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1 Overview

The supplementary materials contain eight aspects:

• Links to the datasets used in this work.

• Details during SSL pretraining.

• Difference between our attention mechanism and state-of-the-art methods.

• Detailed experimental setups of our SCL-WC method.

• More visualization results for weakly-supervised localization.

• More detailed results with standard deviation on these prostate datasets.

• Weakly-supervised classification results on two subsets of TCGA.

• A broader impact statement.

2 Data link

This work utilizes six datasets, where TCGA and PAIP are used for self-supervised pretraining, and
the remaining datasets (Camelyon16, BRACS, PANDA, DiagSet, TCGA-CRC-DX, and TCGA-
NSCLC) are used for the weakly-supervised classification procedure. Links to these datasets are
provided in Table 1.

Table 1: Links for datasets

Datasets Link

Camelyon16 https://camelyon16.grand-challenge.org/
BRACS https://research.ibm.com/haifa/Workshops/BRIGHT/
PANDA https://panda.grand-challenge.org/
DiagSet https://ai-econsilio.diag.pl
TCGA https://portal.gdc.cancer.gov/projects
PAIP http://www.wisepaip.org/paip
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3 Details during SSL pretraining

3.1 Intuition behind the self-supervised feature extractor

We choose the Swin Transformer as the backbone model due to the following considerations: (1) the
Swin Transformer is considered as a generally applicable and the state-of-the-art backbone model
for many computer vision problems. It contains a hierarchical ViT structure with local self-attention
at each layer, which enables it to effectively extract multi-scale features both locally and from a
global context [1]. It has been widely applied and shown to outperform CNN models in a variety
of applications in both computer vision and medical imaging fields, such as image classification,
semantic segmentation, and object detection [1; 2]. (2) For histopathological image feature learning,
it is also important to capture both local (cell-level structures) and global (tissue-level contexts)
information [3]. Thus, the Swin Transformer model is a very suitable choice.

We choose MoCo v3 as the self-supervised framework for two main reasons. First, MoCo v3 has
been proven to outperform other self-supervised learning methods, such as the famous CNN-based
SSL frameworks (e.g., SimCLR) [4] and the Transformer-based SSL frameworks (e.g., DINO) [5; 6].
Second, it helps improve the stability of Transformer-type model pretraining and guarantees better
performance [4]. We also conducted some comparison experiments to verify the advantages of the
MoCo v3 method, which can be seen in Table 2

Table 2: The comparison experiments for different self-supervised frameworks. Note that these
methods keep the same Swin Transformer backbone model.

Methods Camelyon16 BRACS

ACC AUC ACC AUC

SimCLR [7] 0.8837 0.9344 0.7625 0.8488
DINO [8] 0.8992 0.9464 0.7875 0.8523
MoCo v3 (Ours) 0.9147 0.9566 0.8208 0.8650

3.2 Implementation details of MoCo v3 framework

MoCo v3 uses two parallel branches (online and target branches) to learn meaningful feature represen-
tations by solving a pretext task of instance discrimination. These two branches have similar encoder
models (fq and fk) and MLP projectors (hq and hk). The fk is momentum updated from fq. The
target branch has another MLP projector gk following hk. Given an image, its two augmented views
are used as inputs to the two branches, which are then encoded and projected by the corresponding
feature encoders and MLP projectors to obtain the final feature vectors zq and zk. A contrastive
loss is used to pull features obtained from the same image (e.g., zq and zk) together and push apart
features obtained from different images. In our work, we use the Swin Transformer as the backbone
model. The first MLP projector (hq and hk) and the second MLP projector (gk) have three and two
linear layers, respectively.

During pretraining, all WSIs in TCGA and PAIP are used as the training data, including frozen and
diagnostic (formalin-fixed paraffin-embedded) slides. TCGA contains over 30,000 WSIs covering
over 25 anatomical sites and 32 cancer subtypes2. PAIP contains 2457 WSIs covering six cancer
types [9]. These WSIs are cropped into patches with a size of 512× 512 pixels at 10× magnification,
generating approximately 15 million patches. Our data augmentation strategies consider the char-
acteristics of the histopathological images, including random cropping, Gaussian blur, and hue and
saturation shifting in the HSV color space [10].

