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Abstract

We initiate a formal study of reproducibility in optimization. We define a quanti-
tative measure of reproducibility of optimization procedures in the face of noisy
or error-prone operations such as inexact or stochastic gradient computations or
inexact initialization. We then analyze several convex optimization settings of
interest such as smooth, non-smooth, and strongly-convex objective functions and
establish tight bounds on the limits of reproducibility in each setting. Our analysis
reveals a fundamental trade-off between computation and reproducibility: more
computation is necessary (and sufficient) for better reproducibility.

1 Introduction

Machine learned models are increasingly entering wider ranges of domains in our lives, driving a
constantly increasing number of important systems. Large scale systems can be trained in highly
parallel and distributed training environments, with a large amount of randomness in training the
models. While some systems may tolerate such randomness leading to models that differ from one
another every time a model retrains, for many applications, reproducible models are required, where
slight changes in training do not lead to drastic differences in the model learned.

Beyond practical deployments of machine learned models, the reproducibility crisis in the machine
learning academic world has also been well-documented: see [Pineau et al., 2021] and the references
therein for an excellent discussion of the reasons for irreproducibility (insufficient exploration
of hyperparameters and experimental setups, lack of sufficient documentation, inaccessible code,
and different computational hardware) and for mitigation recommendations. Recent papers [Chen
et al., 2020, D’Amour et al., 2020, Dusenberry et al., 2020, Snapp and Shamir, 2021, Summers
and Dinneen, 2021, Yu et al., 2021] have also demonstrated that even when models are trained on
identical datasets with identical optimization algorithms, architectures, and hyperparameters, they
can produce significantly different predictions on the same example. This type of irreproducibility
may be caused by multiple factors [D’Amour et al., 2020, Fort et al., 2020, Frankle et al., 2020,
Shallue et al., 2018, Snapp and Shamir, 2021, Summers and Dinneen, 2021], such as non-convexity
of the objective, random initialization, nondeterminism in training such as data shuffling, parallelism,
random schedules, hardware used, and round off quantization errors. Perhaps surprisingly, even if we
control for the randomness by using the same “seed" for model initialization, other factors such as
numerical errors introduced due to nondeterminism of modern GPUs (see, e.g., [Zhuang et al., 2021])
may still lead to significant differences. It was empirically shown (see, e.g., Achille et al. [2017]) that
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slight deviations early in training can lead to different optima, with substantial differences in resulting
models. Thus we are forced to accept some fundamental level of irreproducibility that persists even
after fixing all aspects of the training process under our control.

The goal of this paper is to initiate a formal study of the fundamental limits of irreproducibility.
In particular, we focus on the most basic training process: convex optimization. At first glance, it
might seem surprising that convex optimization procedures can exhibit irreproducibility since they’re
guaranteed to converge to an optimal solution. However, in practice, the default convex optimization
algorithms are iterative first-order methods; methods that only use a first-order oracle to provide an
approximate gradient of the function at a given point, and converge to an approximately optimal
solution. The first-order oracle is a source of irreproducibility. In stochastic gradient descent, it returns
a random vector whose expectation is the true gradient. The randomness in the stochastic gradients
can lead to different outcomes of the optimization process. Similarly, there are numerical errors that
can arise in the computation of the gradients due to inherent nondetermism in modern GPUs. Beyond
the first-order oracle, irreproducibility may also arise in convex optimization procedures because
the initial point is chosen randomly. Thus, we attempt to answer the following questions for convex
optimization procedures operating with the above sources of irreproducibility:

� What are the fundamental limits of reproducibility for any convex optimization procedure?
� Can we design practical and efficient first-order methods that achieve these limits?

We study these questions in a variety of settings; including general non-smooth convex functions,
smooth convex functions, strongly-convex functions, finite-sum functions, and stochastic convex
optimization, under the different sources of irreproducibility mentioned above. To the best of our
knowledge, no prior theoretical work considered such questions.

The primary contribution of this paper is conceptual: the development of a rigorous theoretical
framework to study the fundamental limits of reproducibility in convex optimization. The concepts
developed in this framework can be extended easily to other settings of interest such as non-convex
optimization. The technical contribution of this paper is the development of lower bounds on the
amount of reproducibility, and matching upper bounds via analysis of specific first-order algorithms
in all the different settings of convex optimization described above. Detailed technical descriptions of
the results appear below in Subsection 1.1.

At a high level, our study provides the same message for all the different optimization settings we
consider. On the lower bound side, we find that any first-order method would need to trade-off
convergence rate (computational complexity) for more reproduciblity. On the upper bound side, we
find that various forms of gradient descent, when run with lower step-size (and correspondingly,
more iterations) already achieve the fundamental limits of reproducibility. One (somewhat surprising)
consequence of our results is that advanced techniques like regularization, variance reduction, and
acceleration do not improve reproducibility over standard gradient descent methods.

We show, for example, that when optimizing a Lipschitz non-smooth convex function f on a bounded
domain using a first-order oracle that computes gradients with even vanishingly small error, two runs
of any first-order method that obtains an ε suboptimal solution of f after T iterations can generate
solutions that are Ω(1/(

√
Tε)) apart in `2 distance. Thus, if we run the method for the standard

T = O(1/ε2) iterations required to obtain ε-approximate solution for a non-smooth function, then
obtained solutions can deviate by Ω(1) distance; i.e., the method is maximally irreproducible. To
ensure that irreproducibility is small, i.e. that the solutions are within a small distance γ of each
other, we will need to run at least Ω(1/(ε2γ2)) iterations. Interestingly, standard gradient descent with
appropriately chosen learning rate and number of iterations already achieves this trade-off.

Our results demonstrate the challenge of reproducibility even for standard convex optimization. While
we provide matching lower and upper bounds in certain general settings, in Section 7, we outline
several important open directions. Solutions to these problems should enable better understanding of
reproducibility even for deep learning.

1.1 Summary of results

Table 1 summarizes our key results for our measure of irreproducibility, (ε, δ)-deviation (see Defini-
tion 3). The (ε, δ)-deviation measures the amount of change between the outputs of two independent
runs of an optimization algorithm, that is guaranteed to achieve ε-suboptimality after T iterations,
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Table 1: Summary of (ε, δ)-deviation bounds for various convex optimization settings.

Stochastic Inexact Non-stochastic Inexact Inexact Initialization
Gradient Oracle Gradient Oracle Oracle

Theorem 1 Theorem 2 Theorem 3
Smooth Θ(δ

2
/(Tε2)) Θ(δ

2
/ε2) Θ(δ2)

Smooth Strongly-Cvx. Θ(δ
2
/T ∧ ε) Θ(δ2 ∧ ε) Θ(e−Ω(T )δ2 ∧ ε)

Nonsmooth Θ(1/(Tε2)) Θ(1/(Tε2) + δ2/ε2) Θ(1/(Tε2) + δ2)
Nonsmooth Strongly-Cvx. Θ(1/T ∧ ε) Θ((1/T + δ2) ∧ ε) Θ(1/T ∧ ε)

when the computations of the algorithm incur errors of magnitude up to δ. We specifically fo-
cus on three different sources of errors: i) stochastic gradient oracles, ii) gradient oracles with
non-deterministic numerical errors (Definition 2), and iii) inexact initialization for the optimizer
(Definition 1). We analyze the deviation under these sources of errors for four types of function
classes: smooth convex functions, non-smooth but Lipschitz convex functions and strongly-convex
restrictions of the two. Throughout the paper, a ∧ b denotes the minimum between a and b.

All lower bounds are for first-order iterative algorithms (à la Nesterov [2018]) that we formally
define in (FOI). This is a large class of iterative optimization methods, including Stochastic Gradient
Descent (SGD), which construct successive iterates adaptively in the linear span of previous iterates.
Additionally, for smooth costs and stochastic inexact gradient oracle, we have an information theoretic
lower bound of Ω(δ

2
/(Tε2)) when ε . δ2 (Theorem 6). We believe such informtation-theoretic lower

bounds can be shown for all the settings in this paper. As for the upper bounds, they are all obtained
using slowed-down SGD: i.e. SGD using smaller learning rates and more iterations.

For the non-strongly convex cases, one may expect to have high irreproducibility if the minima form
a large flat region; however, surprisingly, our upper bounds show that we can always bound the extent
of irreproducibility via slowed-down SGD. In the non-smooth cases, the main observation is that the
deviation does not depend on scale of perturbation by the gradient oracle, i.e., any δ > 0 can lead to
fairly irreproducible solutions. The non-stochastic gradient oracle setting is strictly harder than the
stochastic setting. Naturally, the lower and upper bounds on reproducibility are worse. Interestingly,
even though strong convexity implies uniqueness of the global optimum, which intuitively should
lead to highly reproducible solutions, we show that when faced with sources of error in computations,
the deviation can still be significantly large for any algorithm.

Finally, we study reproducibility of optimization in machine learning settings. Here we have
additional structure such as finite-sum minimization (for optimizing training loss) and stochastic
convex optimization (for optimizing population loss). We define appropriate notions of errors for
these problems and analyze two settings of particular interest. Our main results (Theorem 4 and
Theorem 5) show that despite the additional structure in these problems, the bounds given by Table 1
for the specific settings are nonetheless tight. One consequence is that more sophisticated techniques
for these problems such as variance reduction don’t improve reproducibility.

1.2 Related work

Related notions. In the scientific world, the terms reproducibility and replicability are often used
interchangeably, but here we distinguish the two, following Pineau et al. [2021]. Reproducibility
refers to the requirement that results obtained by a computational procedure (e.g. an experiment or a
statistical analysis of a data set) should be the same (or largely similar) when the procedure is repeated
using the same code on the same data, whereas replicability is a different notion that requires that
results be reliably the same or similar when the data are changed. The field of statistical hypothesis
testing [Lehmann and Romano, 2005] provides rigorous and principled techniques to minimize false
discoveries and thereby promote replicability. The notion of algorithmic stability can also be seen
as quantifying the amount of change in the output when a single data sample is changed. This
notion has been extensively studied in the context of providing algorithm-dependent generalization
bounds [Bousquet and Elisseeff, 2001, Kutin and Niyogi, 2002] and in developing differentially
private algorithms [Dwork et al., 2006, McSherry and Talwar, 2007]. In very recent concurrent work,
Impagliazzo et al. [2022] define a notion of replicability in learning that is quite different from ours:
they aim to develop algorithms that generate the exact same output with reasonable probability given
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a fresh sample. Note that despite the title of their paper, technically the notion studied is replicability,
not reproducibility, since they study the output of algorithms when the input data are changed.

In this paper, we specifically focus on reproducibility: how much can the results of a computation
differ when it is re-run on the same data with the same code? Hence, both hypothesis testing and
algorithmic stability are orthogonal to the study in this paper, although some of our upper bounds use
similar analysis techniques as algorithmic stability. On a different note, similar to replicability, the
boundary between the notions of irreproducibility and uncertainty in deep models is rather blurred.
Several papers considered different aspects of uncertainty (see, e.g., [Lakshminarayanan et al., 2017]
and references therein), but this line of work has been empirical in nature.

Inexact oracles in optimization. The optimization community has studied the consequences of
using inexact or error-prone gradient oracles in optimization. Several papers (e.g. [Aybat et al.,
2020, Devolder et al., 2014, d’Aspremont, 2008, Cohen et al., 2018] have developed bounds on the
optimization error incurred due to the use of inexact oracles. While the sources of errors are similar
to the ones studied in this paper, the quantities of interest in these papers are convergence rate and
optimization error rather than reproducibility. Interestingly, despite the different objective, some of
the high-level conclusions are similar to our paper: for example, accelerated gradient methods do not
outperform standard classical methods when used with inexact gradient oracles.

Techniques to improve reproducibility in practice. Several recent empirical papers considered
methods that can reduce levels of irreproducibility in deep models despite nondeterminism in
training. Smooth activations [Du, 2019, Mhaskar, 1997] have been shown [Shamir et al., 2020]
to improve reproducibilty over popular activations, as the Rectified Linear Unit [Nair and Hinton,
2010]. Ensembles [Dietterich, 2000] leverage diversity of multiple different solutions to produce
an average more reproducible one [Allen-Zhu and Li, 2020]. Co-distillation [Anil et al., 2018] and
Anti-distillation [Shamir and Coviello, 2020] leverage ensembles to further push deployed models to
be more reproducible. Imposing constraints [Bhojanapalli et al., 2021, Shamir, 2018] forces models to
prefer some solutions over others, but may come at the cost of reducing model accuracy performance.

Robustness of dynamical systems. The upper bound results in our paper can be interpreted as
robustness results of the (sub)gradient descent dynamics against disturbances. In particular, our upper
bounds can be viewed as some variants of the input-to-state stability [Sontag and Wang, 1995] results
for the dynamics (see, e.g., [Tu et al., 2022, Definition 3.2]).

2 Problem Formulation

In this section, we define a quantitative measure of irreproducibility amenable to a theoretical analysis.
Intuitively, a computation is reproducible if it generates the exact same output given the same inputs
on two different runs. Irreproducibility arises because low-level operations of a computation produce
different answers on two runs due to either randomness or non-determinism.

Our computation of interest is convex optimization via first-order methods, where initialization and
gradient computations are the primary operations that constitute the computation and are subject to
errors leading to inexact outputs. A natural measure of irreproducibility is the amount of change in
the computed solution to the convex optimization problem under inexact gradient computations or
inexact initialization. However, there are two nuances that must be carefully handled here. First, a
trivial procedure which ignores its input and outputs a constant solution is perfectly reproducible!
Unfortunately, it is perfectly useless as a convex optimization procedure as well. Thus, in order to
compare different procedures by their reproducibility metrics, we must assume that the procedures are
guaranteed to converge to an optimal solution. The second nuance is that we need to assume that the
errors in the gradient or initialization computations are bounded in some manner. Evidently, without
such an assumption, any non-trivial convex optimization procedure will be extremely irreproducible.
We now use the above considerations to develop a precise definition of a measure of irreproducibility.

Convex function classes. We assume that the function to be optimized is chosen from a certain
class, F , of convex functions, along with their domains, satisfying suitable regularity conditions
(e.g. Lipschitzness, smoothness, strong-convexity, etc.) to develop convergence rates. For clarity, we
will suppress exact dependence on smoothness, Lipschitzness, and strong-convexity parameters. In

4



particular, “smooth” will denote a convex function whose gradients are O(1)-Lipschitz continuous,
“non-smooth” a convex function that is O(1)-Lipschitz continuous, and “strongly-convex” an Ω(1)-
strongly-convex function. Here, O(1) and Ω(1) denote universal constants independent of the
dimension or other problem dependent quantities, which we leave unspecified to ease the exposition.

Convex optimization procedures. A first-order convex optimization procedure for F is an algo-
rithm that, given any function f ∈ F , and access to two (potentially noisy) oracles – an initialization
oracle, which generates the initial point, and a gradient oracle, which computes gradients for f at
any given query point – generates a candidate solution xout for the problem of minimizing f over
its domain. Note that the algorithm can only access f via the oracles provided. We call such an
algorithm ε-accurate if it guarantees that E f(xout)− infx∈domf f(x) ≤ ε, where the expectation is
over any randomness in the computation of xout. Several of our lower bounds require more structure
for the algorithm: specifically, a first-order iterative (FOI) algorithm (à la Nesterov [2018]) is one
that starting from the point x0 generated by the initialization oracle, constructs successive iterates

xt = x0 −
∑t−1
i=0 λ

(t)
i g(xi) for some λ(t)

i , i = 0, . . . , t− 1, (FOI)
where g(xi) is the output of the gradient oracle query at xi, and outputs xT for some integer T > 0.
We emphasize that for all t, the coefficients λ(t)

i can be chosen adaptively based on all the previous
computations. The above class of algorithms is a canonical one to consider when proving lower
bounds against gradient oracle based optimization algorithms. We refer readers to [Nesterov, 2018,
§2.1.2] for more background. For the case of nonsmooth costs, we additionally assume that the
coefficient of the latest gradient is nonzero, i.e., λ(t)

t−1 6= 0 for all t. We also note that one of our lower
bound results (Theorem 6) is information-theoretic (in the sense of Nemirovski and Yudin [1983]).

Sources of errors in computation. Errors arise due to inexactness in the outputs of the initialization
or gradient oracles. Queries to these oracles on two different runs of the same algorithm might yield
different outputs, but we will control the errors by assuming that the outputs are close to some
reference point (that remains fixed over different runs) in a suitable metric.
Definition 1 (δ-bounded inexact initialization oracle). Given a function f ∈ F and a reference
initialization point xref

0 ∈ domf , a δ-bounded inexact initialization oracle for f is one that generates
an initial point x0 ∈ domf such that ‖x0 − xref

0 ‖ ≤ δ.

The gradient computation oracle is said to be δ-bounded if for any f ∈ F and any point x ∈ domf ,
it outputs a vector g(x) such that E ‖g(x)−∇f(x)‖2 ≤ δ2 for some ∇f(x) ∈ ∂f(x), where the
expectation is over any randomness in the computation of g(x). We consider both stochastic and
non-stochastic inexact δ-bounded gradient oracles. A stochastic gradient oracle has the additional
property that its output g(x) is a random vector such that E g(x) = ∇f(x), with different queries
being independent of each other. Stochastic inexact gradient oracles arise naturally in machine
learning applications due to randomness in minibatching. Non-stochastic inexact gradient oracles
model non-deterministic numerical errors due to the accumulation of floating point errors; for giant
machine learning models with billions of parameters, individual floating point errors could add up to
a noticeable large error. We formally define the two types of inexact oracles below.
Definition 2 (δ-bounded inexact gradient oracle). Given a function f ∈ F , and x ∈ domf , let ∂f(x)
denote the sub-differential of f at x.
(a) A stochastic inexact δ-bounded gradient oracle outputs a random vector g(x) such that
E g(x) = ∇f(x) and E ‖g(x)−∇f(x)‖2 ≤ δ2 for some ∇f(x) ∈ ∂f(x). The expectation
is over the randomness in g(x) which is also assumed to be independent for each oracle call.

