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A Causal Concept Effects and Metrics for Explanation Methods

Data do not materialize out of thin air. Rather, data are generated from real-world processes with
complex causal structures we do not observe directly. Causal inference is the task of estimating
theoretical causal effect quantities.

When estimating causal effects, researchers commonly measure the average treatment effect, which
is the difference in mean outcomes between the treatment and control groups [42]. Formally, we
define the average treatment effect of binary treatment T on an outcome Y under a data generation
process G that represents the unknown details of the real-world.

Definition 6 (Average Treatment Effect; ATE [42,35]).

ATET (Y,G) = EG
⇥
Y
�� do(T = 1)

⇤
� EG

⇥
Y
�� do(T = 0)

⇤
. (11)

The ATE is a theoretical quantity we cannot compute in practice, since we do not have access to G
nor can we observe both interventions for the same subject.

However, we are concerned with estimating the causal effect of variables representing non-binary
concepts in real-world systems, on data in an appropriate format for processing by a modern AI
model that predicts vector encoding probability distributions over outputs.

Let N be a neural network outputting a probability vector, where its k-th entry represents the
probability to predict the k-th class, and let � be a feature representation (e.g., BERT embedding). In
the context of model explanations, we will define the tools needed to answer three questions:

1. Given a real-world circumstance u that led to input data xC=c
u , what is expected effect of a

concept C changing from value c to value c0 on the model output of N� provided input data
xC=c
u ?

2. What is the expected effect of a concept C changing from value c to value c0 on the output
of the model N� provided input data X across real-world circumstances U?

3. What is the magnitude of the expected effect of a changing the concept C on the output of
the model N� provided input data X across real-world settings U?

For example, in the context of CEBaB, we might ask

1. Given a real-world dining experience u with good food quality (Cfood = +) that led to
a restaurant review xCfood=+

u , what is the effect of changing the food quality Cfood from
Cfood = + to Cfood = � on the output of an overall-sentiment text classifier N� provided a
review of the dining experience?

2. What is the expected effect of changing the food quality Cfood from positive + to negative �
on the output of the model N� across real-world dining experiences that lead to restaurant
reviews?

3. What is the magnitude of the expected effect of a changing food quality Cfood on the output
of the model N� across real-world dining experiences that lead to restaurant reviews?

Each of the above questions requires the estimation of a different theoretical quantity. In respect to
the order of the questions, these quantities are the individual causal concept effect, the causal concept
effect, and the absolute causal concept effect.

We believe the most practical question in explainable AI is: why does this model have this output
behavior for an actual input. For this reason, our focus in the main text is individual causal concept
effects. We define our central metric that captures the performance of an explainer on CEBaB as the
average error on individual causal effect predictions (Definition 3).

We do not evaluate the ability of explainers to evaluate the causal concept effect or the absolute causal
concept effect.
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A.1 Theoretical Quantities

Definition 7 (Causal Concept Effects; [17]). For an exogenous setting u that led to concept C taking
on value c and the creation of input data xC=c

u , the individual causal concept effect of a concept
C changing from value c to c0 in a data generation process G on a neural network N with feature
representation � is

ICaCEN�(G, xC=c
u , c0) = Ex⇠G


N
�
�(x)

� �� do
✓
C = c0

U = u

◆�
�N

�
�(xC=c

u )
�

(12)

The causal concept effect is the effect in general, meaning there is no input data generated from a
fixed exogenous real-world setting:

CaCEN�(G, C, c, c0) = Ex⇠G
⇥
N
�
�(x)

� �� do(C = c0)
⇤
� Ex⇠G

⇥
N
�
�(x)

� �� do(C = c)
⇤

(13)

The absolute causal concept effect estimate of the magnitude of the effect a concept has on a classifier
output, regardless the concept values. We aggregate over all possible intervention values in the
following way

ACaCEN�(G, C) =
1

|{{c, c0} ✓ C}|
X

{c,c0}✓C

��CaCEN�(G, C, c, c0)
�� , (14)

where C is the set of all possible values for concept in addition to denoting the concept itself.5

A.2 Empirical Estimates

Similar to the ATE, causal concept effects are theoretical quantities we can only estimate in reality.
To perform such estimates, we need a dataset consisting of pairs (xc

u, x
c0
u ) 2 D that are drawn from

a data generation process G. A major contribution of this work is crowdsourcing such a dataset,
CEBaB. These pairs allow us to compute empirical estimations of (individual) causal concept effects.
Definition 8 (Empirical Causal Concept Effects). For an exogenous setting u, the empirical individual
causal concept effect of a concept C changed from value c to c0, for D sampled from G, on a neural
network N trained on a feature representation � is