4 Differences of attention pooling methods

Among state-of-the-art weakly supervised WSI classification methods, attention pooling is an ag-
gregation scheme widely used in the methods of ABMIL [11], DSMIL [12], and CLAM [13]. The
ABMIL method is the first proposer of the attention pooling aggregator, which learns a class-agnostic

2http://cancergenome.nih.gov/
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weight for each patch and then performs a weighted element-wise summation to derive the final
features. DSMIL is an extended version of the ABMIL method, which is improved by using different
patch weights. It first uses a linear classifier to find a key patch with the highest score and then
uses a distance measure between every patch and the key patch to obtain the weight for each patch.
CLAM extends the ABMIL method to general multi-class weakly supervised classification tasks
using a parallel attention structure for each class. It also adds an SVM-based instance classification
branch to improve the instance discrimination ability. Even though these methods achieve superior
performance, they never consider the global feature comparison across the training WSIs and the
separation between positive and negative patches that are largely unbalanced within positive WSIs.

In our method, although the class-specific deep attention (CDA) module is similar to the CLAM
method but with a different instance classification loss, our main contribution is the introduction of
the positive-negative-aware modeling (PNM) and weakly-supervised cross-slide contrastive learning
(WSCL) modules. The two novel modules fully consider the unique characteristics of WSIs to
address the two limitations mentioned above. PNM uses the class-agnostic weight scores to separate
the normal and abnormal (positive) regions within positive WSIs as much as possible. WSCL has no
attention mechanism, but it helps to explore the complementary information within and across WSIs
to obtain more discriminative feature representations, further improving the accuracy of the attention
scores.

5 Experimental setups

All WSIs are first preprocessed with the Otsu method [14] to remove blank non-tissue regions. In
our self-supervised pretraining, the batch size is set to 2048 and each patch is encoded as a vector of
length 768. Adam [15] optimizer with an initial learning rate of 1e-4 is adopted. The learning rate
is then scheduled by a cosine annealing scheme [16]. Our self-supervised pretraining is performed
using 48 Nvidia V100 GPUs. In our weakly-supervised classification procedure, each WSI is cropped
into nonoverlapping patches with a size of 224 × 224 pixels and a resolution of 1.0 microns per pixel
(at around 10×). The batch size is set to 1 bag. Adam optimizer is employed with an initial learning
rate of 1e-3 (with cosine annealing) and a weight decay of 1e-5. Following the previous contrastive
learning method [4], the parameter τ is set to 0.07 in the WSCL. Following [13], the k in Eq. (4)
and (7) is set to 8, and the two weight parameters (λ1 and λ2) in the LCDA are set to 0.8 and 0.2,
respectively. The β, and γ in the Ltotal are set to 0.2, and 0.01 according to an ablation experiment,
which is shown as follows.

Table 3: Effect of hyperparameters β and γ on classification accuracy of the Camelyon16 dataset
(AUC)

β γ

0.001 0.01 0.1

0.02 0.9372 0.9464 0.9418
0.2 0.9497 0.9566 0.9464

6 Weakly-supervised localization results

We also provide more examples to demonstrate the localization performance of our weakly-supervised
classification algorithm, which is shown in Figure 1. As shown in Figure 1, our SCL-WC method
achieves excellent localization results even for small regional lesions.

7 Weakly-supervised classification results on the prostate datasets

We further provide detailed weakly-supervised classification results including means and standard
deviations for two prostate datasets (PANDA and DiagSet), which are shown in Table 4.
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Figure 1: Visualization of weakly-supervised localization results. These samples are taken from the
Camelyon16 dataset. In each image pair, the image on the left represents the ground truth of lesion
regions marked with green lines and the image on the right is the results predicted by our model
where these lesion regions are highlighted in warm colors.