(b) A non-stochastic inexact δ-bounded gradient oracle outputs a non-deterministic vector g(x)

such that ‖g(x)−∇f(x)‖2 ≤ δ2 for some ∇f(x) ∈ ∂f(x).

Measure of irreproducibility. Let A be a first-order, ε-accurate convex optimization procedure
for F with access to either a δ-bounded initialization oracle (and an exact gradient oracle), or a
δ-bounded gradient oracle (and an exact initialization oracle). The (ε, δ)-deviation is
Definition 3 ((ε, δ)-deviation). Given a function f ∈ F , let xf and x′f denote the outputs of A on
two independent runs of A that result in ε-accurate solutions.
(a) If a stochastic inexact δ-bounded gradient oracle is used, the (ε, δ)-deviation of A is defined as
supf∈F E ‖xf − x′f‖2 where the randomness is over the stochastic oracle in the two runs.
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(b) If either an inexact δ-bounded initialization oracle or a δ-bounded non-stochastic inexact gradient
oracle is used, the (ε, δ)-deviation of A is defined as supf∈F sup ‖xf − x′f‖2, where the inner
supremum is over the two runs.

Here we note that xf is not necessarily the last iterate of a first-order algorithm. Depending on cases,
sometimes we choose xf to be the (weighted) average iterate. We consider ‖xf −x′f‖2 for the notion
of deviation instead of ‖xf − x∗‖2; note that x∗ may not even be unique without strong convexity.

Other notions? Alternate definitions are certainly plausible. For example, in machine learning
applications, the computed solution x may be used as a parameter vector for a predictor func-
tion gx which maps inputs z to real-valued predictions ŷ whose quality is measured by a loss
function `(ŷ, y) where y is the true label of z. Let x and x′ be outputs of two different runs
of the optimization algorithm. Then one can also define (ε, δ)-deviation based on prediction
reproducibility: e.g. supz |gx(z) − gx′(z)| or Ez |gx(z) − gx′(z)|, or loss reproducibility: e.g.
sup(z,y) |`(gx(z), y) − `(gx′(z), y)| or E(z,y) |`(gx(z), y) − `(gx′(z), y)|, where the expectation
is over the distribution of the examples. Nevertheless, we adopt Definition 3, which is based on
parameter reproducibility, in this paper for the following reasons:

• The convex optimization problems studied in this paper are more basic/fundamental than more
structured ML optimization. To the best of our knowledge, there is no pre-existing theory even
for this basic setting. Parameter reproducibility is a more natural definition here since there is no
notion of prediction or loss.

• In many ML applications, the predictor function gx is Lipschitz in x for any input z. In such
cases, (ε, δ)-deviation bounds for parameter reproducibility immediately transform into (ε, δ)-
deviation bounds for prediction reproducibility. Similar transformations are also generally possible
(ε, δ)-deviation bounds for loss reproducibility.

• Without knowledge of how a learned parametric function is deployed for making predictions, it is
difficult to analyze prediction reproducibility even in ML settings. Hence, parameter deviations
provide a reasonable first approximation. Furthermore, in real systems, we often optimize multiple
metrics (e.g. performance on sub-segments of populations, for fairness). Parameter reproducibility
gives greater assurance on all metrics. A similar argument applies when the test distribution is
different from the training distribution.

• Finally, several recent works [Shamir et al., 2020, D’Amour et al., 2020] have empirically observed
that even if two different runs of the algorithm resulted in parameters that have nearly the same
loss, the predictions on test examples could be very different. One reason this happens is because
surrogate losses are used in place of the true metric for optimization. So simply achieving loss
reproducibility may not be sufficient for practical applications.

3 Reproducibility with Stochastic Inexact Gradient Oracles

In this section we consider reproducibility of optimizing a convex function f ∈ F where we can
access f only via a stochastic gradient oracle (see Definition 2). This setting covers several important
ML optimization scenarios, e.g., when the training data is randomly sampled from a population or
when the selection of mini-batches is randomized. Our main result is the following theorem.

Theorem 1. For any ε, δ > 0, and number of iterations T , the (ε, δ)-deviation for optimizing convex
functions with a stochastic inexact gradient oracle is as follows. Unless indicated otherwise, the
lower bounds hold for any FOI algorithm, and the upper bound is achieved by stochastic gradient
descent for T = Ω(1/ε2) in the non-strongly-convex settings and T = Ω(1/ε) in the strongly-convex
settings.
� Smooth functions: (ε, δ)-deviation is Θ(δ

2
/(Tε2)). Furthermore, for the case ε . δ2 there is a

matching information theoretic lower bound.
� Smooth and strongly convex functions: (ε, δ)-deviation is Θ(δ

2
/T ∧ ε).

� Lipschitz (non-smooth) functions: (ε, δ)-deviation is Θ(1/(Tε2)).
� Lipschitz (non-smooth) and strongly convex functions: (ε, δ)-deviation is Θ(1/T ∧ ε).
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This theorem is proved in several pieces, one corresponding to each setting (i.e., smooth, smooth
& strongly convex etc.) and type of bound (i.e., upper or lower). The precise details are given in
Appendix A. A few remarks are in order.

Smoothness: Intuitively, smoothness would ensure that a slight error in gradient computation need
not imply catastrophic deviation in the iterates. Our matching upper and lower bounds confirm this
intuition.

Non-smoothness: Our results show that even a slight amount of noise in the gradients can lead
to drastic irreproducibility in the non-smooth case. Intuitively, the reason for this phenomenon is
that non-smooth functions have non-differentiable points where the slightest amount of noise in the
gradients can lead to drastically different behavior. This is in line with the empirical observations of
Shamir et al. [2020].

Strong convexity: Note that the deviation is smaller than other cases due to the existence of a unique
minimizer; the ε-accuracy in the cost already implies an O(ε) upper bound on the deviation.

Furthermore, in all the settings, our results show that using an algorithm with a larger number of
iterations is more helpful; intuitively that is because more gradient samples from the oracle can help
reduce the sample noise as an averaging. For example, for smooth functions, if a gradient descent
type method is run for the standard T = O(1/ε2) iterations, then the solution obtained might still
suffer deviation of δ2, which is independent of ε. Thus, in order to obtain low deviation, we are forced
to run the method for ω(1/ε2) iterations. We also note that by relying on the standard convergence
rate lower bounds [Nemirovski and Yudin, 1983], the requirement on T e.g., T = Ω(1/ε2) for the
non-strongly convex setting, is without loss of generality. Finally, we remark that the lower bound for
smooth functions is information theoretic (i.e., holds against any algorithm) for ε . δ2.

4 Reproducibility with Non-Stochastic Inexact Gradient Oracles

In this section, we study reproducibility for optimizing a function f ∈ F with non-stochastic inexact
gradient oracle access (Definition 2). In particular, we establish lower and upper bounds for first-
order algorithms (FOI) on the (ε, δ)-deviation (Definition 3) despite initialization with the same
point x0 ∈ domf . Recall that this setting allows us to capture reproducibility challenges due to
non-deterministic numerical errors introduced by a computing device (like GPUs) during floating
point computations. The main high-level message here is that unlike in the stochastic gradient oracle
case, in the non-stochastic gradient oracle setting the iteration complexity T has little to no effect
on the (ε, δ)-deviation: intuitively this is because unlike the stochastic setting, it is not possible to
reduce the error in the gradients by taking more samples and averaging.

Theorem 2. For D = O(1), ε, δ > 0 such that δ ≤ ε/(2D), and number of iterations T , the (ε, δ)-
deviation for optimizing convex functions whose optimum has norm at most D with a non-stochastic
inexact gradient oracle is as follows. Unless indicated otherwise, the lower bounds hold for any
FOI algorithm, and the upper bound is achieved by projected gradient descent for T = Ω(1/ε) in the
smooth settings and non-smooth strongly convex setting, and T = Ω(1/ε2) in the non-smooth setting.
� Smooth functions: (ε, δ)-deviation is Θ(δ

2
/ε2).2

� Smooth and strongly convex functions: (ε, δ)-deviation is Θ(δ2 ∧ ε).
� Lipschitz (non-smooth) functions: (ε, δ)-deviation is Θ(1/(Tε2) + δ2/ε2).
� Lipschitz (non-smooth) and strongly convex functions: (ε, δ)-deviation is Θ((1/T + δ2) ∧ ε).

Like Theorem 1, this theorem is proved in several pieces; see Appendix A. Some remarks follow:

Acceleration v.s. reproducibility? Note that for smooth functions, accelerated methods can get
ε-suboptimality in only T = O(1/

√
ε) iterations. A natural question is if we can achieve similar

(ε, δ)-deviation for such accelerated methods. However, it is known that accelerated methods are
unstable (see e.g., [Devolder et al., 2014, Attia and Koren, 2021]), and cannot even achieve the
desired ε-accuracy under the inexact oracle model. Hence, we conjecture that iteration complexity of
Ω(1/ε) is necessary to achieve the desired reproducibility.

2Note that Theorem 21 provides a similar upper bound result without the assumption that the optimum lies in
a ball of radius O(1).
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Nonsmoothness: Note that the lower bound shows that if gradient descent style methods are run for
the standard T = 1/ε2 iterations, then the solutions can be forced to have Ω(1) deviation. Hence, to
ensure reproducibility, any method would need to have a slower convergence rate than T = 1/ε2.

5 Reproducibility with Inexact Initialization Oracles

We now study reproducibility for optimizing a function f ∈ F with an inexact initialization oracle
(Definition 1) and establish tight bounds on the (ε, δ)-deviation for FOI algorithms. An inexact
initialization oracle models situations where the initial values of the parameters are set randomly, or
incur some non-deterministic numerical error.

Theorem 3. For any ε, δ > 0 and number of iterations T , the (ε, δ)-deviation for optimizing convex
functions with an inexact initialization oracle is as follows. In all cases, the lower bounds hold for
any FOI algorithm, and the upper bound is achieved by gradient descent for T = Ω(1/ε) in the
smooth settings and non-smooth strongly convex setting, and T = Ω(1/ε2) in the non-smooth setting.
� Smooth functions: (ε, δ)-deviation is Θ(δ2).
� Smooth and strongly convex functions: (ε, δ)-deviation is Θ((exp(−Ω(T ))δ2 ∧ ε).
� Lipschitz (non-smooth) functions: (ε, δ)-deviation is Θ(1/(Tε2) + δ2).
� Lipschitz (non-smooth) and strongly convex functions: (ε, δ)-deviation is Θ(1/T ∧ ε).

Like Theorem 1, this theorem is proved in several pieces; see Appendix A. A remark follows:

Nonsmoothness: As in the case of non-smooth optimization with inexact gradient oracles, here as
well we see that even the slightest amount of inexactness in initialization can lead to non-negligible
irreproducibility. Intuitively this is a consequence of non-smoothness: If the function is not dif-
ferentiable at the reference point, even a slight bit of inexactness can lead to drastically different
trajectories right from the beginning.

6 Reproducibility in Optimization for Machine Learning

So far, we have studied reproducibility in general convex optimization with different sources of
perturbation. In machine learning, however, optimization problems come with more structure, and
hence a more nuanced analysis of reproducibility is called for. In this section, we study reproducibil-
ity in two specific optimization settings of interest in machine learning: finite sum minimization
which corresponds to minimizing training loss, and stochastic convex optimization (SCO), which
corresponds to minimizing population (or test) loss. Instead of a detailed study of different types of
convex functions as done in the previous sections, here we focus on a few specific cases that yield
particularly interesting insights.

6.1 Optimizing Training Loss (Finite Sum Minimization)

Optimizing the training loss in ML can be cast as minimizing a function that can be written as a
finite sum of component functions: f(x) := 1

m

∑m
i=1 fi(x) . Typical optimization methods such

as stochastic gradient descent can be implemented to solve such problems by iteratively sampling
one of the component functions and taking its gradient. So randomness in sampling as well as non-
deterministic numerical errors in computing of gradient can lead to irreproducibility. Randomness
in sampling is a property of the algorithm and hence under the control of the algorithm designer;
however non-deterministic numerical errors in gradient computations are beyond the control of the
designer, and hence we aim to quantify irreproducibility caused by this specific source (numerical
errors). To capture this intuition, we consider the following inexact gradient oracle.

Definition 4 (δ-bounded inexact component gradient oracle). A δ-bounded inexact component
gradient oracle takes as input i ∈ {1, 2, . . . ,m} and a point x, and outputs a vector gi(x) such that

‖gi(x)−∇fi(x)‖2 ≤ δ2 for some ∇fi(x) ∈ ∂fi(x).

The number of calls to the component gradient oracle is now our primary measure of complexity.
Then, a natural question that arises is whether we can we tightly characterize reproduciblity of typical
first-order methods when given access to an inexact component gradient oracle. We first observe
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that in the special case that all fi are identical, the inexact component gradient oracle reduces to the
non-stochastic inexact oracle (Definition 2). Hence, for the smooth and non-smooth function settings,
we immediately obtain lower bounds on the (ε, δ)-deviation via our previous analysis; see Theorem 8
and Theorem 14, respectively.

The non-smooth case in particular is interesting, as the deviation lower bound is Ω(1/(Tε2) + δ2/ε2),
where T is the number of oracle calls. Now, if we use projected (full-batch) gradient descent (as used
for the matching upper bound in Theorem 27), then each iteration would require m oracle calls, hence
the (ε, δ)-deviation for such a method is O(m/(Tε2) + δ2/ε2), which is worse than the lower bound
mentioned above. Now, the key question is whether we can reduce this deviation by other means. It
turns out that stochastic gradient descent (SGD), where in each step we sample a component function
to query randomly, when run with an appropriate learning rate and using averaging, matches the
optimal deviation up to constant factors. We provide a detailed proof of the result in Appendix G.
This provides another justification for using SGD instead of gradient descent in practice.
Theorem 4. For G = O(1) and D = O(1), let fi be an G-Lipschitz convex cost function for
each i ∈ [m], and assume that the optimum of f lies in a ball of radius D. Let ε, δ > 0 be given
parameters such that δ ≤ ε/(2D), and T = Ω(1/ε2) be a given number of iterations. Define the
SGD updates as follows: initialize x0 = 0, and for t = 0, 1, . . . , T − 1, set xt+1 = xt − ηtgit(xt)
where it ∼ [n] uniformly at random. Under the inexact component gradient oracle (Definition 4), the
average iterate x̄T of SGD with stepsize η = Θ(1/(εT )) satisfies E f(x̄T )− infx∈domf f(x) ≤ ε and
E ‖x̄T − x̄′T ‖

2
= O(1/(Tε2) + δ2/ε2), where x̄′T is the output of an independent run of SGD.

6.2 Optimizing Population Loss (Stochastic Convex Optimization)

The fundamental problem of machine learning is to find the solution to the following population
(or test) loss minimization problem: minimize F (x) = Eξ∼Ξ f(x, ξ), where Ξ is an unknown
distribution on the examples ξ, given access to an oracle that sample from Ξ. When the function F is
convex, this is also known as Stochastic Convex Optimization (SCO).

In this setting, the sampling oracle is a natural source of irreproducibility of optimization methods.
To model this, we consider the stochastic global oracle, inspired by Foster et al. [2019].
Definition 5 (δ-bounded stochastic global oracle). Given a function F , a δ-bounded stochastic global
oracle for F is an algorithm that, on each query, draws an independent sample ξ ∼ Ξ from some
distribution Ξ, and outputs a function f(·, ξ) : domF → R such that for all x ∈ domF , we have
F (x) = Eξ∼Ξ f(x, ξ), and, Eξ∼Ξ ‖∇f(x, ξ)−∇F (x)‖2 ≤ δ2 .

Since in each query, the stochastic global oracle returns the complete specification of f(·, ξ), an
algorithm using such an oracle has access to (x, f(x, ξ),∇f(x, ξ),∇2f(x, ξ), · · · ) for all x.

Note that the inexact stochastic gradient oracle of Definition 2 is a weaker form of the stochastic
global oracle. Thus, the key question is: under the powerful stochastic global oracle, can we provide
better reproducibility than the lower bounds in Theorem 1? Surprisingly, the answer to the above
question is negative. That is, despite the stronger oracle setting, there is a function class for which the
lower bound on (ε, δ)-deviation matches that of Theorem 1.
Theorem 5. Assume that ε < 1/200 and ε . δ2. Then there exists a family of population costs
Fθ(x) = Eξ∼Pθ fθ(x, ξ) parametrized by θ ∈ [1, 2], and a δ-bounded stochastic global oracle
for Fθ, satisfying the following property. Suppose that A is any algorithm that for each θ ∈ [1, 2]
uses at most T queries to the stochastic global oracle and outputs xθT that is ε-accurate, i.e.,
EFθ(xθT )− infx Fθ(x) ≤ ε. Then, there exists θbad ∈ [1, 2] such that Var(xθbadT ) ≥ Ω(δ

2
/(Tε2)).

See Subsection B.2 for a detailed proof. On the other hand, Theorem 1 also shows that standard SGD
with the weaker inexact stochastic gradient oracle achieves this lower bound.

7 Conclusions

We presented a framework for studying reproducibility in convex optimization, and explored limits
of reproducibility for optimizing various function classes under different sources of errors. For
each of these settings, we provide tight lower and upper bounds on reproducibility of first order
iterative algorithms. Overall, our results provide the following insights: a) Non-smooth functions
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can be highly susceptible to even tiny errors which can creep in due to say numerical errors in GPU.
Thus introducing smoothness in deep learning models might help with reproducibility. b) Generally,
gradient descent type methods with small learning rate are more reproducible. c) In finite-sum
settings, despite more randomness, SGD is more reproducible than full-batch gradient descent.