\ICaCEN�(x
C=c0

u , xC=c
u ) = N

�
�(xC=c0

u )
�
�N

�
�(xC=c

u )
�

(15)

Given a full dataset D of such pairs, we can estimate the causal concept effect

\CaCEN�(D, C, c, c0) =
1

|Dc!c0
C |

X

(xc
u,x

c0
u )2D

\ICaCEN�(x
C=c
u , xC=c0

u ) (16)

And also the absolute causal concept effect

\ACaCEN�(D) =
1

|{{c, c0} ✓ C}|
X

(c,c0)2C

|\CaCEN�(D, C, c, c0)| (17)

Notice that the only difference between causal concept effects (Definition 7) and empirical causal
concept effects (Definition 8) is that we change the expectation taken over G to be the average over a
dataset D ⇠ G.

A.3 Explainer Errors

Given a dataset D and an explainer EN�(x
c
u, c

0) that predicts individual causal concept effects
ICACEN�(x

c
u, c

0), we define metrics capturing the ability of E to estimate causal effects by simple
computing the averaged distance between our explainer and the empirical causal effect

5We take the absolute value since CaCEN�(G, C, c, c
0) = �CaCEN�(G, C, c

0, c), and these cancel each
other in the summation.
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Definition 9 (Explainer Distances). The average distance between the explainer and the empirical
individual causal concept effects.

ICaCE-ErrorDN�
(E , C, c, c0) =

1��Dc!c0
C

��
X

(xC=c
u ,xC=c0

u )2Dc!c0
C

Dist
�\ICaCEN�(x

C=c
u , xC=c0

u ), EN�(x
C=c
u , xC=c0

u )
�

(18)

The distance between the average of explainer outputs and the empirical causal concept effect

CaCE-ErrorDN�
(E , C, c, c0) = k\CaCEN�(D, C, c, c0),

1��Dc!c0
C

��
X

xc
u,x

c0
u 2Dc!c0

C

EN�(x
c
u, c

0)
�
k (19)

The distance between the average magnitude of explainer outputs and the empirical absolute causal
effect

ACaCE-ErrorDN�
(E , C) =

k \ACaCEN�(D, C),
1

|{{c, c0} ✓ C}|
X

(c,c0)2C

1��Dc!c0
C

��
X

xc
u,x

c0
u 2Dc!c0

C

|EN�(x
c
u, c

0)
�
|k (20)

where k · k is some distance metric and DC is the subset of data where C is the concept changed and
Dc!c0

C is the subset of data where C is the concept changed from value c to value c0.

In the main text, we use the ICaCE-Error as our primary evaluation metric.

B CEBaB

Our supplementary materials contain a full Datasheet for CEBaB as a separate markdown document.

B.1 Restaurant-level metadata from OpenTable

Table 5 gives an overview of the metadata associated with the original review texts in CEBaB.

Table 5: CEBaB metadata from OpenTable, tabulated at the level of individual original reviews. A
total of 1,084 restaurants are represented in the data.

italian 1076
american 654
french 254
seafood 202
mediterranean 113

(a) Cuisine.

northeast 863
west 634
south 470
midwest 332

(b) U.S. regions.

1 star 244
2 star 1207
3 star 123
4 star 330
5 star 395

(c) Star ratings.

B.2 Crowdworkers

A total of 254 workers participated in our experiments. All of them come from a pool of workers
whom we prequalified to participate in our tasks based on the work they did for us on previous
crowdsourcing projects. Thus, we expected that they would do high quality work, and they more than
lived up to our expectations, as indicated by the high degree of success they achieved when editing
and the high degree of consensus they reached about how to label examples.

There are a total of 642 instances of 15,0006 for which, despite our best efforts, a worker validated an
example that they themselves created during the editing phase. Removing the contributions of these
workers affects the majority in only 24 cases, with no clear pattern to the changes, so we kept all the
validation labels in order to ensure that every example has give responses.
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Figure 3: Edit phase annotation interface where the task was to convey ‘Positive’ or ‘Negative’ for
the target aspect.

B.3 Editing Phase

A total of 183 workers participated in this phase. Workers were paid US$0.25 per example. Figure 3
shows the annotation interface that workers used when changing the target aspect’s sentiment to
either ‘Positive’ or ‘Negative’, and Figure 4 shows the interface where the task was to hide the target
aspect’s sentiment.

