1, V iL2 , hpi2V iL2 ]) where pi1 and pi2 are the attention
densities for the first and second class. Table 1 shows prediction results from 100 runs along with
1.96 standard deviation intervals. Kernel methods outperform by 7� 10%.

6.2 FordA Dataset

This is a binary classification dataset for whether a sympton exists in an automotive subsystem. Each
time series has 500 sensor observations, and there are 3601 training samples and 1320 test samples.
Table 2 shows results. Kernel sparsemax outperforms most baselines4, while kernel softmax also does
well. We use the same methods and architecture as the previous section, although hyperparameters
are slightly different. Several methods, including discrete softmax, continuous sparsemax and the
transformer, have very poor performance. To sanity check we fit SVM with a Gaussian kernel,
logistic regression, and a decision tree: accuracies are under 55% for these, and we conclude that

3https://github.com/onenoc/kernel-continuous-attention
4An earlier pre-print of this paper using previous TSAI/PyTorch versions and a Titan X instead of an A40

had ⇠ 90% accuracy/F1 for LSTM FCN. We no longer have access to that environment, but we suspect the
difference has to do with either precision or implementation changes in the TSAI library.
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Method Accuracy F1

Discrete Softmax 51.27± 1.86 33.89± 0.82
Cts Softmax 74.88± 21.36 74.56± 21.84

Cts Sparsemax 90.95± 1.77 90.94± 1.77
Gaussian Mixture 69.56± 35.94 60.75± 52.88

Kernel Softmax (ours) 92.44 ± 1.96 92.43 ± 2.00
Kernel Sparsemax (ours) 92.61 ± 1.62 92.60 ± 1.62

LSTM FCN 93.41 ± 0.43 93.40 ± 0.43
TST (Transformer) 49.48± 1.04 49.46± 1.02

Table 2: FordA accuracy, 1.96 SD intervals over 10 runs. Our methods outperform most baselines.
Several methods have very poor performance. To sanity check we fit three classical methods: kernel
SVM, logistic regression, and a decision tree. All have under 55% accuracy, suggesting that this
dataset is problematic for some methods.

Attention N=64 N=128
Cts Softmax 67.78±1.64 67.70± 2.49

Cts Sparsemax 74.20±2.72 74.69±3.78
Gaussian Mixture 81.13±1.76 80.99±2.79

Kernel Softmax (ours) 93.85±0.60 94.26±0.75
Kernel Sparsemax (ours) 92.32 ± 1.09 92.15 ± 0.79

Table 3: Accuracy results on uWave gesture classification dataset for the irregularly sampled case.
Again over 10 runs. Due to the irregular sampling, this is only comparable to [16, 29]. Kernel based
attention substantially outperforms unimodal and mixture models. All methods use 100 attention
heads. Gaussian mixture uses 100 components (and thus 300 parameters per head), and kernel
methods use 256 inducing points.

this data poses difficulty for some classifiers. Appendix G provides some additional details, along
with attention density plots. The kernel softmax plots often highlight zero crossings. The kernel
sparsemax plots often select peaks of a signal while learning rich sparsity patterns.

6.3 uWave Experiment: Gesture Classification

We investigate: 1) Does a large number of unimodal attention heads, as suggested in [23, 24], perform
well when multimodality is needed? 2) Can this method work well for irregularly sampled time
series? 3) Can we learn interesting multimodal attention densities?

We analyze uWave [19]: accelerometer time series with eight gesture classes. We follow [16]’s
split into 3,582 training observations and 896 test observations: sequences have length 945. We do
synthetic irregular sampling and uniformly sample 10% of the observations. Because of this our
results are comparable to other uWave irregular sampling papers [16, 29], but not to results using the
full time series.

Table 3 shows the results. Our highest accuracy is 94.26%, the multi-head unimodal case’s best
is 74.69%, and the mixture’s best is 81.13%. We outperform the results of [16], who report a
highest accuracy of 91.41%, and perform similarly to [29] (their figure suggests approximately 94%
accuracy). Fig. 10 shows attention densities for one of the attention heads for the first three classes.
This takes one attention density for each time series of each class and plots it. Within the same class,
all attention densities for the head (one for each time series) are plotted. The plot shows two things:
firstly, attention densities have support over non-overlapping time intervals. This cannot be done with
Gaussian mixtures, and the intervals would be the same for each density in the exponential family
case. Secondly, there is high similarity of attention densities within each class, but low similarity
between classes. Appendix H describes additional details.
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Attention N=32 N=64 N=128 Mean
Cts Softmax 89.56 90.32 91.08 90.32

Cts Sparsemax 89.50 90.39 89.96 89.95
Kernel Softmax 91.30 91.08 90.44 90.94

Kernel Sparsemax 90.56 90.20 90.41 90.39

Table 4: IMDB sentiment classification dataset accuracy. Continuous softmax uses Gaussian attention,
continuous sparsemax truncated parabola, and kernel softmax and sparsemax use kernel exponential
and deformed exponential family with a Gaussian kernel. The latter has ↵ = 2 in exponential and
multiplication terms. N : basis functions, I = 10 inducing points, bandwidth 0.01.

6.4 IMBD Sentiment Classification

We extend [23]’s code5 for IMDB sentiment classification [20]. This uses a document representation
v from a convolutional network and an LSTM attention model. We use a Gaussian base density
and kernel, and divide the interval [0, 1] into I = 10 inducing points where we evaluate the kernel
in f(t) =

P
I

i=1 �ik(t, ti). Table 4 shows results. On average, kernel exponential and deformed
exponential family slightly outperforms the continuous softmax and sparsemax. The continuous
softmax/sparsemax results are from running their code.

7 Discussion

In this paper we extend continuous attention mechanisms to use kernel exponential and deformed
exponential family densities. The latter is a new flexible class of non-parametric densities with
sparse support. We show novel existence properties for kernel exponential and deformed exponential
families, prove approximation properties for the latter, and show exponential convergence of numerical
integration for both attention mechanisms. We then apply these to the continuous attention framework
described in [23, 24]. We show results on several datasets. Kernel attention mechanisms tend to
outperform unimodal attention, sometimes by a large margin. We also see that in many cases they
exhibit multimodality. Kernel sparsemax in particular learns rich sparsity patterns while highlighting
peaks of a signal. This was evident in Figure 1. The engine noise example mimicked certain parts of
the signal, while in the ECG example, it tends to give very high weight to R waves in a signal. While
this paper is more focused on general methods than a specific potentially dangerous application,
potential application areas include wearable sensors and NLP, and general negative societal impacts
in those application areas could apply to this work.

7.1 Limitations

A limitation was the use of numerical integration, which scales poorly with location dimensionality.
While we achieve 1D exponential convergence, we still must investigate whether we can extend this
to higher dimensions. This still allows for multiple observation dimensions at a given 1d location, i.e.
multivariate time series or language tasks.
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