The study in this paper is a first step towards addressing the challenging problem of reproducibility
in a rigorous framework. So, many important directions remain unexplored. For example, study of
reproducibility of adaptive methods like AdaGrad that are not captured by (FOI) is interesting. We
study reproducibility in a strict form where we measure deviation in terms of the learned parameters
of the model. However, in practice, one might care for reproducibility in model predictions only. So,
extending our results to such ML-driven scenarios should be relevant in practice. Finally, while our
lower bounds on reproducibility obviously also hold for non-convex optimization, extension of the
upper bounds to non-convex settings and potentially, designing novel rigorous methods in this setting
is a fascinating direction for future work.
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A Summary of results in Appendix

In order to help readers navigates the results in the appendix, we summarize the results in the
appendix in the following table. In the main paper, we have three main theorems: Theorems 1, 2 and
3, each corresponding to one column in the following table. Further each of these theorems have
four components corresponding to four settings: smooth, smooth & strongly convex, nonsmooth and
finally nonsmooth & strongly convex. Each cell in the below table lists the corresponding theorems
which prove the lower and upper bounds corresponding to a given setting. Theorems 1, 2 and 3 follow
immediately from the constituent theorems. In each cell of results, “Theorems X‖ Y” indicates that
the lower bound appears in Theorem X, and the upper bound in Theorem Y. All lower bounds are for
first-order iterative algorithms (à la Nesterov [2018]) that we formally defined in (FOI).

Stochastic Inexact Non-stochastic Inexact Inexact Initialization
Gradient Oracle Gradient Oracle Oracle

(Theorem 1) (Theorem 2) (Theorem 3)

Smooth Θ(δ
2
/Tε2) Θ(δ

2
/ε2) Θ(δ2)

Theorems 6†&7‖ 19 Theorems 8‖ 20 Theorems 9‖ 22
Smooth Θ(δ

2
/T ∧ ε) Θ(δ2 ∧ ε) Θ(e−Ω(T )δ2 ∧ ε)

Strongly-Convex Theorems 10‖ 23 Theorems 11‖ 24 Theorems 12‖ 25

Nonsmooth Θ(1/Tε2) Θ(1/Tε2 + δ2/ε2) Θ(1/Tε2 + δ2)
Theorems 13‖ 26 Theorems 14‖ 27 Theorems 15‖ 28

Nonsmooth Θ(1/T ∧ ε) Θ((1/T + δ2) ∧ ε) Θ(1/T ∧ ε)
Strongly-Convex Theorems 16‖ 29 Theorems 17‖ 30 Theorems 18‖ 31

† For smooth costs and stochastic inexact gradient oracle, we also have an additional
information-theoretic lower bound of Ω(δ

2
/Tε2) when ε . δ2 in Theorem 6.

A.1 General guidance for navigating Appendix

� The information-theoretic lower bounds are presented in Appendix B and can be read
independently:

• The lower bound proof for the smooth costs (Theorem 6) and is presented in Subsection B.1.
• The lower bound proof for the stochastic global oracle case (Theorem 5) is similar to that

of Theorem 6 and is presented in Subsection B.2.
� The FOI lower bounds are quite technical and often rely on delicate constructions. Hence,
we present the proofs as follows:

• In Subsection C.1, to help readers understand the general proof strategy, we first present the
lower bound proof for smooth costs with the stochastic inexact oracle (Theorem 7).

• In Appendix C, we present the proofs of other FOI lower bounds for smooth costs.
• In Appendix D, we present the proofs of FOI lower bounds for nonsmooth costs. The lower

bound constructions are more complicated than the case of smooth costs. Hence, to help
reader understand the crux of arguments, we first present the proof of a (weaker) lower
bound against gradient descent (as opposed to the entire class of FOI) in Subsection D.1.

� The upper bounds are presented in Appendix E (smooth costs), Appendix F (non-smooth
costs), and Appendix G (finite-sum setting).

B Information-theoretic lower bounds

B.1 Information-theoretic lower bound for stochastic inexact gradient model

We state and prove the information-theoretic lower bound for smooth costs.
Theorem 6. (Information-theoretic Lower Bound) Assume that ε < 1/200 and ε . δ2. Then
there exists a family of smooth cost functions {Fθ : R→ R} parameterized by θ ∈ [−1, 1] with the
following property. Suppose A is any algorithm that for each θ ∈ [−1, 1] uses at most T queries to
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stochastic inexact gradient oracle and outputs xθT that is ε-accurate, i.e., EFθ(xθT )−infx Fθ(x) ≤ ε.
Then, there exists θbad ∈ [−1, 1] such that (ε, δ)-deviation (Definition 3 (a)) is lower bounded by
Ω( δ2

Tε2 ).

Proof. Let ε > 0 be a fixed small constant. We consider the following family of cost functions
{Fθ : R→ R} parametrized by θ ∈ [−1, 1]:

Fθ(x) =


100ε · (x− θ)2, for x ∈ [−1, 1],

100ε · (1− θ)2 + 200ε(1− θ)(x− 1) for x > 1

100ε · (−1− θ)2 + 200ε(−1− θ)(x+ 1) for x < −1.

(B.1)

Note that Fθ is 200ε-smooth for each θ ∈ [−1, 1].

We consider the following stochastic first order oracle for each Fθ. For a queried point x, the oracle
outputs gθ(x) defined as

gθ(x) =

{
1

200ε∇Fθ(x) + z for z ∼ N(0, δ2

2·200ε ), w.p. 200ε ,

0, w.p. 1− 200ε .
(B.2)

Since we define Fθ as a linear extension outside [−1, 1], below we may assume that all gradient
queries are made within [−1, 1].

Assuming that all queries are made in [−1, 1], we can rewrite (B.2) simply as

gθ(x) = (x− θ + z) · Sample , (B.3)

where Sample ∼ Bernoulli(200ε). Let us verify that this is a valid stochastic first order oracle. First,
it is clear that

E[gθ(x)] = 200ε · (x− θ + 0) + (1− 200ε) · 0 = 200ε · (x− θ) = ∇Fθ(x).

Next, for the variance, note that

E [gθ(x)−∇Fθ(x)]
2

= E [(x− θ + z) · Sample−∇Fθ(x)]
2

= 200ε · E [x− θ + z − 200ε · (x− θ)]2 + (1− 200ε) · [−200ε · (x− θ)]2

= 200ε(1− 200ε)2 · (x− θ)2 + (200ε)2(1− 200ε) · (x− θ)2 + 200ε · E[z2]

= 200ε(1− 200ε) · (x− θ)2 + δ2/2.

Hence, the variance is always upper bounded by δ2/2 + 200ε(1− 200ε)22 ≤ δ2, as long as ε . δ2.

We now prove the theorem. From the fact that the output xθT is ε-accurate, we have

∀θ ∈ [−1, 1], 100ε · E
[
xθT − θ

]2 ≤ ε.
Using Jensen’s inequality, we know

∣∣E[xθT ]− θ
∣∣2 =

∣∣E[xθT − θ]
∣∣2 ≤ E[xθT − θ]2 which implies the

following condition:

∀θ ∈ [−1, 1],
∣∣E[xθT ]− θ

∣∣ ≤ 0.1. (B.4)

This condition says if we regard A as an estimator of θ for each θ, the bias is less than equal to 0.1.
For the following argument, we hence change our perspective and regard A as an estimator of θ based
on T inexact gradient queries rather than an optimization algorithm.

Let us fix θ ∈ [−1, 1]. We first that we may assume that all gradient queries are made at the point 0.
Indeed, from the expression for the stochastic oracle (B.3), we know

gθ(x)
d
= gθ(0) + x · Sample.

In particular, this implies that one can reconstruct a gradient query at any point x based on a gradient
query at the point 0. Hence, without loss of generality, we may assume that all gradient queries are
made at x = 0.

Hence, we can regard A as an estimator of θ based on T independent measurements y1, . . . , yT of
form

yi = (−θ + zi) · Samplei, i = 1, . . . , T , (B.5)
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where zi ∼ N(0, δ2

200ε ) and Samplei ∼ Bernoulli(200ε). Now with this new perspective in mind,
we can lower bound the variance of the estimator Var(xθT ) using the Cramer-Rao lower bound. To
that end, we first calculate the fisher information of the measurement distribution.

Recall that each measurement is of form

y = (−θ + z) · Sample ,

where z ∼ N(0, δ2

2·200ε ) and Sample ∼ Bernoulli(200ε). Then, the log likelihood is

`(θ; y) = ln

 1√
2π · δ2

2·200ε

exp

(
−2 · 200ε

δ2
· (y + θ)2

2

)1 {Sample = 1}+ δ[y=0] · 1 {Sample = 0} .

Taking derivatives of the log likelihood, we get

∇θ`(θ; y) = −2 · 200ε

δ2
· (θ + y) · 1 {Sample = 1} ,

∇2
θ`(θ; y) = −2 · 200ε

δ2
· 1 {Sample = 1} .

Hence, the Fisher information is equal to

I(θ) = Cov
θ
∇θ`(θ; y) = −E

θ
∇2
θ`(θ; y) =

2 · 200ε

δ2
· Pr[Sample = 1] =

2 · (200ε)2

δ2
.

Hence, the fisher information IT (θ) for the T independent measurements is equal to T 2·(200ε)2

δ2 ·.
Let us recall the Cramér-Rao lower bound for biased estimators. (see, e.g., [Eldar, 2004, (3)]).

Proposition 1. Let b(θ) := E[θ̂]− θ be the bias of an estimator θ̂. Then, the following bounds hold:

Var(θ̂) ≥ [1 + b′(θ)]2

I(θ)
.

From (B.4), it must be that b′(θbad) ≥ − 1
2 for some θbad ∈ [−1, 1]. To see this, suppose to the

contrary that b′(θ) < − 1
2 for all θ ∈ [−1, 1]. Then, it must be that

b(1) ≤ −1

2
· 2 + b(−1)

(B.4)
≤ −1 + 0.1 = −0.9,

which is a contradiction since (B.4) ensures that b(1) ≥ −0.1. Thus, Proposition 1 gives

Var(xθbadT ) ≥ (1 + b′(θbad))
2

IT (θbad)
≥ Ω

(
δ2

Tε2

)
.

This concludes the proof of the lower bound.

B.2 Proof of lower bound (stochastic global oracle)

Recall Theorem 5 from the main text.
Theorem 5. Assume that ε < 1/200 and ε . δ2. Then there exists a family of population costs
Fθ(x) = Eξ∼Pθ fθ(x, ξ) parametrized by θ ∈ [1, 2], and a δ-bounded stochastic global oracle
for Fθ, satisfying the following property. Suppose that A is any algorithm that for each θ ∈ [1, 2]
uses at most T queries to the stochastic global oracle and outputs xθT that is ε-accurate, i.e.,
EFθ(xθT )− infx Fθ(x) ≤ ε. Then, there exists θbad ∈ [1, 2] such that Var(xθbadT ) ≥ Ω(δ

2
/(Tε2)).

Proof. The construction and argument are analogous to the proof of Theorem 6 (Subsection B.1). Fix
ε > 0 and consider the following family of cost functions {Fθ : R→ R} parametrized by unknown
θ ∈ [1, 2]:

Fθ(x) =

{
200ε ·

{
1
2x

2 − θx
}
, for x ∈ [1, 2]

linear extension for x 6∈ [1, 2].
(B.6)
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Note that Fθ is 200ε-smooth for all θ ∈ [−1, 1] and the minimum is achieved at x = θ. Below, let us
fix a ground truth parameter θ and let F (x) = Fθ(x).

Now define f(x, ξ) as follows: with probability 200ε,

f(x, ξ) =


1

200εF(x) + zx for z ∼ N(0, δ2

2·200ε ), if x ∈ [1, 2] ,
1

200εF(x) + 2z. if x > 2 ,
1

200εF(x) + z if x < 1 ,

(B.7)

and f(x, ξ) = 0 with probability 1− 200ε. Then clearly we have Eξ f(x, ξ) = F (x).

We first check that this construction satisfies Definition 5. It is sufficient to check the condition for
x ∈ [1, 2] since outside the interval the cost is defined as the linear extension. For x ∈ [1, 2], we have

∇f(x, ξ) =

{
x− θ + z for z ∼ N(0, δ2

2·200ε ), w.p. 200ε ,

0, w.p. 1− 200ε .
(B.8)

This is precisely the expression (B.2) in the proof of Theorem 6 (Subsection B.1), and hence, this
clearly satisfies Definition 5.

Now the key fact of the proof is that one can reconstruct the complete specification of the function
f(·, ξ) based on a gradient query, provided that it is nonzero. This is because if nonzero, the gradient
query at x is equal to (x− θ+ z). This reveals (θ− z), from which one can reconstruct the complete
characterization f(x, ξ) = 1

2x
2 − (θ − z)x.

Hence, the information revealed by a single query to the stochastic global oracle is as good as that
revealed by a single query to the stochastic global oracle. Thus, the setting is reduced to that of
Theorem 6 (Subsection B.1), and using the same argument, the proof follows.

C Proof of lower bounds (smooth costs)

We first introduce a helper function we will use throughout the proofs of FOI lower bounds in the
remaining sections.

Helper function for smooth costs lower bounds. We will frequently use the following function
for the FOI lower bounds for smooth cost. Let F : R→ R be an one-dimensional function defined as

F(x) :=


x2 if x ∈ [0, 1],

2x− 1 if x ≥ 1,

0 if x ≤ 0.

(C.1)

For reader’s convenience, we illustrate the helper function F in Figure 1 below.
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Figure 1: Illustration of the helper function F for the smooth costs lower bounds.

C.1 Stochastic inexact gradient model

The proofs of FOI lower bounds are quite technical and rely on delicate constructions, and to illustrate
our general proof strategy, we first present a proof that is relatively simpler, yet captures the essence
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of the later complicated constructions. More specifically, in this section, we will prove the following
FOI lower bounds for smooth costs against stochastic inexact oracle.
Theorem 7. (Lower Bound) Let ε > 0, and T be a given number of iterations. There exists an
O(1)-smooth convex function f : RO(T ) → R and a stochastic inexact gradient oracle such that any
FOI algorithm A that starts at x0 = 0 has its (ε, δ)-deviation lower bounded by Ω( δ2

Tε2 ).

Proof. Now consider the cost f : x = (xdum, y) ∈ RT × R→ R defined as

f(x) = 4ε · F(y + 1) , (C.2)

where F is defined in (C.1). Here note that xdum ∈ RT is dummy coordinates which do not appear in
the cost f . Next, we define the stochastic inexact oracle for t = 0, 1, . . . , T − 1 as

g(xt) = ∇f(xt) + δrte1+t where rt ∼ Unif{±1} , (C.3)

where ej is the j-th coordinate vector. Then, clearly this stochastic gradient fulfills the definition of
stochastic inexact gradient oracle. Here the stochastic gradient noises are designed such that during
the t-th iteration, the noise is added to the coordinate xdum[1 + t]. In other words, the noises will be
added to each coordinate of u incrementally.

From here one, let us write iterates xt = (xdum
t , yt). Note first that for ε-accuracy, it must be that

|yT − y0| ≥ 1/2; otherwise f(xT ) > 4ε · F(0.5) = ε; see Figure 1. Based on the definition of FOI
(see (FOI)), let us write

xT = x0 −
T−1∑
t=0

λ
(T )
t g(xt) .

Then from the construction (C.2), we know that for any x, we know ∂f
∂y (x) ∈ [0, 8ε]. On the other

hand, as we discussed, we need |yT − y0| ≥ 1/2. Hence, in order for iterates to move far enough
from the starting point, the coefficients have to add up to a sufficiently large number:

T−1∑
t=0

|λ(T )
t | ≥

1

16ε
, (C.4)

since otherwise, |yT − y0| < 8ε · 1
16ε = 1/2.

Now we will make use of the condition (C.4) to show that there is a large deviation in the coordinates
xdum. More specifically, let us lower bound E

∥∥xdum
T − E[xdum

T ]
∥∥2

. From the construction of inexact
oracle (C.3), it follows that

E
∥∥xdum

T − E[xdum
T ]

∥∥2
= E

∥∥∥∥∥
T−1∑
t=0

λ
(T )
t δrt · e1+t

∥∥∥∥∥
2

=

T−1∑
t=0

(λ
(T )
t )2δ2 E[r2

t ]

=

T−1∑
t=0

(λ
(T )
t )2δ2

(a)

≥ δ2 · 1

T
·

(
T−1∑
t=0

|λ(T )
t |

)2

&
δ2

Tε2
,

where (a) is due to Cauchy-Schwarz inequality. This concludes the proof.

C.2 Non-stochastic inexact gradient model

Theorem 8. (Lower Bound) Let ε > 0 be a small constant, and T be a given number of iterations.
There exists a O(1)-smooth convex function f : R2 → R with a non-stochastic inexact gradient
model such that for any FOI algorithmA that starts at x0 = 0 has the (ε, δ)-deviation lower bounded
by Ω( δ

2

ε2 ).

Proof. With F defined as (C.1), this time we consider a simpler construction: the cost f : x =
(x, y) ∈ R× R→ R is defined as

f(x, y) = 4ε · F(y + 1). (C.5)
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Let us write the iterate as xt = (xt, yt). Note that for ε-accuracy, it must be that yT ≥ 1/2; otherwise
f(yT ) > ε. This means that in order to achieve ε-suboptimality, the y-component of the iterate has
to move at least constant distance away from the starting point.

Now consider the following non-stochastic inexact oracle

g(xt) = ∇f(xt) + δ · ∂
∂y

F(yt) · e1, (C.6)

where e1 is the first coordinate vector. Note that this is a valid oracle because 0 ≤ ∂
∂yF(y) ∈ [0, 8ε] ∈

[0, 1] for all y. Then from the construction of the inexact gradient oracle (C.6), it follows that

δ

4ε
yT = xT (C.7)

Letting xexact
T = (xexactt , yexactt ) be the iterate with exact gradients (without the gradient noises), since

we know xexactT = 0, (C.7) implies∥∥xT − xexact
T

∥∥2 ≥
∣∣xT − xexactT

∣∣2 = x2
T &

δ2

ε2
.