Figure 5 summarizes the distribution of edit distances between original and edited texts. These
distances are calculated at the character-level and normalized by the length of the original or review,
whichever is longer.

B.4 Validation Phase

A total of 174 workers participated in this phase. Workers were paid US$0.35 per batch of 10
examples. Figure 6 shows the annotation interface that workers used.

B.5 Review-level Rating Phase

A total of 155 workers participated in this phase. Workers were paid US$0.35 per batch of 10
examples. Figure 7 shows the annotation interface that workers used.

B.6 Randomly Selected Examples

Table 6 provides a random sample of edit pairs from CEBaB’s dev set.

B.7 Five-way Empirical ATE for CEBaB

Table 7 provides the binary dATE values for CEBaB. These can be compared with the corresponding
five-way values in Table 3d in the main text.
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Figure 4: Edit phase annotation interface where the task was to hide the sentiment of the target aspect.

Figure 5: Normalized edit distances between original texts and those created during the editing phase
for CEBaB.

B.8 Edit variability

In the editing phase we ask human annotators to produce edits of an original review with regard
to some concept. This is inherently a noisy process, which may impact the quality of our final
benchmark. The CEBaB dataset features a modest set of paired edits (176 pairs in total). Each of
these pairs contains two edits, starting from the same original sentence and edit goal, which results in
two different edited sentences. Like all sentences in CEBaB, these edits were labeled for their review
score by human annotators.

Figure 8a shows the distribution of the difference in final review majorities produces by these paired
edits. Most paired edits differ at most by one star in their final majority rating, indicating that in
general there is some noise associated with the editing procedure, but this does not have a major
impact on the final review score. Figure 8b shows the same distribution when we consider the average
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Figure 6: Validation phase annotation interface.

Figure 7: Review-level annotation interface.

Table 7: Empirical dATE for the binary sentiment labels in CEBaB. Reversing concept order results in
the negation of the value given.

Neg to Pos Neg to Unk Pos to Unk

food 0.77 0.49 �0.41
service 0.25 0.20 �0.16
ambiance 0.14 0.18 �0.14
noise 0.08 0.04 �0.14

22



(a) (b)

Figure 8: Pairwise absolute difference in majority (a) and average (b) review score for all double
edits. Figure (a) only considers the 132 pairs where both edits have an actual review majority. Figure
(b) considers all 176 pairs. Averages of the distributions are shown with a dotted vertical line.

(a) (b) (c)

Figure 9: Pairwise review majority distribution for all double edits in 5-way (a), ternary (b), and
binary (c) classification settings. Figures (a) and (b) consider only the 132 pairs where both edits
have an actual review majority. Figure (c) considers the 76 pairs that have both a review majority and
non-neutral labels.

review score an edit received, as opposed to the majority score. If we consider these average scores,
most of the paired edits differ only slightly in their resulting review score.

Figures 9a-c shows the distribution of this pairwise review score in more detail. In an idealized setting
without variability, the distribution would be centered around the diagonal of the heatmap. When
going from 5-way classification to ternary and binary classification, the variability introduced by the
edits becomes less relevant with regard to the final review majority label.

C CEBaB Modeling Experiments

This section reports on standard classifier-based experiments with CEBaB, aimed at providing a sense
for the dataset when it is used as a standard supervised sentiment dataset. We report experiments on
the aspect-level and review-level ratings. In addition, we present evidence that author identity does
not have predictive value.

C.1 Experiments Set-up

We rely on the Hugging Face transformers library.6 [56] We train our models with 4 Nvidia 2080
Ti RTX 11GB GPUs on a single node machine. We use a maximum sequence length of 128 with a
fix batch size of 32 with a initial learning rate of 2e�5. We run each experiment 5 times with distinct
random seeds. We train our models with a minimum epoch number of 5 with our largest training set.
We linearly scale our training epoch number by the size of the training set. We skip hyperparameter

6https://github.com/huggingface/transformers
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Table 8: Model performance results for sequence classification as well as aspect-based sentiment
analysis (ABSA) under 3 training conditions. Mean Macro-F1 scores across 5 runs with distinct
random seeds are reported.