Table 4: Results on the prostate datasets

PANDA DiagSet-A DiagSet-B DiagSet-C

ACC AUC ACC AUC ACC AUC ACC AUC

Mean pooling 0.8407±0.0158 0.9386±0.0115 0.8313±0.0133 0.9237±0.0046 0.8197±0.0112 0.8914±0.0062 0.8478±0.0379 0.9159±0.0099
Max pooling 0.8847±0.0026 0.9508±0.0047 0.7330±0.0758 0.9315±0.0187 0.7377±0.0809 0.9371±0.0204 0.8695±0.0307 0.9489±0.0306
ABMIL [11] 0.8804±0.0127 0.9514±0.0048 0.7845±0.0346 0.9145±0.0192 0.8032±0.0426 0.9105±0.0251 0.8695±0.0106 0.9609±0.0208
TransMIL [17] 0.8715±0.0052 0.9408±0.0035 0.8290±0.0360 0.9290±0.0245 0.8246±0.0428 0.9334±0.0349 0.9130±0.0253 0.9669±0.0147
DSMIL [12] 0.8751±0.0122 0.9444±0.0046 0.7072±0.0691 0.9242±0.0175 0.8146±0.0824 0.9431±0.0161 0.8876±0.0162 0.9489±0.0182
CLAM [13] 0.8874±0.0060 0.9532±0.0050 0.7822±0.0122 0.9033±0.0129 0.8035±0.0133 0.9051±0.0146 0.8913±0.0173 0.9579±0.0166
Ours 0.9194±0.0034 0.9753±0.0038 0.8960±0.0109 0.9560±0.0159 0.9191±0.0236 0.9730±0.0123 0.9565±0.0134 0.9939±0.0034

8 Weakly supervised classification results on two subsets of TCGA

To further validate the generalization of our method, we conduct experiments on two subsets of TCGA
(i.e., TCGA-CRC-DX for microsatellite instability prediction of colorectal cancer and TCGA-NSCLC
for lung tumor subtyping).

TCGA-NSCLC is a subset of the TCGA dataset, which has been used for lung cancer subtyping:
lung squamous cell carcinoma (TCGA-LUSC) and lung adenocarcinoma (TCGA-LUAD). It contains
a total of 1043 diagnostic WSIs, including 531 WSIs with LUAD and 512 WSIs with LUSC. These
WSIs are randomly divided into training, validation, and test sets at the patient level in the ratio of
65:10:25 [17].

The detailed results are shown in Table 5. Results of the compared methods on TCGA-CRC-DX
are obtained using their officially released implementations, while the results of the methods on
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TCGA-NSCLC are directly copied from their respective publications. It is seen that our method offers
state-of-the-art performance on these two new tasks as well. The results indicate that our method is
generally applicable and has the potential to be extended to other weakly-supervised applications,
such as survival or treatment outcome predictions in computational pathology.

Table 5: Results of weakly-supervised classification on TCGA-CRC-DX dataset for microsatellite
instability prediction and TCGA-NSCLC dataset for lung tumor subtyping (AUC).

Methods TCGA-CRC-DX TCGA-NSCLC

ABMIL [11] 0.7508 0.9200
CLAM [13] 0.7568 0.9380
DSMIL [12] 0.7630 0.9580
TransMIL [17] 0.7668 0.9600
Ours 0.8954 0.9710

9 Broader impact

Our histopathology-specific feature extractor is pretrained in a self-supervised manner on 15 million
unlabeled patches, which guarantees data diversity and can be employed as an offline encoder for
various histopathological image applications, promoting the development of computational pathology.
Also, our proposed SCL-WC algorithm shows excellent flexibility and scalability, with great potential
to be extended to weakly-supervised localization and semi-supervised classification tasks. However,
our method should never be used for diagnosis alone, but only to assist pathologists in making faster
and better decisions by directly pointing out possible lesion regions. Future work will be dedicated to
conducting more clinical verification.
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