This is the desired lower bound.

C.3 Inexact initialization model

Theorem 9. (Lower Bound) Let ε > 0 be a small constant, and T be a given number of iterations.
There exists a O(1)-smooth convex function f : RO(T ) → R such that for any FOI algorithm A the
(ε, δ)-deviation lower bounded by Ω(δ2) w.r.t. the reference point xref

0 = 0.

Proof. Consider f : R2 → R defined as f(x, y) = (y − 1)2. Choose xref0 = 0 and the inexact
initialization to be x0 = (δ, 0). Then, any first order algorithm only updates the second coordinate,
which implies that after T iterations, we still have

∥∥xT − xrefT ∥∥ ≥ δ2.

C.4 Stochastic inexact gradient model (strongly convex costs)

Theorem 10. (Lower Bound) Let ε > 0 and T be a given number of iterations. There exists a
O(1)-smooth and µ-strongly convex function f : RO(T ) → R with a stochastic inexact gradient
model such that any FOI algorithm A that starts at x0 = 0 has its (ε, δ)-deviation lower bounded by
Ω( δ2

Tµ2 ∧ ε
µ ).

Proof. For x = (xdum, y) where xdum ∈ RT and y ∈ R, consider the cost

f(x, y) := y +
µ

2
y2 +

µ

2
‖x‖2 .

We consider the initialization x0 = (0, 0, 0, . . . , 0).

Next, we define the stochastic inexact oracle for t = 0, 1, . . . , T − 1 as

g(xt) = ∇f(xt) + δrt · e1+t for rt ∼ Unif{±1} , (C.8)

where ej is the j-th coordinate vector. Also, throughout the proof we use the notation:

gdum
t := g(xdum

t , yt)[1, 2, . . . , T ] and gyt := g(xdum
t , yt)[T + 1] .

Warm-up: the case of simplified gradient noises. For a moment, we assume that the inexact
gradient oracle is non-stochastic with

g(xt) = ∇f(xt) + δ · e1+t .

We consider this case first to build the key intuition of the proof. The first prove the following result
that is crucial for the proof.
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Lemma 1. For each t = 0, 1, . . . , T − 1, the output of a FOI algorithm satisfies

δ · yt =

T∑
i=1

xt[i] and δ · gyt =

T∑
i=1

gdum
t [i] , for each t = 0, 1, 2, . . . , T. (C.9)

Proof. We prove by induction on t. The statement trivially holds for t = 0. Assume that the
conclusion holds for some t. We will first show that

δ · yt+1 =

T∑
i=1

xt+1[i] . (C.10)

By the definition of FOI (see (FOI)), we have

δ · yt+1 = −δ ·
t∑

j=0

λ
(t+1)
j gyj

= −
t∑

j=0

λ
(t+1)
j

(
T∑
i=1

gdum
j [i]

)
= −

T∑
i=1

t∑
j=0

λ
(t+1)
j gdum

j [i]

=

T∑
i=1

xt+1[i].

This completes the proof of (C.10). Next, we will show that

δ · gyt+1 =

T∑
i=1

gdum
t+1 [i]. (C.11)

This follows because

δ · gyt+1 = δ(1 + µyt+1) = δ + µ

(
T∑
i=1

xdum
t+1 [i]

)
(a)
= gdum

t+1 [t+ 2] +

t+1∑
i=1

gdum
t+1 [i] =

T∑
i=1

gdum
t+1 [i],

where (a) uses the fact that xdum
t+1 [i] = 0 for all i > t+ 1.

By Lemma 1, it holds that

δ · yT =

T∑
i=1

xdum
T [i] (C.12)

On the other hand, in order to achieve ε-suboptimality, we need y2
T & 1

µ2 . Moreover, for ε-

suboptimality, we also need
∑T
i=1 x

dum
T [i]2 . ε

µ . Therefore, letting xexact
T = ((xdum

T )exact, yexactT ) be
the iterate with exact gradients, since (xdum

T )exact = 0, the condition (C.12) implies the following:
whenever

∑T
i=1 x

dum
T [i]2 . ε

µ ,

∥∥xT − xexact
T

∥∥2 ≥
∥∥xdum

T − (xdum
T )exact

∥∥2
=

T∑
i=1

xdum
T [i]2

≥ 1

T

(
T∑
i=1

xdum
T [i]

)2

=
1

T
· δ2 · (yT )

2 &
δ2

Tµ2
.

This is precisely equal to the desired lower bound.
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Actual proof for the stochastic noise case. Now coming back to the stochastic inexact gradient
(C.8), one can prove the following analog of Lemma 1:

δ · |yt| ≤
T∑
i=1

|xdum
t [i]| and δ · |gyt | ≤

T∑
i=1

|gdum
t [i]| , for each t = 0, 1, 2, . . . , T. (C.13)

Here we note that the construction ensures that |xdum
T [i]|’s are deterministic quantities (because

regardless of whether rt = ±1 the absolute value is the same), and that is why we do not write the
expectation operators next to them.

The above result holds for the following reason, when rt = +1 for all t, the stochastic inexact
gradient reduces to the non-stochastic inexact gradient, in which case the equality holds in (C.13)
without absolute values. With rt = ±1, one can no longer argue this. On the other hand, one can
apply triangle inequalities to obtain (C.13).

Again, in order to achieve ε-suboptimality, we need y2
T & 1

µ2 and
∑T
i=1 x

dum
T [i]2 . ε

µ . Therefore,

whenever
∑T
i=1 x

dum
T [i]2 . ε

µ , we have

E ‖xT − E[xT ]‖2 ≥
T∑
i=1

|xdum
T [i]|2 ≥ 1

T

(
T∑
i=1

|xdum
T [i]|

)2

≥ 1

T
· δ2 · |yT |2 &

δ2

Tµ2
.

This completes the proof.

C.5 Non-stochastic inexact gradient model

Theorem 11. (Lower Bound) Let ε > 0 be a small constant, and T be a given number of iterations.
There exists a O(1)-smooth µ-strongly convex function f : R2 → R with a non-stochastic inexact
gradient model such that for any FOI algorithm A that starts at x0 = 0 has the (ε, δ)-deviation
lower bounded by Ω( δ

2

µ2 ∧ ε
µ ).

Proof. For simplicity, we assume throughout the proof that D = 1 and for x = (x, y) where
x, y ∈ R, consider the cost

f(x, y) := y +
µ

2
y2 +

µ

2
x2

We consider the initialization x0 = (0, 0). Next, consider the following non-stochastic inexact oracle

g(xt) = ∇f(xt) + δe1 (C.14)

where e1 is the first coordinate vector. Then from this construction, one can verify similarly to
Lemma 1 that

g(xt)[1] = δ · g(xt)[2] and xt = δ · yt
for t = 0, 1, . . . , T .

Now from the ε-suboptimality, it must be that y2
T & 1

µ2 and x2
T . ε

µ . Hence, whenever x2
T . ε

µ

holds, we have the following deviation bound since xexactT = 0:∥∥xT − xexact
T

∥∥2 ≥ |xT − xexactT |2 = δ2 · y2
t &

δ2

µ2
.

This completes the proof.

C.6 Inexact initialization model (strongly convex costs)

Theorem 12. (Lower Bound) Let ε > 0 be a small constant, and T be a given number of iterations.
There exists a O(1)-smooth µ-strongly convex function f : RΩ(T ) → R such that for any FOI
algorithm A the (ε, δ)-deviation lower bounded by Ω(exp(−Ω(T ))δ2 ∧ ε

µ ) w.r.t. the reference point
xref

0 = 0.
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Proof. We use the construction in [Nesterov, 2018, Theorem 2.1.13]. In particular, for simplicity, we
consider the construction for the infinite dimensional Hilbert space `2 as it simplifies the proof; in
fact, a similar argument works for RΩ(T ). Let us recall the construction (we follow the presentation
in [Bubeck, 2014, Theorem 3.15]). Let A : `2 → `2 be the linear operator that corresponds to the
infinite tri-diagonal matrix with 2 on the diagonal and −1 on the upper and lower diagonals. For
some constant κ ≥ 1, consider the following µ-strongly convex cost:

fNes(x) =
µ(κ− 1)

8
(〈Ax, x〉 − 2〈e1, x〉) +

µ

2
‖x‖2 and q :=

√
κ− 1√
κ+ 1

.

For the zero initialization x0 = (0, 0, . . . ) ∈ `2, the cost satisfies the following properties (see the
proof of [Nesterov, 2018, Theorem 2.1.13]):

• Output of any FOI satisfies xt[i] = 0,∀i ≥ t.

• x∗[i] = qi.

• ‖x0 − x∗‖2 =
∑∞
i=1(x∗[i])2 =

∑∞
i=1 q

2i = q2

1−q2 .

• ‖xt − x∗‖2 ≥
∑∞
i=k+1 q

2i = q2(t+1)

1−q2 = q2t ‖x0 − x∗‖2.

Now we consider the following cost function: for x = (x, y) ∈ `2 × `2
f(x) = fNes(x) + fNes(y) ,

and we consider the two initializations:

xref
0 =

(
(0, 0, 0, . . . ), (q, q2, q3, . . . )

)
x0 =

(
(0, 0, 0, . . . ), (q, q2, q3, . . . , qL, 0, 0, . . . )

)
for L = Ω(log(1/δ)) is chosen such that qL+1/(1 − q) ≤ δ. Then, it follow that

∥∥x0 − xref
0

∥∥ =
qL+1

1−q ≤ δ. On the other hand, it follows from the above property that∥∥xt − xref
t

∥∥2 ≥ qt q
2L+1

1− q2
≈ qt · δ2.

Hence, as long as ‖xt − x∗‖2 ,
∥∥xref

t − x∗
∥∥2

. ε
µ , the deviation lower bound follows.

D Proof of lower bounds (nonsmooth costs)

In this section, we present the proofs of lower bounds for nonsmooth costs. The proof will be based
on more complicated constructions than those for the case of smooth costs, so before we dive into the
proofs, we first present some intuition behind the constructions.

D.1 Warm-up: lower bound against GD

In this section, as a warm-up, we will prove a (weaker) lower bound for a simplified setting. In
particular, we prove the lower bound against gradient descent (GD). Formally, in the definition of
FOI, we restrict that λ(t)

i ≡ λi (i.e., the coefficient is a positive number does not depend on the
iterations t). In other words, for λi, i = 0, 1, . . . , T − 1,

xt = x0 −
t−1∑
i=0

λig(xi) for each t = 1, 2, . . . , T . (D.1)

Note that this is precisely GD with step sizes λt’s. For the lower bound construction, let x =
(xerr, w) ∈ RT × R and consider the cost

f(xerr, w) = max

{
0, max

i=1,...,T
{xerr[i]}

}
︸ ︷︷ ︸

=:G(xerr)

+ 2ε ·max{w + 1, 0}︸ ︷︷ ︸
=:`(w)

.
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Since the above cost function is nonsmooth, we specify the subgradient oracle as follows: for both
max terms above, we consider the subgradient oracle that outputs the subgradient corresponding to the
first argument that achieves the maximum. Note that infx f(x) = 0. Consider the zero initialization,
i.e., (xerr

0 , w0) = (0, 0), and we write the iterates as xt := (xerr
t , wt) ∈ RT × R.

For intuition, we describe the role of each coordinate:

� The first T coordinates, xerr ∈ RT , correspond to the part where the errors due to inexact oracle
are added.

� The last coordinate, w ∈ R, governs the overall cost; in order to achieve ε-accuracy, the
optimization algorithm has to decrease coordinate w by at least 1/2.

The proof proceeds by considering two different scenarios:

Scenario 1 (exact gradients). Consider the case where there is no noise in the gradients, i.e.,
g(xt) = ∇f(xt) for all t. Then, since xerr

0 = 0, it follows that ∇G(xerr
t ) = 0 for all t. Hence

the algorithm will only update coordinate wt. Note that `(w0) = 2ε, and hence in order to achieve
`(wT ) ≤ ε, it must be that wT ≤ −1/2. On the other hand, we have

∂

∂w
`(w) = 0 or 2ε for any w ∈ R.

Hence, in order to achieve wT ≤ −1/2, it must be that
T−1∑
t=0

λt ≥ Ω(1/ε). (D.2)

This condition is analogous to (C.4) from the lower bound proof for smooth costs (Subsection C.1).

Scenario 2 (inexact gradients). Now let us consider the case where the gradient error during the
t-th iteration is non-stochastic and equal to −δet, i.e.,

g(xt) = ∇f(xt)− δet+1 for all t = 0, 1, . . . , T − 1.

Here et denotes the t-th coordinate vector. Let us assume that δ is much smaller than all the step sizes
λt, in particular, such that λiδ � λi+1 for all i = 0, . . . , T − 2. Then from GD iterations defined as
(D.1), one can deduce that

xerr
t = (−λ1 + λ0δ, −λ2 + λ1δ, · · · , −λt−1 + λt−2δ, +λtδ, 0, . . . , 0) .

Thus, the following estimate on the deviation holds:

‖xerr
T ‖

2
=

∥∥∥∥∥
T−1∑
t=1

(λt − λt−1δ)et + λT−1δeT

∥∥∥∥∥
2

=

T−1∑
t=1

(λt − λt−1δ)
2 ≈

T−1∑
t=1

λ2
t . (D.3)

Combining the two scenarios. Thus far, we have obtained (D.2) and (D.3) from the two different
scenarios. The condition (D.2) shows that in order to achieve ε-suboptimality, stepsizes have to add
up to a large number, more precisely,

∑T−1
t=0 λt = Ω(1/ε). On the other hand, (D.3) characterizes

that the deviation is on the order of the quantity
∑T−1
t=1 λ2

t . In order to formally connect these two
conditions, we make the following assumption:

λ0 ≤ O

(
T−1∑
t=1

λt

)
. (D.4)

Then with this assumption, one obtain the following deviation bound:

‖xerr
T ‖

2 ≈
T−1∑
t=1

(λ
(T )
t )2

(a)

≥ 1

T − 1
·

(
T−1∑
t=1

λ
(T )
t

)2

&
1

T − 1
·

(
T−1∑
t=0

λ
(T )
t

)2

&
1

Tε2
,

where (a) is due to the Cauchy-Schwartz inequality. This is precisely the desired lower bound.

For the lower bound against the entire class of FOI, there are some other technical challenges arising
from the fact that the coefficients λ(t)

i ’s not only depend on t, but also could take negative values. We
need a more elaborate lower bound construction, as we explain in the subsequent subsections.
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D.2 Helper function

Before actual proofs, we introduce a helper function that we will use throughout the proofs of FOI
lower bounds. Let χ : R→ R is a non-smooth convex function defined as χ(x) := max{x, 0} and
the subgradients are defined as

∇xχ(x) :=

{
+1, if x ≥ 0,

0, if x < y.
(D.5)

The choice of subgradient +1 at the origin will play a crucial role in the later proofs. For x,y, z ∈ RT
and v ∈ R, let G : (x,y, z) ∈ R3T → R be defined as

G(x,y, z) := max{0, K(x,y, z)} and (D.6)

K(x,y, z) := max
i=1,...,T

{
χ(y[i]) +

i−1∑
j=1

|x[j]|
2j−1

+
x[i]

2i−1
, χ(z[i]) +

i−1∑
j=1

|x[j]|
2j−1

− x[i]

2i−1

}
. (D.7)

Then G is clearly convex, as it is the maximum of convex functions.

We specify the subgradients of G as follows: for all max terms in (D.8), we get the subgradient of the
first argument that achieves the maximum. Then G is O(1)-Lipschitz: for any x,y, z ∈ RT ,

‖∇G(x,y, z)‖2 ≤ 1 +

T∑
j=1

(
1

2j−1
)2 ≤ 1 +

∞∑
j=1

1

4j−1
≤ 1 + 4/3 .

D.3 Stochastic inexact gradient model

Theorem 13. (Lower Bound) Let ε > 0 and T be a given number of iterations. There exists a
O(1)-Lipschitz (nonsmooth) convex function f : RO(T ) → R with a stochastic inexact gradient

model such that any FOI algorithmA that satisfies |λ(T )
0 | ≤ O

(∣∣∣∑T−1
t=1 λ

(T )
t

∣∣∣) and starts at x0 = 0

has its (ε, δ)-deviation lower bounded by Ω( 1
Tε2 ).

Proof. For x = (xerr,y, z, w) where xerr,y, z ∈ RT and w ∈ R, consider the cost

f(xerr,y, z, w) = G(xerr,y, z) + 2ε ·max{w + 1, 0}︸ ︷︷ ︸
=:`(w)

, (D.8)

where G is defined in (D.6). Then, f is convex since both G and ` are convex, and O(1)-Lipschitz
since both G and ` are O(1)-Lipschitz.

For intuition, we describe the role of each coordinate as we did in the warm-up section (Subsec-
tion D.1):

� The first T coordinates, xerr ∈ RT , correspond to the part where the errors due to inexact oracle
are added.

� The next 2T coordinates, y, z ∈ RT will contribute to large deviation when there are errors in
the gradients.

� The last coordinate, w ∈ R, governs the overall cost; in order to achieve ε-accuracy, the
optimization algorithm has to decrease coordinate w by at least 1/2.

We use the following notation throughout the proof: xt = (xerr
t ,yt, zt, wt) ∈ (RT )3 × R.

Consider the zero initialization x0 = (0,0,0, 0) and the following inexact gradient error for
t = 0, 1, 2, . . . , T − 1:

g(xt) = ∇f(xt) + δrt · e1+t for rt
iid∼ Unif{±1}, (D.9)

where ej is the j-th coordinate vector. The following lemma characterizes the key feature of the
above construction.
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Remark 1. Note that Lemma 2 is the place where we use the following additional assumption that we
made for the case of nonsmooth costs: “for the case of nonsmooth costs, we additionally assume that
the coefficient of the latest gradient is nonzero, i.e., λ(t)

t−1 6= 0 for all t.”