Exclusive Inclusive
Model Binary Ternary 5-way ABSA Binary Ternary 5-way ABSA

dev split

BERT 0.97 0.82 0.68 0.88 0.98 0.85 0.72 0.90
GPT-2 0.97 0.80 0.67 0.88 0.98 0.84 0.70 0.89
LSTM 0.94 0.75 0.59 0.83 0.96 0.82 0.68 0.87
RoBERTa 0.99 0.83 0.71 0.89 0.99 0.86 0.76 0.90

test split

BERT 0.97 0.82 0.70 0.87 0.98 0.84 0.73 0.89
GPT-2 0.97 0.80 0.65 0.87 0.97 0.83 0.68 0.89
LSTM 0.94 0.75 0.60 0.82 0.96 0.81 0.68 0.87
RoBERTa 0.98 0.83 0.70 0.88 0.99 0.86 0.75 0.90

tuning for optimized task performance as our goal for this paper is to evaluate explanation methods.
We release all of our models on Huggingface Dataset Hub.

C.2 Models

We include 4 different types of models, including BERT (bert-base-uncased) [7], RoBERTa
(roberta-base) [29], GPT-2 (gpt2) [38], as well as LSTM with dot-attention [31]. Our LSTM
model uses bert-base-uncased tokenizer for simplicity. We initialize the embeddings of tokens
for our LSTM using fastText [24]. We reconfigure the classification head all other models the same
classification head as in RoBERTa as a non-linear multilayer perceptron (MLP).7

C.3 Multi-class Sentiment Analysis Benchmark

We report model performance results under 3 training conditions: Binary Classification, where we
label reviews with 1 star and 2 star ratings as negative, reviews with 4 star and 5 star as positive, and
3-star reviews are dropped; Ternary Classification, where we add another neutral class for reviews
with 3 star ratings; and 5-way Classification, where each star rating by itself is considered as a class.
We leave out reviews in the train set in the ‘no majority’ category. (Dev and Test do not contain any
such examples.) Table 8 shows the performance results for our models under different conditions.
Our results suggest that RoBERTa has the edge over others across all evaluated tasks.

C.4 Aspect-based Sentiment Analysis Benchmark

Our dataset can be naturally used as an aspect-based sentiment analysis (ABSA) benchmark. For
each sentence, it may contain up to 4 aspects with respect to the reviewing restaurant. As ABSA
benchmarks are usually small and sparse with missing labels, our dataset provides validated aspect-
based labels, and is one of the largest human validated ABSA benchmark.

To evaluate model performance, we adapt standard finetuning approach for ABSA benchmarks
as proposed by [49]. Instead of single sentence classification, we add another auxiliary sentence
representing the aspect. For instance, to predict the label for the ‘food’ aspect for “the food here is
good but not the service”, we append a single aspect token with a separator, and construct our input
sentence as “the food here is good but not the service [SEP] food”. Table 8 shows the performance
results for our models under different conditions.

7We implemented T5 (t5-base; [39]) as a text-to-text model with the goal of treating predicted tokens
as class labels. However, this raised unanticipated implementation questions concerning how to post-process
multi-token class labels (e.g., “very positive”) for use in our explainer methods. As a result, we have elected to
leave the T5 results out of the current draft, but we intend to include them in the next version once they have
been more thoroughly vetted.
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Table 9: Model performance on top-k author identity prediction with number of train and dev
examples.

Model Accuracy Macro-F1 # train # dev

Random (k=5) 0.16 0.15 1105 227
Random (k=10) 0.10 0.10 2072 519
Random (k=15) 0.07 0.07 2963 741

RoBERTa (k=5) 0.27 0.16 1105 227
RoBERTa (k=10) 0.14 0.05 2072 519
RoBERTa (k=15) 0.11 0.04 2963 741

C.5 Author Identity Prediction

One potential artifact of our benchmark is edited sentence may expose author identity, which may
result in artifact in interpreting model performance. To quantify this potential artifact, we train models
to predict author identities based on the sentences. We create author identity prediction dataset by
aggregating our dataset by anonymized worker ids. We then split the dataset into train/dev with
a 4-to-1 ratio. For model training, we finetune RoBERTa for 5 epochs with a batch size of 32, a
learning rate of 2e�5, and a maximum sequence length of 128. Note that we only consider top-k
annotators ranked by their contributions (i.e., number of examples in our dataset). Table 9 shows
the performance results of our finetuned models with a random classifier. Our results suggest that
potential artifacts may exist but only for a limited extend.

D Additional Results

In this section, we report additional results for bert-base-uncased, roberta-base, gpt-2, and
an LSTM, fine-tuned on binary, ternary and 5-way versions of the sentiment task. These models are
described in Appendix C. Table 10 summarizes all the results.

We refer to the results section in the main text for an explanation of the different metrics considered.
Which metric is best depends on the final use-case and whether it is more important to estimate the
direction or the magnitude of the effect.