Lemma 2. Under the inexact gradient (D.9), the subgradient∇G has the following properties:

� For each t = 1, 2, . . . , T − 1, there exists it ∈ {1, . . . , t} such that the following holds:{
∂

∂y[it]
G(xerr

t ,yt, zt) = 1, ∂
∂z[it]

G(xerr
t ,yt, zt) = 0 with probability 1/2,

∂
∂y[it]

G(xerr
t ,yt, zt) = 0, ∂

∂z[it]
G(xerr

t ,yt, zt) = 1 with probability 1/2.
(D.10)

Moreover, for i 6= it, ∂
∂y[i]G(xerr

t ,yt, zt) = ∂
∂z[i]G(xerr

t ,yt, zt) = 0.

� If it 6= t (i.e., it < t), then it = it′ for some t′ < t, and it holds that ∂
∂y[it]

G(xerr
t ,yt, zt) =

∂
∂y[it′ ]

G(xerr
t′ ,yt′ , zt′) and ∂

∂z[it]
G(xerr

t ,yt, zt) = ∂
∂z[it′ ]

G(xerr
t′ ,yt′ , zt′).

Proof of Lemma 2. Let us recall the definition of G(x,y, z):

max

0 , max
i=1,...,T

{
χ(y[i]) +

i−1∑
j=1

|x[j]|
2j−1

+
x[i]

2i−1
, χ(z[i]) +

i−1∑
j=1

|x[j]|
2j−1

− x[i]

2i−1

} . (D.11)

From this, it is clear that there must be at most one i ∈ {1, . . . , T} for which either
∂

∂y[i]G(xerr
t ,yt, zt) 6= 0 or ∂

∂z[i]G(xerr
t ,yt, zt) 6= 0. This proves the “Moreover, for i 6= it,

∂
∂y[i]G(xerr

t ,yt, zt) = ∂
∂z[i]G(xerr

t ,yt, zt) = 0” part of the first bullet point.

Next, we prove the expression (D.10). We begin with t = 1. Since g(x0) = ∇f(x0) + δr0 · e1

and λ(1)
0 6= 0, it follows that xerr

1 [1] 6= 0. Then, we claim that the first bullet point holds for
t = 1. Since we know xerr

1 [1] 6= 0 and xerr
1 [2], . . . ,xerr

1 [T ] = 0, for x1, the maximum in (D.11) is
achieved by i = 1. This implies that i1 = 1. Moreover, depending on the sign of r0, we either have
∂

∂y[1]G(xerr
1 ,y1, z1) = 1 or ∂

∂z[1]G(xerr
1 ,y1, z1) = 1 with equal probability. Thus, (D.10) holds for

t = 1.

Next, consider t > 1. Since g(xt−1) = ∇f(xt−1) + δrt−1 · et and λ(t)
t−1 6= 0, it follows that

xerr
t [t] 6= 0. Moreover, we know xerr

t [t + 1], . . . ,xerr
t [T ] = 0. Hence, we have the following two

scenarios:

• Case 1: y[i], z[i] ≤ 0 for all i ∈ {1, 2, . . . , t − 1}. Note that this hold—for instance—if the
coefficients FOI are all non-negative, i.e., λ(t)

i ≥ 0 of for all i ∈ {1, 2, . . . , t−1} (most first order
optimization algorithms usually follow this). In that case, the maximum in (D.11) is achieved
by i = t This implies that it = t. Moreover, depending on the sign of rt−1, we either have
∂

∂y[t]G(xerr
t ,yt, zt) = 1 or ∂

∂z[t]G(xerr
t ,yt, zt) = 1 with equal probability. Thus, again (D.10)

holds for t.

• Case 2: Somehow FOI chooses to follow positive gradient directions (which is unlikely in
practice) and it happens that y[i] > 0 or z[i] > 0 for some i ∈ {1, 2, . . . , t− 1}. In such a case,
the maximum in (D.11) could be achieved by i ∈ {1, 2, . . . , t− 1}, i.e., it ∈ {1, 2, . . . , t− 1}.
Then it must be that y[it] > 0 or z[it] > 0. This can happen only if it = it′ for some t′ < t.
Hence, it follows that ∂

∂y[it]
G(xerr

t ,yt, zt) = ∂
∂y[it′ ]

G(xerr
t′ ,yt′ , zt′) and ∂

∂z[it]
G(xerr

t ,yt, zt) =
∂

∂z[it′ ]
G(xerr

t′ ,yt′ , zt′). This proves the second bullet point in the statement. In particular, (D.10)
holds for t.

This completes the proof of Lemma 2.

Now we use Lemma 2 to prove Theorem 13. From the construction (D.8), we know that f(x0) = 2ε.
In order to achieve ε-accuracy, we need wT ≤ −1/2. Note that ∂

∂w `(wt) = 2ε for all t ≥ 0. From
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the fact that wT ≤ − 1
2 , it follows that

T−1∑
t=0

λ
(T )
t

∂

∂w
`(vt, wt) ≥

1

2
⇐⇒

T−1∑
t=0

λ
(T )
t ≥ 1

4ε
.

Now using the assumption that |λ(T )
0 | ≤ O

(∣∣∣∑T−1
t=1 λ

(T )
t

∣∣∣), we obtain∣∣∣∣∣
T−1∑
t=1

λ
(T )
t

∣∣∣∣∣ & |λ(T )
0 |+

∣∣∣∣∣
T−1∑
t=1

λ
(T )
t

∣∣∣∣∣ ≥
∣∣∣∣∣
T−1∑
t=0

λ
(T )
t

∣∣∣∣∣ ≥ 1

4ε
,

which leads to the following conditon: ∣∣∣∣∣
T−1∑
t=1

λ
(T )
t

∣∣∣∣∣ ≥ Ω

(
1

ε

)
(D.12)

This condition is analogous to (D.2) from Subsection D.1. Now to better illustrate our proof strategy
for the remaining part, we first consider a special case.

Warm-up: proof for the special case. As a warm-up, we first consider the special case where in
the definition of FOI, all the coefficients λ(t)

i are non-negative, i.e.,

xt = x0 −
t−1∑
i=0

λ
(t)
i g(xi) for some λ(t)

i ≥ 0, i = 0, . . . , t− 1, (D.13)

Then this case belongs to Case 1 in the proof of Lemma 2. As a consequence, it = t in Lemma 2
and the following conclusion holds:

� For each t = 1, 2, . . . , T − 1,{
∂

∂y[t]G(xerr
t ,yt, zt) = 1, ∂

∂z[t]G(xerr
t ,yt, zt) = 0 with probability 1/2,

∂
∂y[t]G(xerr

t ,yt, zt) = 0, ∂
∂z[t]G(xerr

t ,yt, zt) = 1 with probability 1/2.
(D.14)

Moreover, for i 6= t, ∂
∂y[i]G(xerr

t ,yt, zt) = ∂
∂z[i]G(xerr

t ,yt, zt) = 0.

We use (D.14) to lower bound E ‖xT − E[xT ]‖2. From (D.14), it holds that for t = 1, 2, . . . , T ,

yT [t] =

{
λ

(T )
t , with probability 1/2,

0, with probability 1/2 .

Hence, we have

E ‖yT − E[yT ]‖2 ≥
T−1∑
t=1

E (yT [t]− EyT [t])
2

=

T−1∑
t=1

E
(
yT [t]− 1

2
λ

(T )
t

)2

=
1

4

T−1∑
t=1

(λ
(T )
t )2

(a)

≥ 1

4
· 1

T − 1
·

(
T−1∑
t=1

λ
(T )
t

)2
(D.12)
&

1

4
· 1

T − 1
·
(

1

ε

)2

&
1

Tε2
.

Here (a) follows from Cauchy-Schwarz inequality. Therefore, we get the desired deviation bound as
follows:

E ‖xT − E[xT ]‖2 ≥ E ‖yT − E[yT ]‖2 &
1

Tε2
.
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The proof for the general case. Now we consider the case of general FOI where the coefficients
λ

(t)
i are not necessarily non-negative. With it defined in the statement of Lemma 2, let

I := {it ∈ {1, 2, . . . , T} : t = 1, 2, . . . , T − 1} .

Then Lemma 2 ensures that that for each i ∈ I,

yT [i] =

{∑
t=1,2,...,T−1

s.t. it=i
λ

(T )
t , with probability 1/2,

0, with probability 1/2 .

Hence, we have

E ‖yT − E[yT ]‖2 ≥
T−1∑
t=1

E (yT [t]− EyT [t])
2

=
1

4

∑
i∈I

 ∑
t=1,2,...,T−1

s.t. it=i

λ
(T )
t


2

(a)

≥ 1

4
· 1

|I|
·

∑
i∈I

∑
t=1,2,...,T−1

s.t. it=i

λ
(T )
t


2

=
1

4
· 1

|I|
·

(
T−1∑
t=1

λ
(T )
t

)2
(D.12)
&

1

Tε2
.

Here (a) follows from Cauchy-Schwarz inequality. Therefore, we get the desired deviation bound as
follows:

E ‖xT − E[xT ]‖2 ≥ E ‖yT − E[yT ]‖2 &
1

Tε2
.

D.4 Non-stochastic inexact gradient model

Theorem 14. (Lower Bound) Let ε > 0, and T be a given number of iterations. There exists
a O(1)-Lipschitz and nonsmooth convex function f : RO(T ) → R with a non-stochastic inexact

gradient oracle such that for any FOI algorithm A that satisfies |λ(T )
0 | ≤ O

(∣∣∣∑T−1
t=1 λ

(T )
t

∣∣∣) and

starts at x0 = 0 has a minimum of (ε, δ)-deviation of Ω( 1
Tε2 + δ2

ε2 ).

Proof. We consider an almost identical construction to the one considered in the proof of Theorem 13,
namely (D.8). The only difference is that now we add an extra dummy coordinate, namely the
(3T + 2)-th coordinate, which does not appear in the cost. Let us denote this dummy coordinate by
u. Concretely, we consider the following cost: For x = (xerr,y, z, w, u) where xerr,y, z ∈ RT and
w, u ∈ R, consider the cost

f(xerr,y, z, w, u) = G(xerr,y, z) + 2ε ·max{w + 1, 0}︸ ︷︷ ︸
=:`(w)

. (D.15)

We denote the iterates of FOI due to exact gradients by

xexact
t = ((xerr

t )exact,yexact
t , zexact

t , wexact
t , uexactt ) .

Now we define the inexact gradient oracle. The noise in the inexact gradient oracle consists of two
parts. For t = 0, 1, 2, . . . , T − 1,

g(xt) = ∇f(xt) +
δ√
2
e1+t +

δ√
2
e3T+2 , (D.16)

where ej is the j-th coordinate vector. Note that the first part of the error is similar to the error for the
stochastic error case, and the second part of the error is added to the dummy coordinate u.

Then analogous to Lemma 2, one can establish the following result. We skip the proof since it is very
analogous to that of Lemma 2.
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Corollary 1. Under the inexact gradient (D.9), the subgradient ∇G has the following properties:
� For each t = 1, 2, . . . , T − 1, there exists it ∈ {1, . . . , t} such that either one of the following

holds: {
∂

∂y[it]
G(xerr

t ,yt, zt) = 1, ∂
∂z[it]

G(xerr
t ,yt, zt) = 0, or

∂
∂y[it]

G(xerr
t ,yt, zt) = 0, ∂

∂z[it]
G(xerr

t ,yt, zt) = 1.

Moreover, for i 6= it, ∂
∂y[i]G(xerr

t ,yt, zt) = ∂
∂z[i]G(xerr

t ,yt, zt) = 0.

� If it 6= t (i.e., it < t), then it = it′ for some t′ < t, and it holds that ∂
∂y[it]

G(xerr
t ,yt, zt) =

∂
∂y[it′ ]

G(xerr
t′ ,yt′ , zt′) and ∂

∂z[it]
G(xerr

t ,yt, zt) = ∂
∂z[it′ ]

G(xerr
t′ ,yt′ , zt′).

The rest of the proof is similar to that of Theorem 13. From the construction (D.15), we know that
f(x0) = 2ε. In order to achieve ε-accuracy, one can similarly deduce that (D.12) holds.

With it defined in the statement of Corollary 1, let

I := {it ∈ {1, 2, . . . , T} : t ∈ T } .

Then one can similarly argue using Corollary 1 that for each i ∈ I, either

yT [i] =
∑

t=1,2,...,T−1
s.t. it=i

λ
(T )
t or zT [i] =

∑
t=1,2,...,T−1

s.t. it=i

λ
(T )
t .

This, together with the fact that yexact
T = 0 and zexact

T = 0, implies that

∥∥yT − yexact
T

∥∥2
+
∥∥zT − zexact

T

∥∥2 ≥
∑
i∈I

 ∑
t=1,2,...,T−1

s.t. it=i

λ
(T )
t


2

(a)

≥ 1

|I|
·

∑
i∈I

∑
t=1,2,...,T−1

s.t. it=i

λ
(T )
t


2

=
1

4
· 1

|I|
·

(
T−1∑
t=1

λ
(T )
t

)2
(D.12)
&

1

Tε2
.

On the other hand, since uexactT = 0, the deviation in the dummy coordinate can be lower bounded as
follows:

|uT − uexactT |2 =

(
δ√
2
·
T−1∑
t=0

λ
(T )
t

)2

&
δ2

ε2
.

Therefore, combining all together, we get∥∥xT − xexact
T

∥∥2 ≥
∥∥yT − yexact

T

∥∥2
+
∥∥zT − zexact

T

∥∥2
+
∥∥uT − uexactT

∥∥2

&
1

Tε2
+
δ2

ε2
,

as desired.

D.5 Inexact initialization model

Theorem 15. (Lower Bound) Let ε > 0 be a small constant, and T be a given number of iterations.
There exists a O(1)-Lipschitz (nonsmooth) convex function f : RO(T ) → R such that for any FOI
algorithm A the (ε, δ)-deviation lower bounded by Ω( 1

Tε2 + δ2) w.r.t. the reference point xref
0 = 0.

Proof. For the initialization error model, we use a simpler construction. For x = (xerr,y, w, u) ∈
(RT )2 × R2 → R, consider the cost defined as

f(xerr,y, w) = max{0, xerr[1] + y[1], . . . , xerr[T ] + y[T ]}+ 2ε ·max{w + 1, 0} .
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Here u is a dummy coordinate that does not appear in the cost. For both max terms above, we
consider the subgradient that outputs the gradient of the first argument that achieves the maximum.
Then, f is clearly O(1)-Lipschitz.

We set the reference and inexact intializations as follows:

xref
0 = (0, 0, . . . , 0) and x0 = (δ/

√
2T , · · · , δ/

√
2T︸ ︷︷ ︸

first T

, 0, · · · , 0︸ ︷︷ ︸
second T

, 0, δ/
√

2) . (D.17)

Following the previous notations, we write the iterates as xt = (xerr
t ,yt, wt) ∈ (RT )2×R. Moreover,

we will write the iterates corresponding to the reference initialization as xref
t = ((xerr

t )ref ,yref
t , wref

t ).

From the fact that the algorithm has to achieve ε-suboptimality, it follows that wT ≤ −1/2. On the
other hand, from the inexact initialization (D.17), it holds that for all t = 0, . . . , T − 1,

∃it ∈ {1, . . . , T} s.t.

{
∂

∂y[it]
f(xerr

t ,yt, wt) = 1 and
∂

∂y[i]f(xerr
t ,yt, wt) = 0 for i 6= it.

Hence, it holds that 1
2εwT =

∑T
i=1 yT [i]. Since we know yref

T = (0, 0, . . . , 0) and uref = 0, the
following deviation lower bound holds:

∥∥xT − xref
T

∥∥2 ≥
∥∥yT − yref

T

∥∥2
+
∥∥uT − urefT ∥∥2

=

T∑
i=1

(yT [i])2 + u2
T

≥ 1

T
·

(
T∑
i=1

yT [i]

)2

+
δ2

2
=

1

T
· 1

4ε2
· (wT )

2
+
δ2

2
&

1

Tε2
+ δ2

This completes the proof.

D.6 Stochastic inexact gradient model (strongly-convex costs)

Theorem 16. (Lower Bound) Let ε > 0 and T be a given number of iterations. There exists a
O(1)-Lipschitz (nonsmooth) and µ-strongly convex function f : RO(T ) → R with a stochastic inexact
gradient model such that any FOI algorithm A that starts at x0 = 0 has its (ε, δ)-deviation lower
bounded by Ω( 1

Tµ2 ∧ ε
µ ).

Proof. For x = (xerr,y, z, w) ∈ (RT )3 × R2, consider the cost defined as

f(xerr,y, z, w) = G(xerr + δe1,y, z) +
µ

2
‖(xerr,y, z)‖2︸ ︷︷ ︸

=:Gµ(xerr,y,z)

+w +
µ

2
w2︸ ︷︷ ︸

=:`µ(w)

. (D.18)

We consider the same inexact gradient oracle defined in (D.9). Then similarly to Lemma 2, it holds
that for each t = 1, 2, . . . , T − 1, there exists it ∈ {1, . . . , t} such that the following holds:{

∂
∂y[it]

G(xerr
t ,yt, zt, vt) = 1, ∂

∂z[it]
G(xerr

t ,yt, zt, vt) = 0 with probability 1/2,
∂

∂y[it]
G(xerr

t ,yt, zt, vt) = 0, ∂
∂z[it]

G(xerr
t ,yt, zt, vt) = 1 with probability 1/2.

(D.19)

Moreover, for i 6= it, ∂
∂y[i]G(xerr

t ,yt, zt, vt) = ∂
∂z[i]G(xerr

t ,yt, zt, vt) = 0. Throughout the rest of
the proof, we use the following notations:

gy
t = (gy

t [1], gy
t [2], . . . , gy

t [T ]) := ∇yG
µ(xerr

t ,yt, zt, vt),

gz
t = (gz

t [1], gz
t [2], . . . , gz

t [T ]) := ∇zG
µ(xerr

t ,yt, zt, vt)

gwt := ∂`µ

∂w (wt)

We prove the following crucial result for the proof.

Lemma 3. For each t = 0, 1, 2, . . . , T , the output of a FOI algorithm satisfies the following:

wt =

T∑
i=1

yt[i] + zt[i] and gwt = gvt +

T∑
i=1

gy
t [i] + gz

t [i] . (D.20)
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Proof. We prove by induction on t. We first prove the statement for t = 0. Recall the definition
Gµ(xerr,y, z) := G(xerr + δe1,y, z) + µ

2 ‖(x
err,y, z)‖2. Since the first coordinate of xerr is δ, it

follows that gw0 = 1, gy
0 = e1 and gz

0 = 0. Hence, the statement holds for t = 0.

Assume that the conclusion holds for some t. We will first show that wt+1 =
∑T
i=1 yt+1[i] +zt+1[i].

Using the definition of FOI together with the inductive hypothesis, we have

wt+1 = −
t∑

j=0

λ
(t+1)
j gwj = −

t∑
j=0

λ
(t+1)
j

(
T∑
i=1

gy
j [i] + gz

j [i]

)

= −
T∑
i=1

t∑
j=0

λ
(t+1)
j

(
gy
j [i] + gz

j [i]
)

=

T∑
i=1

yt+1[i] + zt+1[i].

Next, we show that gwt+1 =
∑T
i=1 g

y
t+1[i] + gz

t+1[i]. Using the conclusion we just proved, we obtain

gwt+1 = 1 + µwt+1 = 1 + µ

(
T∑
i=1

yt+1[i] + zt+1[i]

)
=

T∑
i=1

(
gy
t+1[i] + gz

t+1[i]
)
,

where in the last equality, we used the fact that∇Gµ(xerr
t ,yt, zt) is zero except for a single coordinate

that is equal to 1.

Note that in order for f(xT ) to achieve ε-accuracy, it must be that

wT ∈
[
− 1

2µ
−O(

√
ε),− 1

2µ
+O(

√
ε)

]
.

Note that by symmetry, yT [i] + zT [i] is a deterministic quantity. Lemma 2 ensures that

yT [i] =

{
yT [i] + zT [i] with probability 1/2,
0 with probability 1/2,

for all i = 2, . . . , T.

Hence, the deviation E ‖xT − E[xT ]‖2 is again lower bounded by 1
4

∑T
i=2(yT [i] + zT [i])2. Since

either yT [i] or zT [i] has to be zero, it follows that (yT [i]+zT [i])2 = (yT [i])2 +(zT [i])2. From the ε-
suboptimality of xT , it also holds that

∑T
i=2(yT [i])2 +(zT [i])2 ≤ 2

µε. Hence either
∑T
i=2(yT [i])2 +

(zT [i])2 = Ω( εµ ) (in which case the deviation is lower bounded by Ω( εµ )), or we use Lemma 3 to
conclude that

T∑
i=2

(yT [i] + zT [i])2
(a)

≥ 1

T − 1
·

(
T∑
i=2

yT [i] + zT [i]

)2

=
1

T − 1
· (wT − (yT [1] + zT [1]))

2 &
1

Tµ2
,

where (a) follows form the Cauchy-Schwartz inequality, and the last inequality is due to the fact that
(yT [1] + zT [1])2 . ε. This completes the proof.

D.7 Non-stochastic inexact gradient model (strongly-convex costs)

Theorem 17. (Lower Bound) Let ε > 0 and T be a given number of iterations. There exists a
O(1)-Lipschitz (nonsmooth) and µ-strongly convex function f : RO(T ) → R with a non-stochastic
inexact gradient model such that any FOI algorithm A that starts at x0 = 0 has its (ε, δ)-deviation
lower bounded by Ω(( 1

Tµ2 + δ2

µ2 ) ∧ ε
µ ).

Proof. We consider the same construction as the one considered in the proof of Theorem 16. The
only difference is that now we add an extra dummy coordinate u (the (3T + 2)-th coordinate), and
add µ

2u
2 to the overall cost (so that the overall cost is still µ-strongly convex). Following the previous
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convention, we will write the iterate as xt = (xerr
t ,yt, zt, wt, ut) ∈ (RT )3 × R3. We define the

inexact gradient as:

g(xt) = ∇f(xt) +
δ√
2
e1+t +

δ√
2
e3T+3 ,

where ej is the j-th coordinate vector. Then following the same argument as Lemma 3, it holds that

wT =

T∑
i=1

yT [i] + zT [i] and δ/
√

2 · wT = uT . (D.21)

From the fact that xT achieves ε-suboptimality, it must be that

wT ∈
[
− 1

2µ
−O(

√
ε),− 1

2µ
+O(

√
ε)

]
.

Now the rest of the proof follows similarly to that of Theorem 16. Using the facts yexact
T = 0,

zexact
T = 0 and uexactT = 0, we have the following lower bound on the deviation:∥∥xT − xexact

T

∥∥2 ≥
∥∥yT − yexact

T

∥∥2
+
∥∥zT − zexact

T

∥∥2
+
∥∥uT − uexactT

∥∥2

≥ u2
T +

T∑
i=2

[(yT [i])2 + (zT [i])2]

From the ε-suboptimality of xT , it must be that u2
T +

∑T
i=2(yT [i])2 + (zT [i])2 ≤ 2

µε. Thus, either

u2
T +

∑T
i=2(yT [i])2 + (zT [i])2 = Ω( εµ ) (in which case the deviation is lower bounded by Ω( εµ )), or

we use the fact that (
∑T
i=2 yT [i] + zT [i])2 & 1

µ2 to conclude that

u2
T +

T∑
i=2

[(yT [i])2 + (zT [i])2] ≥ δ2

2
w2
T +

1

2(T − 1)

(
T∑
i=1

yT [i] + zT [i]

)2

& δ2w2
T +

1

T
w2
T &

δ2

µ2
+

1

Tµ2
.

This completes the proof.

D.8 Inexact initialization model (strongly-convex costs)

Theorem 18. (Lower Bound) Let ε > 0 and T be a given number of iterations. There exists a O(1)-
Lipschitz (nonsmooth) and µ-strongly convex function f : RO(T ) → R with an inexact initialization
model such that any FOI algorithm A that starts at x0 = 0 has its (ε, δ)-deviation lower bounded by
Ω( 1

Tµ2 ∧ ε
µ ).

Proof. For the initialization error model, we use a simpler construction. For x = (xerr,y, w) ∈
(RT )2 × R→ R, consider the cost defined as

f(xerr,y, w) = max{0, xerr[1] + y[1], . . . , xerr[T ] + y[T ]}+ w +
µ

2
‖(xerr,y, w)‖2 .

Then, clearly f is clearly O(1)-Lipschitz. We set the reference and inexact intializations as follows:

xref
0 = (0, 0, . . . , 0) and x0 = (δ, · · · , δ︸ ︷︷ ︸

first T

, 0, · · · , 0︸ ︷︷ ︸
second T

, 0) . (D.22)

Following the previous proofs, we will write xt = (xerr
t ,yt, wt) ∈ (RT )2 × R and the iterates

corresponding to the reference initialization as xref
t = ((xerr

t )ref ,yref
t , wref

t ). From the fact that the
algorithm has to achieve ε-suboptimality, it follows that

wT ∈
[
− 1

2µ
−O(

√
ε),− 1

2µ
+O(

√
ε)

]
.
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Then following the same argument as Lemma 3 it holds that wT =
∑T
i=1 yT [i]. Using the fact that

yref
T = 0, we have the following deviation lower bound:

∥∥xT − xref
T

∥∥2 ≥
∥∥yT − yref

T

∥∥2
=

T∑
i=1

(yT [i])2

Moreover, from the ε-suboptimality of xT , it must be that
∑T
i=1(yT [i])2 ≤ 2

µε. Thus, either∑T
i=1(yT [i])2 = Ω( εµ ) (in which case the deviation is lower bounded by Ω( εµ )), or the following

deviation lower bound holds:

T∑
i=1

(yT [i])2 ≥ 1

T
·

(
T∑
i=1

yT [i]

)2

=
1

T
· (wT )

2 &
1

Tµ2
.

This completes the proof.

E Proof of upper bounds (smooth costs)

E.1 Stochastic inexact gradient model

Theorem 19. (Upper Bound) Let f be an O(1)-smooth convex cost function. Let ε > 0, and T be
a given number of iterations. Under the stochastic inexact gradient model, the (ε, δ)-deviation of
standard SGD with an appropriately chosen step size is O( δ2

Tε2 ), provided that T = Ω(1/ε2).

Proof. Throughout the proof, let L be the smoothness constant of f . We first derive the deviation
bound. Let {xt} be the GD iterates with stochastic inexact gradients and {yt} be the GD iterates with
exact gradients. Assuming that ηt ≤ 2

L , the standard convex analysis yields the following one-step
deviation inequality (E denotes the conditional expectation over the randomness in g(xt))

E ‖xt+1 − yt+1‖2 = E ‖(xt − ηtg(xt)− (yt − ηt∇f(yt))‖2

= ‖xt − yt‖2 − 2ηt E 〈xt − yt, g(xt)−∇f(yt)〉︸ ︷︷ ︸
=〈xt−yt,∇f(xt)−∇f(yt)〉

+η2
t E ‖g(xt)−∇f(yt)‖2

= ‖xt − yt‖2 − 2ηt 〈xt − yt,∇f(xt)−∇f(yt)〉+ η2
t E ‖g(xt)−∇f(xt)‖2

+ 2η2
t E 〈g(xt)−∇f(xt),∇f(xt)−∇f(yt)〉︸ ︷︷ ︸

=0

+η2
t ‖∇f(xt)−∇f(yt)‖2

= ‖xt − yt‖2−2ηt 〈xt − yt,∇f(xt)−∇f(yt)〉+ η2
t ‖∇f(xt)−∇f(yt)‖2︸ ︷︷ ︸

≤0

+ η2
t E ‖∇f(xt)− g(xt)‖2

≤ ‖xt − yt‖2 + η2
t δ

2 .

Here the last inequality is due to the standard fact about smooth and convex function that for any x,y,
1
L ‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 (see, e.g., [Nesterov, 2018, (2.1.11)]), together
with the fact ηt ≤ 2

L . Hence, we have proved

E ‖xT − yT ‖2 ≤ δ2
∑
t

η2
t . (E.1)

Now for the upper bound, we consider variants of SGD. From the standard convergence result (see,
e.g., [Bubeck, 2014, Thm. 6.3]), with step size ηt ≡ 1

L+1/η for some η > 0,

E f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤

L ‖x0 − x∗‖2

2T
+
‖x0 − x∗‖2

2ηT
+
ηδ2

2
. (E.2)
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For simplicity, let x̄T := 1
T

∑
t xt, and ȳT := 1

T

∑
t yt. From the convexity of ‖·‖2, we have

E ‖x̄T − ȳT ‖2 ≤
1

T

∑
t

E ‖xt − yt‖2 . (E.3)

Now let us combine above results to upper bound (ε, δ)-deviation.

As a warm-up, let us first consider SGD with η = O(1/
√
T). From (E.2), it follows that the

convergence rate reads E f(x̄T )− f(x∗) ≤ O(1/
√
T). With such a choice of η, the stepsize is

ηt ≡
1

L+ Ω(
√
T )

= O(
1√
T

).

Hence, for the deviation bound, using (E.1) together with (E.3), we have

E ‖x̄T − ȳT ‖2 ≤
1

T

∑
t

E ‖xt − yt‖2 .
1

T

T∑
t=1

[
t · 1

T
· δ2

]
. δ2.

This shows that with T = Ω(1/ε2), the (ε, δ)-deviation is O(δ2).

In order to recover the bound in the theorem statement, we consider a mini-batch SGD. In particular,
the above calculation shows that using a mini-batch of size b at each iteration, it follows that with
O( bε2 ) gradient queries, the deviation is upper bounded by O( δ

2

b ). This precisely corresponds to the
(ε, δ)-deviation bound of O( δ2

ε2T ).

An alternative way is to let the learning rate ηt = 1/(εT ). It then follows from (E.2) that

E f(x̄T )− f(x∗) ≤ O
(

1

T
+ ε+

δ2

εT

)
= O(ε),

since T = Ω(1/ε2). Moreover, (E.1) and (E.3) imply

E ‖x̄T − ȳT ‖2 ≤
1

T

∑
t

E ‖xt − yt‖2 ≤
1

T

T∑
t=1

[
t · δ2 · 1

ε2T 2

]
≤ δ2

Tε2
,

which is the desired upper bound.

E.2 Non-stochastic gradient errors

Theorem 20. (Upper Bound) For L = O(1) and D = O(1), let f be an L-smooth convex cost
function whose optimum lies in a ball of radius D. Let ε > 0 and δ > 0 are such that δ ≤ ε

2LD . Let
T be a given number of iterations. Under the non-stochastic inexact gradient model, there exists a
FOI algorithm whose (ε, δ)-deviation is O( δ

2

ε2 ), provided that T = Ω( 1
ε ).

Proof. Throughout the proof, let L be the smoothness constant of f . We consider the projected
gradient descent with step size ηt = 1

L onto the ball of radius D that contains the optimum x∗. It is
important to note that this algorithm is a FOI because the projection onto the ball of radius D is a
re-scaling, and hence after the projection, the coefficients λ(t)

i are still positive.

The proximal inequality (e.g., [Bauschke et al., 2011, Proposition 12.26]) implies that

‖xt+1 − x∗‖2 − ‖xt − x∗‖2 ≤ −‖xt+1 − xt‖2 − 2ηt 〈g(xt),xt+1 − x∗〉
Let ∆t denote the error due to the non-stochastic inexact gradient model at iteration t, i.e., ∆t :=
g(xt)−∇f(xt). Then we have

‖xt+1 − x∗‖2 − ‖xt − x∗‖2

≤ −‖xt+1 − xt‖2 − 2ηt 〈∇f(xt) + ∆t,xt+1 − x∗〉
≤ −‖xt+1 − xt‖2 + 2ηt 〈∇f(xt),x∗ − xt+1〉+ 2δD

= −
(
‖xt+1 − xt‖2 + 2ηt 〈∇f(xt),xt+1 − xt〉

)
︸ ︷︷ ︸

(a)

+ 2ηt 〈∇f(xt),x∗ − xt〉︸ ︷︷ ︸
(b)

+2δD

≤ −2ηt(f(xt+1)− f(xt)) + 2ηt(f(x∗)− f(xt)) + 2δD

= 2ηt(f(x∗)− f(xt+1)) + 2δD,
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where (a) is upper bounded using the L-smoothness together with ηt = 1
L as follows:

f(xt+1)− f(xt) ≤ 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= 〈∇f(xt),xt+1 − xt〉+
1

2ηt
‖xt+1 − xt‖2 ,

and (b) is handled using convexity.

Summing this over all t = 0, 1, . . . , T − 1 gives

T−1∑
t=0

2

L
(f(xt+1)− f(x∗)) ≤ ‖x0 − x∗‖2 + 2δTD,

which implies the following average-iterate guarantee:

f(x̄T )− f(x∗) ≤
LD2

2T
+ δLD.

Thus, in order to achieve ε-suboptimality, we need Ω(1/ε) iterations, since the theorem statement
assumed that δ ≤ ε

2LD . Next, let us bound the deviation.

Lemma 4. Suppose that f is L-smooth. Let ∆t and ∆′t denote noises in the gradients. If ηt ≤ 2
L ,

then the following one-step deviation inequality holds

‖xt − ηt(∇f(xt) + ∆t)− (x′t − ηt(∇f(x′t) + ∆′t))‖ ≤ ‖xt − x′t‖+ ηt ‖∆t‖+ ηt ‖∆′t‖ .

Proof. The proof follows from the following inequality:∥∥xt+1 − x′t+1

∥∥ ≤ ‖xt − x′t − ηt(g(xt)− g(x′t))‖
≤ ‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖+ ηt ‖∆t‖+ ηT ‖∆t‖′

(a)

≤ ‖xt − x′t‖+ ηt ‖∆t‖+ ηt ‖∆t‖′ ,

Here (a) follows from the following fact:

‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖
2

= ‖xt − x′t‖
2 − 2ηt 〈xt − x′t,∇f(xt)−∇f(x′t)〉+ η2

t ‖∇f(xt)−∇f(x′t)‖
2

(b)

≤ ‖xt − x′t‖
2 − 2

L
ηt ‖∇f(xt)−∇f(x′t)‖

2
+ η2

t ‖∇f(xt)−∇f(x′t)‖
2

(c)

≤ ‖xt − x′t‖
2
,

where (b) is due to the fact that for a L-smooth and convex function f , it holds that

1

L
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 for any x,y,

and (c) is because η2
t ≤ 2

Lηt.

Now given the convergence rate and the deviation inequality, we are ready to prove the desired upper
bound on (ε, δ)-deviation. From the triangle inequality, we get

‖x̄T − x̄′T ‖ =

∥∥∥∥∥ 1

T

T∑
t=1

xt −
1

T

T∑
t=1

x′t

∥∥∥∥∥ ≤ 1

T

T∑
t=1

‖xt − x′t‖

≤ 1

T

T∑
t=1

O(tδ) ≤ O(Tδ) ,

where the second line follows from Lemma 4. Thus, the (ε, δ)-deviation is bounded by O( δ
2

ε2 ) using
the averaged iterate with T = Θ(1/ε).
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One limitation of Theorem 20 is that it requires the optimum to lie in a bounded domain. Next we
show that without this requirement, the gradient descent iterate is still bounded when it first attains
ε-accuracy.
Theorem 21. Suppose f is L-smooth with optimum x∗. Let ε, δ > 0 be given such that ε ≤
2L‖x0 − x∗‖2 and δ ≤ ε

‖x0−x∗‖ . Consider gradient descent with a constant learning rate η = 1
L .