ICaCE-cosine Figure 10 shows the results for the ICaCE-Error with the cosine distance metric.
The explanation methods that take the direction of the intervention into account (Approx, CONEXP,
S-Learner) are the clear winners across all different models considered. S-Learner marginally wins
across the most settings, but the conceptually simple Approx baseline is a close second. The strong
performance of this simple baseline across the board suggests that most methods perform subpar, and
that there is potential value in developing better concept-based model explanation methods.

Both TCAV and ConceptSHAP struggle to achieve better-than-random performance across all settings.
Further analysis is needed to exactly understand why these methods are struggling.

Some additional trends emerge that require more analysis to fully understand. For example, Approx
generally increases in performance when evaluated on more fine-grained classification settings, while
CONEXP is typically worse here.

ICaCE-normdiff Figure 11 shows the results for the ICaCE-Error with the normdiff distance
metric. In general, it is more difficult for explanation methods to estimate the magnitude of the
intervention effect when the task increases in complexity. For a given explanation method and model,
best results are often achieved for the binary classification problem.

The conceptually simple Approx baseline wins across the board. S-Learner is only able to match its
performance a few times. While previous results already showed that most of the methods fall behind
the Approx baseline, the results are particularly striking for this metric.

While S-learner and CONEXP were somewhat comparable on the cosine metric, their differences
become clear on the normdiff metric: S-Learner is better at estimating the magnitude of the
intervention.
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An interesting trend can be observed for TCAV, which has good performance on the binary task but
becomes worse than random when evaluated on the ternary and 5-way settings. ConceptSHAP is the
only method that consistently breaks the upward trend when going from ternary to the 5-way setting.
More analysis is needed to understand both these phenomena.

ICaCE-L2 Figure 12 shows the results for the ICaCE-Error with the L2 distance metric. Because
this metric takes both the scale and direction of the effect into account, it is slightly harder to interpret.
In general, the performance drops when evaluated on more fine-grained classification settings.

Again, the Approx baseline is a strong contestant, but on this metric the results are more varied.
S-Learner is consistently the best at producing the closest explanation in Euclidian distance to the
real effect for the 5-way setting.

Figure 10: ICaCE-Error for all experiments using the cosine distance metric. Lower is better.
Results averaged over 5 distinct seeds. Error bars (in gray) display the standard deviation. Stars
denote the best results for a given classification setting.

E CausaLM

E.1 Our adaptation

The CausaLM algorithm was originally designed to estimate the average treatment effect of a high-
level concept on pre-trained language models. Its output estimator is the textual representation
averaged treatment effect (TReATE), which is computed as:

TReATEN�(C;D) =
1

|D|
X

x2D
N 0��CF

C (x)
�
�N

�
�(x)

�
, (21)
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Table 10: ICaCE scores on the test set for the binary, ternary and 5-way classification settings. Lower
is better. Results averaged over 5 distinct seeds; standard deviations in parentheses.

(a) ICaCE scores for 5-way sentiment classification setting.

Model Metric Random Approx CONEXP S-Learner TCAV ConceptSHAP CausaLM INLP

BERT
L2ICaCE 0.94 (.01) 0.81 (.01) 0.82 (.02) 0.74 (.02) 0.82 (.01) 1.25 (.01) 0.86 (.01) 0.80 (.02)
COSICaCE 1.00 (.00) 0.61 (.01) 0.72 (.01) 0.63 (.01) 1.00 (.00) 1.11 (.01) 0.78 (.00) 0.59 (.03)

NormDiffICaCE 0.67 (.02) 0.44 (.01) 0.62 (.02) 0.54 (.02) 0.78 (.02) 0.56 (.02) 0.68 (.02) 0.73 (.02)

RoBERTa
L2ICaCE 0.97 (.01) 0.83 (.01) 0.86 (.01) 0.78 (.01) 0.85 (.01) 1.24 (.01) 0.90 (.01) 0.84 (.01)
COSICaCE 1.00 (.01) 0.60 (.01) 0.74 (.00) 0.64 (.01) 1.01 (.00) 1.06 (.01) 0.77 (.00) 0.58 (.01)

NormDiffICaCE 0.72 (.01) 0.45 (.00) 0.67 (.01) 0.59 (.01) 0.83 (.01) 0.61 (.00) 0.74 (.00) 0.81 (.01)