Under the non-stochastic inexact gradient model, for the first iterate xT with f(xT )− f(x∗) ≤ ε, it
holds that ‖xT − x∗‖ ≤ 2‖x0 − x∗‖.

Proof. Let Dt := ‖xt−x∗‖. Following the proof of Theorem 20 (which still holds when the domain
is unbounded), we can show that

D2
t+1 −D2

t ≤ 2η(f(x∗)− f(xt+1)) + 2ηδDt+1. (E.4)

Let T denote the first step with f(xT ) ≤ f(x∗) + ε. We claim that for all 0 ≤ t ≤ T − 2,

Dt+1 ≤ Dt ≤ D0. (E.5)

We will prove (E.5) by induction. Given 0 ≤ t ≤ T − 2, suppose Dt ≤ D0, and note that the
definition of T implies f(xt+1) > f(x∗) + ε. It then follows from (E.4) that

D2
t+1 − 2ηδDt+1 + 2ηε−D2

t < 0.

Let h(z) := z2 − 2ηδz + 2ηε−D2
t . First,

h(Dt) = −2ηδDt + 2ηε ≥ 0,

since δDt ≤ δD0 ≤ ε by the condition of Theorem 21. Moreover, Dt is larger than ηδ, the minimum
of h, because if it is not true, then

f(xt)− f(x∗) ≤
L

2
D2
t ≤

Lη2δ2

2
≤ Lη2ε2

2D2
0

=
ε2

2LD2
0

≤ ε,

which contradicts the definition of T . Since h(Dt+1) < 0, it then follows that Dt+1 ≤ Dt ≤ D0,
and in particular DT−1 ≤ D0. Finally, note that smoothness implies

‖∇f(xT−1)‖ ≤ LDT−1 ≤ LD0,

and thus

DT ≤ ‖xT − xT−1‖+DT−1 ≤ η‖∇f(xT−1)‖+DT−1 ≤ D0 +DT−1 ≤ 2D0.

This completes the proof

E.3 Inexact initialization model

Theorem 22. (Upper Bound) Let f be an O(1)-Lipschitz convex cost function. Let ε > 0 be a
small constant, and T be a given number of iterations. Then there exists a FOI algorithm whose
(ε, δ)-deviation is O(δ2), provided that T = Ω(1/ε).

Proof. In view of Lemma 4, two different runs xT ,x′T of gradient descent satisfies

‖xT − x′T ‖ ≤
∥∥x′T−1 − x′T−1

∥∥ ≤ · · · ≤ ‖x0 − x′0‖ ≤ 2δ.

Hence, the statement follows.

In this section, we consider smooth and strongly-convex costs.

E.4 Stochastic inexact gradient model (strongly convex costs)

We first show an upper bound for the stochastic inexact gradient oracle.
Theorem 23. (Upper Bound) Let f be an O(1)-smooth µ-strongly convex cost function. Let
ε > 0 be a small constant, and T be a given number of iterations. Under the stochastic inexact
gradient model, there exists a FOI algorithm whose (ε, δ)-deviation is O

(
δ2

Tµ2 ∧ ε
µ

)
, provided that

T = Ω( 1
εµ ).

35



Proof. The following proof is based on the proof of [Bubeck, 2014, Theorem 6.3], but here we
further make use of strong convexity.

Let C ⊂ Rn denote the domain of f , and assume it is convex and closed. We simply run stochastic
gradient descent: starting from some x0 ∈ C, let

xt+1 := ΠC [xt − ηtg(xt)] where ηt :=
1

L+ 1/λt
.

We will pick a value for each λt below. Note that C can just be Rn, in which case no projection is
needed, but our analysis can also handle a bounded domain.

Let x∗ denote the optimal solution, and suppose f is L-smooth. It follows that

f(xt+1)− f(xt) ≤ 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= 〈g(xt),xt+1 − xt〉+ 〈∇f(xt)− g(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

≤ 〈g(xt),xt+1 − xt〉+
λt
2
‖∇f(xt)− g(xt)‖2 +

L+ 1/λt
2

‖xt+1 − xt‖2.

Moreover, the projection step ensures

1

L+ 1/λt
〈g(xt),xt+1 − x∗〉 ≤ 〈xt − xt+1,xt+1 − x∗〉

=
1

2

(
‖xt − x∗‖2 − ‖xt − xt+1‖2 − ‖xt+1 − x∗‖2

)
.

Consequently,

f(xt+1)− f(xt) ≤ 〈g(xt),x∗ − xt〉+
λt
2
‖∇f(xt)− g(xt)‖2

+
L+ 1/λt

2

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
.

Taking expectation with respect to g(xt), we have

E[f(xt+1)] ≤ f(xt) + 〈∇f(xt),x∗ − xt〉+
λt
2
δ2 +

L+ 1/λt
2

E
[
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

]
.

Further invoking strong convexity, we have

E[f(xt+1)] ≤ f(x∗)−
µ

2
‖xt − x∗‖2 +

λtδ
2

2
+
L+ 1/λt

2
E
[
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

]
.

(E.6)

Pick a small enough k which also satisfies k ≥ 4L/µ, and let

λt =
2

(t+ k)µ− 2L
.

It follows that λt > 0 by construction, and also

L+
1

λt
=
t+ k

2
µ, and L+

1

λt
− µ =

t+ k − 2

2
µ,

and that

(t+ k − 1)λt =
2

µ
· t+ k − 1

t+ k − 2L/µ
≤ 2

µ
· t+ k − 1

(t+ k)/2
≤ 4

µ
,

since by the definition of k, we have 2L/µ ≤ k/2 ≤ (t+ k)/2. Therefore if we multiply both sides
of (E.6) by (t+ k − 1), we get

(t+ k − 1)E [f(xt+1)− f(x∗)] ≤
(t+ k − 1)(t+ k − 2)

4
µE[‖xt − x∗‖2]

− (t+ k)(t+ k − 1)

4
µE[‖xt+1 − x∗‖2] +

2δ2

µ
.
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Now taking the sum from t = 0 to T − 1, we have

T−1∑
t=0

(t+ k − 1)E [f(xt+1)− f(x∗)] ≤
(k − 1)(k − 2)µ

4
‖x0 − x∗‖2 +

2δ2T

µ
.

Define

x̃T :=

T−1∑
t=0

t+ k − 1∑T−1
j=0 (j + k − 1)

xt+1 .

Then, we have

E [f(x̃T )− f(x∗)] ≤ O
(

(k − 1)(k − 2)µ

4T 2
‖x0 − x∗‖2 +

2δ2

Tµ

)
.

Since k = Θ(L/µ), it follows that as long as T = Ω( 1
εµ ), we have

E [f(x̃T )− f(x∗)] ≤ ε.

Next we analyze the deviation bound. Similarly to the proof of Theorem 19, let {xt} denote GD
iterates with stochastic inexact gradients, and let {yt} denote GD iterates with exact gradients, we
can show

E
[
‖xt+1 − yt+1‖2

]
≤ ‖xt − yt‖2 − 2ηt〈xt − yt,∇f(xt)−∇f(yt)〉+ η2

t ‖∇f(xt)−∇f(yt)‖2

+ η2
t E
[
‖∇f(xt)−∇g(xt)‖2

]
.

Next we need the following lemma.

Lemma 5. Suppose f is L-smooth and µ-strongly convex. For η ≤ 1/L, it holds for any x,y that

‖x− y − η(∇f(x)−∇f(y))‖2 ≤ (1− ηµ) ‖x− y‖2.

Proof. First we have

‖x− y − η(∇f(x)−∇f(y))‖2

= ‖x− y‖2 − 2η 〈x− y,∇f(x)−∇f(y)〉+ η2 ‖∇f(x)−∇f(y)‖2

≤ ‖x− y‖2 − 2η〈x− y,∇f(x)−∇f(y)〉+ η
1

L
· L〈x− y,∇f(x)−∇f(y)〉

= ‖x− y‖2 − η〈x− y,∇f(x)−∇f(y)〉,

where the inequality is due to smoothness and η ≤ 1/L. Strong convexity then implies

‖x− y − η(∇f(x)−∇f(y))‖2 ≤ ‖x− y‖2 − ηµ‖x− y‖2.

Note that in the current setting, ηt = 1/(L+ 1/λt) ≤ 1/L, therefore we can invoke Lemma 5 and
obtain

E
[
‖xt+1 − yt+1‖2

]
≤ (1− ηtµ)E

[
‖xt − yt‖2

]
+ η2

t δ
2,

which further implies

E
[
‖xT − yT ‖2

]
≤ δ2

T−1∑
t=0

η2
t

T−1∏
j=t+1

(1− ηjµ),

since x0 = y0. Note that

ηt =
2

(t+ k)µ
, and 1− ηtµ =

t+ k − 2

t+ k
,
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therefore

E
[
‖xT − yT ‖2

]
≤ δ2

T−1∑
t=0

4

(t+ k)2µ2

(t− 1 + k)(t+ k)

(T − 2 + k)(T − 1 + k)

≤ δ2
T−1∑
t=0

4

µ2

1

(T − 2 + k)(T − 1 + k)

≤ δ2
T−1∑
t=0

4

µ2T 2
≤ 4δ2

Tµ2
.

Now define

ỹT :=

T−1∑
t=0

t+ k − 1∑T−1
j=0 (j + k − 1)

yt+1.

Since x̃T and ỹT are weighted averages of xt and yt respectively, we have

E
[
‖x̃T − ỹT ‖2

]
≤ 4δ2

Tµ2
,

Moreover, since ỹT is deterministic, an O( δ2

Tµ2 ) deviation bound also follows.

E.5 Non-stochastic inexact gradient model (strongly convex costs)

Next we consider the non-stochastic inexact gradient oracle.

Theorem 24. (Upper Bound) For L = O(1) and D = O(1), let f be an L-smooth µ-strongly
convex cost function whose optimum lies in a ball of radius D. Let ε > 0 and δ > 0 are such that
δ ≤ ε

2LD , and let T be a given number of iterations. Under the non-stochastic inexact gradient model,

there exists a FOI algorithm whose (ε, δ)-deviation is O
(
δ2

µ2 ∧ ε
µ

)
, provided that T = Ω(1/ε).

Proof. We run projected gradient descent with a constant learning rate η = 1/L. For the upper bound
on excess error, we simply invoke Theorem 20: as long as T = Ω(1/ε), it holds that

f(x̄T ) ≤ 1

T

T∑
t=1

f(xt) ≤ f(x∗) + ε.

To bound the deviation, we follow a similar analysis as in the proof of Lemma 4. Consider two
gradient descent runs {xt} and {x′t}, and let g(xt) = ∇f(xt) + ∆t, and g(x′t) = ∇f(x′t) + ∆′t.
First we have∥∥xt+1 − x′t+1

∥∥ ≤ ‖xt − x′t − ηt(g(xt)− g(x′t))‖
≤ ‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖+ ηt ‖∆t‖+ ηt ‖∆′t‖

≤ ‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖+
2δ

L
.

Moreover, Lemma 5 implies

‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖ ≤
√

1− µ

L
‖xt − x′t‖.

Therefore

‖xt+1 − x′t+1‖ ≤
√

1− µ

L
‖xt − x′t‖+

2δ

L
,
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and for all t ≥ 1,

‖xt − x′t‖ ≤
(

1− µ

L

)t/2
‖x0 − x′0‖+

2δ

L
· 1

1−
√

1− µ/L

=
(

1− µ

L

)t/2
‖x0 − x′0‖+

2δ

L
·

1 +
√

1− µ/L
µ/L

≤
(

1− µ

L

)t/2
‖x0 − x′0‖+

4δ

µ
.

Finally,

‖x̄T − x̄′T ‖ ≤
1

T

T∑
t=1

‖xt − x′t‖ ≤
4δ

µ
+

1

T
‖x0 − x′0‖︸ ︷︷ ︸

=0

1

1−
√

1− µ/L
= O

(
δ

µ

)
.

This completes the proof.

E.6 Inexact initialization model (strongly convex costs)

Theorem 25. (Upper Bound) Let f be an L-smooth µ-strongly convex cost function. Let ε > 0 be
a small constant, and T be a given number of iterations. Then there exists a FOI algorithm whose
(ε, δ)-deviation is O(exp(−µT/L)δ2 ∧ ε

µ ).

Proof. Let x0, x′0 denote two initial iterates. Lemma 5 implies

‖xt+1 − x′t+1‖2 = ‖xt − x′t − ηt(∇f(xt)−∇f(x′t))‖2 ≤
(

1− µ

L

)
‖xt − x′t‖2,

and

‖xT − x′T ‖2 ≤
(

1− µ

L

)T
‖x0 − x′0‖2 ≤ e−µT/L‖x0 − x′0‖2.

This completes the proof.

F Proof of upper bounds (nonsmooth costs)

F.1 Stochastic inexact gradient model

Theorem 26. (Upper Bound) Let f be an O(1)-Lipschitz convex cost function. Let ε > 0 be a small
constant, and T be a given number of iterations. Under the stochastic inexact gradient model, there
exists a FOI algorithm whose (ε, δ)-deviation is O( 1

Tε2 ), provided that T = Ω(1/ε2).

Proof. Assume now that f is G-Lipschitz but otherwise nonsmooth (G = O(1)). Let {xt} be the
GD iterates with stochastic inexact gradients and {yt} be the GD iterates with exact gradients. Then
the one-step deviation bound can be derived as follows (E denotes the conditional expectation over
the randomness in g(xt)):

E ‖xt+1 − yt+1‖2 = E ‖(xt − ηtg(xt)− (yt − ηt∇f(yt))‖2

= ‖xt − yt‖2 − 2ηt 〈xt − yt,∇f(xt)−∇f(yt)〉︸ ︷︷ ︸
≤0 (∵ convexity)

+ η2
t E ‖g(xt)−∇f(xt)‖2 + η2

t ‖∇f(xt)−∇f(yt)‖2

≤ ‖xt − yt‖2 + η2
t (4G2 + δ2) .

Since we consider the regime δ2 . 1, the one-step bound leads to the following deviation inequality:

E ‖xT − yT ‖2 .
∑
t

η2
t . (F.1)
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Note that the above deviation bound is worse than the smooth case deviation bound (E.1) which reads
E ‖xT − yT ‖2 ≤ δ2

∑
t η

2
t .

For the algorithm, we again consider SGD. Invoking the standard convergence guarantee of SGD for
nonsmooth costs (see, e.g., [Bubeck, 2014, Thm. 6.1]), with step size ηt ≡ η for some η > 0, we
have the following convergence rate:

E f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤

‖x0 − x∗‖2

2ηT
+
ηG2

2
. (F.2)

From (F.2), it follows that with η = O(1/
√
T), the convergence rate reads E f(x̄T ) − f(x∗) ≤

O(1/
√
T). With such a choice of η, the deviation can be bounded using (E.1) together with (E.3),

E ‖x̄T − ȳT ‖2 ≤
1

T

∑
t

E ‖xt − yt‖2 .
1

T

T∑
t=1

[
t · 1

T
·G2

]
. G2.

In fact, by choosing η = 1
εT (since T = Ω(1/ε2), it must be that η = O(ε)), it follows that the

(ε, δ)-deviation is upper bounded by

O

(
1

T

T∑
t=1

[
t · 1

T 2ε2
·G2

])
. O(

G2

Tε2
) . O(

1

Tε2
).

This completes the proof.

F.2 Non-stochastic inexact gradient model

We first prove a deviation bound.
Lemma 6. Suppose that f is convex and G-Lipschitz. Let {yt} be the iterates of (projected) GD with
stepsize ηt with exact gradients and {xt} be the iterates of (projected) GD with the same stepsize
with inexact gradients with noise {∆t}. Assuming that ‖∆t‖ ≤ δ for each t, we have

‖xT − yT ‖ ≤

√√√√3(2G2 + δ2) ·
T−1∑
t=0

η2
t + 2δ

T−1∑
t=0

ηt . (F.3)

Proof. The proof is analogous to [Bassily et al., 2020, Lemma 3.1]. First, note that

‖yt+1 − xt+1‖2
(a)

≤ ‖yt − ηt∇f(yt)− (xt − ηt(∇f(xt) + ∆t))‖2

= ‖xt − yt‖2 − 2ηt 〈yt − xt,∇f(yt)−∇f(xt)−∆t〉
+ η2

t ‖∇f(yt)−∇f(xt)−∆t‖2

(b)

≤ ‖xt − yt‖2 + 2ηt 〈xt − yt,∆t〉+ η2
t ‖∇f(yt)−∇f(xt)−∆t‖2

(c)

≤ ‖xt − yt‖2 + 2δηt ‖xt − yt‖+ 3η2
t (2G2 + δ2) ,

where (a) is due to the non-expansiveness of the projection step, (b) is due to convexity, and (c) is
due to the inequality ‖v1 + v2 + v3‖ ≤ 3 ‖v1‖2 + 3 ‖v2‖2 + 3 ‖v3‖2. Denoting dt := ‖xt − yt‖,
we obtain

d2
T ≤ 2δ

T−1∑
t=0

ηtdt + 3(2G2 + δ2)

T−1∑
t=0

η2
t . (F.4)

We now prove (F.3) by induction. If dT ≤ maxt=0,...,T−1 dt, then the conclusion follows from
the induction hypothesis. Hence we may assume that dT > maxt=0,...,T−1 dt. Then the following
inequality follows from (F.4):

d2
T ≤ 2δ

T−1∑
t=0

ηtdt + 3(2G2 + δ2)

T−1∑
t=0

η2
t

≤ 2δdT ·
T−1∑
t=0

ηt + 3(2G2 + δ2)

T−1∑
t=0

η2
t .