GPT-2
L2ICaCE 0.81 (.02) 0.72 (.02) 0.68 (.02) 0.60 (.02) 0.68 (.02) 1.03 (.02) 0.76 (.02) 0.72 (.01)
COSICaCE 1.00 (.00) 0.59 (.01) 0.67 (.00) 0.59 (.01) 1.00 (.00) 1.00 (.00) 0.82 (.01) 1.00 (.00)

NormDiffICaCE 0.52 (.02) 0.41 (.01) 0.47 (.02) 0.40 (.01) 0.65 (.02) 0.46 (.01) 0.52 (.02) 0.58 (.03)

LSTM
L2ICaCE 0.89 (.01) 0.86 (.01) 0.79 (.01) 0.73 (.01) 0.78 (.02) 1.27 (.04) 0.76 (.01) 0.79 (.01)
COSICaCE 1.00 (.01) 0.64 (.01) 0.71 (.00) 0.64 (.01) 1.02 (.01) 1.00 (.00) 1.00 (.00) 0.74 (.02)

NormDiffICaCE 0.62 (.01) 0.50 (.01) 0.59 (.01) 0.53 (.01) 0.70 (.01) 0.54 (.00) 0.76 (.01) 0.60 (.01)

(b) ICaCE scores for ternary sentiment classification setting.

Model Metric Random Approx CONEXP S-Learner TCAV ConceptSHAP CausaLM INLP

BERT
L2ICaCE 0.79 (.01) 0.54 (.01) 0.65 (.00) 0.56 (.00) 0.56 (.00) 0.94 (.01) 0.72 (.00) 0.58 (.01)
COSICaCE 0.99 (.02) 0.61 (.02) 0.64 (.04) 0.54 (.04) 1.00 (.03) 1.21 (.01) 0.76 (.01) 0.69 (.01)

NormDiffICaCE 0.60 (.00) 0.42 (.01) 0.54 (.00) 0.48 (.00) 0.55 (.00) 0.62 (.01) 0.62 (.00) 0.55 (.01)

RoBERTa
L2ICaCE 0.79 (.01) 0.56 (.00) 0.65 (.01) 0.57 (.01) 0.55 (.01) 0.88 (.02) 0.74 (.01) 0.55 (.01)
COSICaCE 1.00 (.01) 0.62 (.01) 0.73 (.02) 0.62 (.02) 0.99 (.01) 1.12 (.02) 0.76 (.01) 0.72 (.01)

NormDiffICaCE 0.61 (.01) 0.43 (.00) 0.54 (.00) 0.48 (.00) 0.54 (.00) 0.61 (.01) 0.66 (.01) 0.54 (.01)

GPT-2
L2ICaCE 0.75 (.01) 0.57 (.01) 0.60 (.01) 0.52 (.01) 0.52 (.01) 0.69 (.01) 0.68 (.01) 0.61 (.03)
COSICaCE 1.00 (.01) 0.63 (.01) 0.59 (.01) 0.50 (.01) 1.00 (.00) 1.01 (.00) 0.79 (.01) 1.00 (.00)

NormDiffICaCE 0.54 (.01) 0.42 (.01) 0.47 (.01) 0.42 (.01) 0.51 (.01) 0.52 (.01) 0.55 (.01) 0.51 (.01)

LSTM
L2ICaCE 0.76 (.00) 0.58 (.01) 0.63 (.01) 0.55 (.01) 0.55 (.01) 1.03 (.04) 0.53 (.01) 0.68 (.01)
COSICaCE 1.00 (.01) 0.67 (.01) 0.63 (.00) 0.60 (.01) 1.01 (.01) 1.01 (.01) 1.00 (.00) 0.78 (.02)

NormDiffICaCE 0.56 (.01) 0.45 (.01) 0.51 (.00) 0.46 (.01) 0.51 (.01) 0.65 (.01) 0.52 (.01) 0.56 (.01)

(c) ICaCE scores for binary sentiment classification setting.

Model Metric Random Approx CONEXP S-Learner TCAV ConceptSHAP CausaLM INLP

BERT
L2ICaCE 0.60 (.01) 0.19 (.01) 0.51 (.00) 0.31 (.00) 0.31 (.01) 0.76 (.06) 0.57 (.01) 0.51 (.05)
COSICaCE 0.99 (.01) 0.75 (.04) 0.64 (.05) 0.66 (.04) 1.00 (.01) 1.20 (.02) 0.80 (.01) 0.79 (.00)

NormDiffICaCE 0.52 (.01) 0.19 (.01) 0.50 (.00) 0.30 (.00) 0.30 (.01) 0.55 (.05) 0.56 (.01) 0.50 (.04)