Solving this, we obtain the desired conclusion (F.3).
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Theorem 27. (Upper Bound) For G = O(1) and D = O(1), let f be an G-Lipschitz convex cost
function whose optimum lies in a ball of radius D. Let ε > 0 and δ > 0 are such that δ ≤ ε

2D . Let
ε > 0 be a small constant, and T be a given number of iterations. Under the non-stochastic inexact
gradient model, there exists a FOI algorithm whose (ε, δ)-deviation is O( 1

Tε2 + δ2

ε2 ), provided that
T = Ω(1/ε2).

Proof. We consider the projected gradient descent with constant stepsize η onto the ball of radius D
that contains the optimum x∗.

Let yt denote the iterate before projection. Let ∆t denote the error due to the non-stochastic inexact
gradient model at iteration t, i.e., ∆t := g(xt)−∇f(xt). Then, we have

1

2
‖xt+1 − x∗‖2 −

1

2
‖xt − x∗‖2 ≤

1

2
‖yt+1 − x∗‖2 −

1

2
‖xt − x∗‖2

≤ −η 〈∇f(xt) + ∆t,xt − x∗〉+
1

2
η2 ‖∇f(xt) + ∆t‖2

Hence,

f(xt)− f(x∗) +
1

2η
‖xt+1 − x∗‖2 −

1

2η
‖xt − x∗‖2

= f(xt)− f(x∗)− 〈∇f(xt) + ∆t,xt − x∗〉+
1

2
η ‖∇f(xt) + ∆t‖2

≤ δD + η(G+ δ)2.

After telescoping the above inequalities from t = 0, . . . , T − 1, we obtain the bound

f

(
1

T

T−1∑
t=0

xt

)
− f(x∗) .

D2

ηT
+ ηG2 + δD.

Thus, for ε-accuracy, we need η . ε and ηT & 1/ε, since the theorem statement assumed that
δ ≤ ε

2D . Hence, choosing η = Θ( 1
εT ), Lemma 6 gives

‖xt − x′t‖
2
.

t

ε2T 2
+ (tδη)2 =

t

ε2T 2
+
δ2t2

ε2T 2
.

Hence,

‖x̄T − x̄′T ‖
2 ≤ 1

T

∑
t

‖xt − x′t‖
2

.
1

T

∑
t

[
t

ε2T 2
+
δ2t2

ε2T 2

]
≈ 1

ε2T
+
δ2

ε2
,

as desired.

F.3 Inexact initialization model

Theorem 28. (Upper Bound) Let f be an O(1)-Lipschitz convex cost function. Let ε > 0 be a
small constant, and T be a given number of iterations. Then there exists a FOI algorithm whose
(ε, δ)-deviation is O( 1

Tε2 + δ2), provided that T = Ω(1/ε2).

Proof. We consider the subgradient descent with constant step size η. A standard convergence
guarantee for GD reads (see, e.g., [Bubeck, 2014, Theorem 3.2])

f(x̄T )− f(x∗) .
‖x0 − x∗‖2

ηT
+ ηG2 .

Hence, in order to have ε-suboptimality, we need to have ηT ≈ 1
ε and η . ε.

We now derive a deviation bound. A similar calculation to Lemma 6 yields the following:

‖yt+1 − xt+1‖2 ≤ ‖xt − yt‖2 − 2η 〈yt − xt,∇f(yt)−∇f(xt)〉+ η2 ‖∇f(yt)−∇f(xt)‖2

≤ ‖xt − yt‖2 + η2 ‖∇f(yt)−∇f(xt)‖2 ≤ ‖xt − yt‖2 + 4G2η2 .
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Hence, it holds that

‖xt − yt‖2 ≤ ‖x0 − y0‖2 +G2
t−1∑
t=0

η2 ≤ δ2 +G2tη2 = δ2 +G2 t

T 2
(ηT )2 ≈ δ2 +G2 t

T 2
· 1

ε2
.

Thus, it follows that

‖x̄t − ȳT ‖2 ≤
1

T

T−1∑
t=0

‖xt − yt‖2 .
1

T

T−1∑
t=0

(
δ2 +G2 t

T 2

1

ε2

)
. δ2 +

1

ε2T
,

as desired.

F.4 Stochastic inexact gradient model (strongly convex costs)

Theorem 29. (Upper Bound) Let f be an O(1)-Lipschitz µ-strongly convex cost function. Let
ε > 0 be a small constant, and T be a given number of iterations. Under the stochastic inexact
gradient model, there exists a FOI algorithm whose (ε, δ)-deviation is O( 1

Tµ2 ∧ ε
µ ), provided that

T = Ω(1/ε).

Proof. The standard convergence rate bound (e.g., [Bubeck, 2014, Theorem 6.2]) implies that SGD
with ηt = 2

µ(t+1) satisfies

E f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) .

2G2

µ(T + 1)
, (F.5)

where G is the Lipschitz constant of f . Hence, letting x̄T :=
∑T
t=1

2t
T (T+1)xt, it follows that

E ‖x̄T − x∗‖2 .
1

Tµ2
∧ ε

µ
,

where ε
µ follows from the fact that x̄T achieves ε-accuracy.

F.5 Non-stochastic inexact gradient model (strongly convex costs)

Theorem 30. (Upper Bound) For G = O(1) and D = O(1), let f be an G-Lipschitz µ-strongly
convex cost function whose optimum lies in a ball of radius D. Let ε > 0 and δ > 0 are such
that δ ≤ ε

2D . Let ε > 0 be a small constant, and T be a given number of iterations. Under
the non-stochastic inexact gradient model, there exists a FOI algorithm whose (ε, δ)-deviation is
O(( 1

Tµ2 + δ2

µ2 ) ∧ ε
µ ), provided that T = Ω(1/ε).

Proof. We first prove the convergence rate bound. We run projected gradient descent with a constant
learning rate ηt = 1

µ(t+1) . Then, it follows that

µ(t+ 1)

2
‖xt+1 − x∗‖2 − µt

2
‖xt − x∗‖2

=
µ

2
‖xt − x∗‖2 +

1

2ηt

(
‖xt+1 − x∗‖2 − ‖xt − x∗‖2

)
=
µ

2
‖xt − x∗‖2 + 〈g(xt),x

∗ − xt〉+
ηt
2
‖g(xt)‖2

≤ µ

2
‖xt − x∗‖2 + 〈∇f(xt),x

∗ − xt〉+
ηt
2
‖g(xt)‖2 + δD ,

where the last line follows since every iterate lies in the ball of radius D. Hence,

f(xt)− f(x∗) +
µ(t+ 1)

2
‖xt+1 − x∗‖2 − µt

2
‖xt − x∗‖2

≤ f(xt)− f(x∗) +
µ

2
‖xt − x∗‖2 + 〈∇f(xt),x

∗ − xt〉︸ ︷︷ ︸+
ηt
2
‖g(xt)‖2 + δD

(a)

≤ ηt
2
‖g(xt)‖2 + δD .

ηt
2
G2 + δD ,
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where (a) follows from strong convexity. Therefore, it holds that

f

(
T∑
t=1

2(t+ 1)

(T + 1)(T + 2)
xt

)
− f(x∗) ≤

T∑
t=1

2(t+ 1)

(T + 1)(T + 2)
(f(xt)− f(x∗))

.
T∑
t=1

2(t+ 1)

(T + 1)(T + 2)
(
ηt
2
G2 + δD) .

G2

µT
+ δD.

Let x̄T :=
∑T
t=1

2t
T (T+1)xt. We next bound the deviation. Again, let {yt} be the iterates of

(projected) GD with stepsize ηt with exact gradients and {xt} be the iterates of (projected) GD with
the same stepsize with inexact gradients with noise {∆t}.

‖yt+1 − xt+1‖2
(a)

≤ ‖yt − ηt∇f(yt)− (xt − ηt(∇f(xt) + ∆t))‖2

= ‖xt − yt‖2 − 2ηt 〈yt − xt,∇f(yt)−∇f(xt)−∆t〉
+ η2

t ‖∇f(yt)−∇f(xt)−∆t‖2

(b)

≤ (1− 2µηt) ‖xt − yt‖2 + 2ηt 〈xt − yt,∆t〉+ η2
t ‖∇f(yt)−∇f(xt)−∆t‖2

(c)

. (1− 2

t+ 1
) ‖xt − yt‖2 + 2δηt ‖xt − yt‖+ η2

tG
2 ,

where (a) is due to the non-expansiveness of the projection step, (b) is due to convexity, and (c) is
due to the inequality ‖v1 + v2 + v3‖ ≤ 3 ‖v1‖2 + 3 ‖v2‖2 + 3 ‖v3‖2. Denoting dt := ‖xt − yt‖,
we obtain

d2
T . δ

T−1∑
t=0

t2

T 2
ηtdt +

T−1∑
t=0

t2

T 2
η2
t . (F.6)

Now similarly to Lemma 6, one can deduce from this inequality that

d2
T .

δ

µ
dT +

1

Tµ2
=⇒ d2

T .
δ2

µ2
+

1

Tµ2
.

Now, after applying the Jensen’s inequality, we obtain the desired deviation bound of ‖x̄T − x̄′T ‖
2 ≤

( δ
2

µ2 + 1
Tµ2 ) ∧ ε

µ , where ε
µ follows from the fact that x̄T achieves ε-accuracy.

F.6 Inexact initialization model (strongly convex costs)

Theorem 31. (Upper Bound) Let f be an O(1)-Lipschitz µ-strongly convex cost function. Let ε > 0
be a small constant, and T be a given number of iterations. Then there exists a FOI algorithm whose
(ε, δ)-deviation is O( 1

Tµ2 ∧ ε
µ ), provided that T = Ω(1/ε).

Proof. The standard convergence rate bound (e.g., [Bansal and Gupta, 2019, Theorem 2.4]) implies
that GD with ηt = 2

µ(t+1) satisfies

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) .

2G2

µ(T + 1)
, (F.7)

where G is the Lipschitz constant of f . Hence, letting x̄T :=
∑T
t=1

2t
T (T+1)xt, it follows that

‖x̄T − x∗‖2 .
1

Tµ2
∧ ε

µ
,

where ε
µ follows from the fact that x̄T achieves ε-accuracy.
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G Proof of upper bound for finite-sum setting (Theorem 4)

Recall Theorem 4:
Theorem 4. For G = O(1) and D = O(1), let fi be an G-Lipschitz convex cost function for
each i ∈ [m], and assume that the optimum of f lies in a ball of radius D. Let ε, δ > 0 be given
parameters such that δ ≤ ε/(2D), and T = Ω(1/ε2) be a given number of iterations. Define the
SGD updates as follows: initialize x0 = 0, and for t = 0, 1, . . . , T − 1, set xt+1 = xt − ηtgit(xt)
where it ∼ [n] uniformly at random. Under the inexact component gradient oracle (Definition 4), the
average iterate x̄T of SGD with stepsize η = Θ(1/(εT )) satisfies E f(x̄T )− infx∈domf f(x) ≤ ε and
E ‖x̄T − x̄′T ‖

2
= O(1/(Tε2) + δ2/ε2), where x̄′T is the output of an independent run of SGD.

Proof. We first prove a deviation bound similar to that of Lemma 6. Let us denote ∆t := git(xt)−
∇fit(xt). Let {yt} be the iterates of (projected) GD with inexact gradients. Then we have

E
it
‖xt+1 − yt+1‖2

(a)

≤ E
it
‖xt − ηtgit(xt)− (yt − ηt(∇f(yt)))‖2

= ‖xt − yt‖2 − 2ηt E
it
〈xt − yt, git(xt)−∇f(yt)〉+ η2

t E
it
‖git(xt)−∇f(yt)‖2

= ‖xt − yt‖2 − 2ηt E
it
〈xt − yt,∇fit(xt) + ∆t −∇f(yt)〉+ η2

t E
it
‖git(xt)−∇f(yt)‖2

= ‖xt − yt‖2 − 2ηt 〈xt − yt,∇f(xt) + ∆t −∇f(yt)〉+ η2
t E
it
‖git(xt)−∇f(yt)‖2

(b)

≤ ‖xt − yt‖2 − 2ηt 〈xt − yt,∆t〉+ η2
t E
it
‖∇fit(xt) + ∆t −∇f(yt)‖2

(c)

≤ ‖xt − yt‖2 + 2δηt ‖xt − yt‖+ 3η2
t (2G2 + δ2) ,

where (a) is due to the non-expansiveness of the projection step, and (b) is due to convexity, and (c)

is due to the inequality ‖v1 + v2 + v3‖ ≤ 3 ‖v1‖2 + 3 ‖v2‖2 + 3 ‖v3‖2. Taking expectations on both
sides, we obtain

E ‖xt+1 − yt+1‖2 ≤ E ‖xt − yt‖2 + 2δηt E ‖xt − yt‖+ 3η2
t (2G2 + δ2)

≤ E ‖xt − yt‖2 + 2δηt

√
E ‖xt − yt‖2 + 3η2

t (2G2 + δ2) ,

Denoting dt :=

√
E ‖xt − yt‖2 and telescoping the above inequality, we obtain

d2
T ≤ 2δ

T−1∑
t=0

ηtdt + 3(2G2 + δ2)

T−1∑
t=0

η2
t . (G.1)

This is precisely equal to (F.4) from the proof of Lemma 6. Following the same recursion, we obtain
the following bound:

dT ≤

√√√√3(2G2 + δ2) ·
T−1∑
t=0

η2
t + 2δ

T−1∑
t=0

ηt .

Squaring both sides, we obtain

E ‖xT − yT ‖2 ≤ 6(2G2 + δ2) ·
T−1∑
t=0

η2
t + 8δ2

(
T−1∑
t=0

ηt

)2

. (G.2)

We next prove the bound on the convergence rate.

Convergence rate bound. We consider the projected gradient descent with constant stepsize η onto
the ball of radius D that contains the optimum x∗. Let zt denote the iterate before projection. As
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before, let ∆t := git(xt)−∇fit(xt). Then, we have

1

2
E
it
‖xt+1 − x∗‖2 −

1

2
‖xt − x∗‖2 ≤

1

2
E
it
‖zt+1 − x∗‖2 −

1

2
‖xt − x∗‖2

=
1

2
E
it
‖xt − ηtgit(xt)− x∗‖2 −

1

2
‖xt − x∗‖2

= −2ηt E
it
〈∇fit(xt) + ∆t,xt − x∗〉+

1

2
η2
t E
it
‖∇fit(xt) + ∆t‖2

= −2ηt 〈∇f(xt) + ∆t,xt − x∗〉+
1

2
η2
t E
it
‖∇fit(xt) + ∆t‖2

≤ −2ηt 〈∇f(xt) + ∆t,xt − x∗〉+ η2
t (G2 + δ2) .

Hence,

f(xt)− f(x∗) +
1

2ηt
E
it
‖xt+1 − x∗‖2 −

1

2ηt
‖xt − x∗‖2

≤ f(xt)− f(x∗)− 〈∇f(xt) + ∆t,xt − x∗〉+ ηt(G
2 + δ2)

≤ δD + ηt(G
2 + δ2).

Choosing ηt ≡ η and after telescoping the above inequalities from t = 0, . . . , T − 1, we obtain the
bound

E f

(
1

T

T−1∑
t=0

xt

)
− f(x∗) .

D2

ηT
+ ηG2 + δD.

Thus, for ε-accuracy, we need η . ε and ηT & 1/ε, since the theorem statement assumed that
δ ≤ ε

2D . Hence, choosing η = Θ( 1
εT ), the deviation bound we proved gives

E ‖xt − x′t‖
2
.

t

ε2T 2
+ (tδη)2 =

t

ε2T 2
+
δ2t2

ε2T 2
.

Hence,

E ‖x̄T − x̄′T ‖
2 ≤ 1

T

∑
t

E ‖xt − x′t‖
2

.
1

T

∑
t

[
t

ε2T 2
+
δ2t2

ε2T 2

]
≈ 1

ε2T
+
δ2

ε2
,

as desired.

45


	Introduction
	Summary of results
	Related work

	Problem Formulation
	Reproducibility with Stochastic Inexact Gradient Oracles
	Reproducibility with Non-Stochastic Inexact Gradient Oracles
	Reproducibility with Inexact Initialization Oracles
	Reproducibility in Optimization for Machine Learning
	Optimizing Training Loss (Finite Sum Minimization)
	Optimizing Population Loss (Stochastic Convex Optimization)

	Conclusions
	Appendix
	 Appendix
	Summary of results in Appendix
	General guidance for navigating Appendix

	Information-theoretic lower bounds
	 Information-theoretic lower bound for stochastic inexact gradient model
	Proof of lower bound (stochastic global oracle)

	Proof of lower bounds (smooth costs)
	Stochastic inexact gradient model
	Non-stochastic inexact gradient model
	Inexact initialization model
	Stochastic inexact gradient model (strongly convex costs)
	Non-stochastic inexact gradient model
	Inexact initialization model (strongly convex costs)

	Proof of lower bounds (nonsmooth costs)
	Warm-up: lower bound against GD
	Helper function
	Stochastic inexact gradient model
	Non-stochastic inexact gradient model
	Inexact initialization model
	Stochastic inexact gradient model (strongly-convex costs)
	Non-stochastic inexact gradient model (strongly-convex costs)
	Inexact initialization model (strongly-convex costs)

	Proof of upper bounds (smooth costs)
	Stochastic inexact gradient model
	Non-stochastic gradient errors
	Inexact initialization model
	Stochastic inexact gradient model (strongly convex costs)
	Non-stochastic inexact gradient model (strongly convex costs)
	Inexact initialization model (strongly convex costs)

	Proof of upper bounds (nonsmooth costs)
	Stochastic inexact gradient model
	Non-stochastic inexact gradient model
	Inexact initialization model
	Stochastic inexact gradient model (strongly convex costs)
	Non-stochastic inexact gradient model (strongly convex costs)
	Inexact initialization model (strongly convex costs)

	Proof of upper bound for finite-sum setting (Theorem 4)