RoBERTa
L2ICaCE 0.59 (.01) 0.18 (.01) 0.51 (.00) 0.31 (.00) 0.29 (.01) 0.68 (.06) 0.61 (.00) 0.31 (.01)
COSICaCE 1.00 (.01) 0.78 (.02) 0.70 (.03) 0.71 (.03) 1.00 (.01) 1.12 (.02) 0.82 (.00) 0.80 (.00)

NormDiffICaCE 0.52 (.00) 0.18 (.00) 0.51 (.00) 0.31 (.00) 0.29 (.01) 0.54 (.04) 0.60 (.00) 0.31 (.01)

GPT-2
L2ICaCE 0.59 (.00) 0.19 (.01) 0.50 (.00) 0.31 (.00) 0.29 (.00) 0.39 (.01) 0.55 (.01) 0.45 (.01)
COSICaCE 1.01 (.01) 0.69 (.01) 0.58 (.01) 0.61 (.01) 1.00 (.00) 1.02 (.00) 0.79 (.01) 1.00 (.00)

NormDiffICaCE 0.51 (.01) 0.19 (.01) 0.50 (.00) 0.31 (.00) 0.29 (.00) 0.35 (.01) 0.53 (.01) 0.41 (.01)

LSTM
L2ICaCE 0.58 (.01) 0.20 (.01) 0.51 (.00) 0.32 (.01) 0.31 (.00) 0.78 (.05) 0.28 (.00) 0.47 (.01)
COSICaCE 1.00 (.01) 0.77 (.00) 0.70 (.01) 0.71 (.01) 1.01 (.01) 1.00 (.00) 1.00 (.00) 0.81 (.00)

NormDiffICaCE 0.50 (.01) 0.20 (.01) 0.50 (.00) 0.32 (.01) 0.29 (.00) 0.64 (.04) 0.28 (.00) 0.46 (.01)
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Figure 11: ICaCE-Error for all experiments using the normdiff distance metric. Lower is better.
Results averaged over 5 distinct seeds. Error bars (in gray) display the standard deviation. Stars
denote the best results for a given classification setting.

where �CF
C denotes the learned counterfactual representation that information about concept C is not

present, N 0 is a classifier trained on this counterfactual representation, and D is a dataset.

However, for comparison on the CEBaB data, we require the estimation of individual causal concept
effects (ICaCE). To allow a fair comparison, we swap the TReATE output estimator with TReITE
(Equation 10). The only difference between these estimators is that in TReITE we remove the average
across D, and output the estimated effect of individual examples.

E.2 Implementation details

For all counterfactual models, we optimize using the Adam optimizer with lr=2e-5, epochs=3,
batch_size=48, and the relative weight of the adversarial task, �, is set to 0.1.

For both the factual models and fine-tuning phase, we optimize using the Adam optimizer with
lr=1e-3, epochs=50, and batch_size=256. The differences in hyperparameter values is due to the
different architectures we employ; for the counterfactual models we train the entire language model
(�), and for the factual models and the fine-tuning phase we freeze the embedding weights (�) and
train only the classification head (N ).

All CausaLM models were trained using 2 Nvidia GTX 1080 Ti 12GB GPUs.
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Figure 12: ICaCE-Error for all experiments using the L2 distance metric. Lower is better. Results
averaged over 5 distinct seeds. Error bars (in gray) display the standard deviation. Stars denote the
best results for a given classification setting.

F INLP

F.1 Our adaptation

The INLP algorithm was originally designed to debias word embeddings by iteratively projecting
them onto the null-space of some protected attribute (concept). However, INLP may serve as an
estimation method similar to CausaLM, with the two following crucial differences. First, its lack
of ability to control for potential confounders. Second, it operates on the representation rather than
on the actual model weights. Since CausaLM and INLP share common characteristics, their output
estimators are computed in the same way. See §E for extended details.

F.2 Implementation details

In order to guard for a “protected attribute” (concept), INLP determines whether this concept is
present in an embedding or not by learning a linear separator in the embedding space. Following the
practice suggested in the original paper, we choose our linear separator to be an SVM learned using
SGD with ↵ = 0.01, " = 0.001, and max_iter=1000. Logistic regression showed similar behavior.
We project the representation to the null-space with respect to the concept 10 times. In fact, and
similarly to the original paper, we converge to random accuracy of predicting the concept from the
counterfactual representation after 4-5 iterations.

For all concepts, the classification head on top of the language model that trained to predict the overall
sentiment labels trains for 5 epochs using the Adam optimizer with lr=2e-5.
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G TCAV

G.1 Our adaptation

The Testing with Concept Activation Vectors (TCAV) explanation method was originally designed to
count the percentage of test inputs from dataset D that are positively influenced by some high-level
concept. It outputs a count over the number of examples that are change towards the direction of
concept C, and computed as:

TCAVN�(k,C;D) =
|{x 2 D : rNk(�(x)) · vC > 0}|

|D| , (22)

where k is some class index and vC is a linear direction in the activation space, given by the
coefficients of a linear separator trained to distinguish between examples that include or exclude the
concept C.

While TCAV’s output is a count over examples, we use the raw sensitivity (directional derivative).
This approach is supported by the authors of the original paper: “one could also use a different metric
that considers the magnitude of the conceptual sensitivities” [26]. Also, since TCAV operates on
the gradients of a model’s logits but the ICaCEs are the difference of two probability vectors, we
normalize its outputs by taking Tanh.

G.2 Implementation details

To learn the Concept Activation Vector (CAV, i.e., a linear direction in the activation space of �), we
train a linear separator to distinguish between examples that include the concept (labeled positive or
negative) and examples that do not include it (labeled unknown). When learning CAVs, we drop all
CEBaB train examples that are not labeled for aspect (concept) or do not have a majority with respect
to the aspect.

Identically to the original paper, our CAV linear separator is an SVM learned using SGD with
↵ = 0.01, " = 0.001 and max_iter = 1000.

H ConceptSHAP

H.1 Our adaptation

The original ConceptSHAP algorithm takes a complete set of concepts C 2 {C1, ..., Cm} (such
that its completeness score in Equation 25 is higher than some threshold) and outputs the relative
contribution to the test accuracy of each Ci. It outputs an estimator given by the following formula

Shapley{C1,...,Cm}(C) =
X

S✓{C1,...,Cm}\C

(m� |S|� 1)! |S|!
m!

[⌘(S [ {C})� ⌘(S)], (23)

where ⌘ is a scoring function operating on sets of concepts that output accuracy ratios.

Similarly to the other methods, if ⌘ outputs accuracy ratios, then the output of ConceptSHAP is not a
suitable estimator for ICaCE. Our straightforward adaptation for ConceptSHAP is to make ⌘ output
class probabilities for classes instead of accuracy ratios.

Our adapted version outputs a vector for each C 2 {C1, . . . , Cm} and x according to the following
equation:

ConceptSHAPN�
(C;x) =

X

S✓{C1,...,Cm}\C

(m� |S|� 1)! |S|!
m!

[⌘(S [ {C})� ⌘(S)], (24)

where ⌘ is a function defined as ⌘N�(S) = supg N
�
g
�
VS �(x)

��
, and VS is a matrix with the learned

concept directions as its rows VS =
�
vTC

�
C2S

2 R|S|⇥h.

Yeh et al. [57] calculate concept directions vCj automatically by learning a neural network classifier.
To allow for a fair comparison between ConceptSHAP and the other evaluated methods, we use the
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concept activation vectors vC1 , . . . , vCm as the input concepts (similarly to those used in Kim et al.
[26]).

In addition, in the original paper the authors learn the concepts vC automatically, by using a carefully
constructed loss function. To allow a fair comparison, we learn the concept vector by exploiting our
labeled aspects (concepts), in a way similar to TCAV. See Section G.2 for more details.

H.2 Completeness Scores of Treatment Concepts

Given a feature representation � and a classification head N , the completeness score is defined by:

completenessN�
(S;D,Y ) =

supg
1

|D|
P

(x,y)2D,Y

⇥
y = argmaxy0 Ny0

�
g
�
VS �(x)

��⇤
� ar

1
|D|

P
(x,y)2D,Y

⇥
y = argmaxy0 Ny0

�
�(x)

�⇤
� ar

,

(25)
where ar is is the accuracy of a classifier that outputs random predictions, S ✓ {C1, ..., Cm} and VS

is a matrix with the learned concept directions as its rows VS =
�
vTC

�
C2S

2 R|S|⇥h.

For all models, the completeness we get for the set of concepts S = {ambiance, food, service, noise}
is larger than 0.9.

H.3 Hyperparameters

The hyperparameters for CAV are identical to those of TCAV (Section G.2). To calculate ⌘ and the
completeness score, we follow the original paper and set g to be a two-layer perceptron with 500
hidden units, learned using Adam optimizer for 50 epochs, employing lr=1e-2 and batch_size=128.
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