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Abstract

Many problems in machine learning can be formulated as optimizing a convex
functional over a vector space of measures. This paper studies the convergence of
the mirror descent algorithm in this infinite-dimensional setting. Defining Breg-
man divergences through directional derivatives, we derive the convergence of the
scheme for relatively smooth and convex pairs of functionals. Such assumptions
allow to handle non-smooth functionals such as the Kullback–Leibler (KL) diver-
gence. Applying our result to joint distributions and KL, we show that Sinkhorn’s
primal iterations for entropic optimal transport in the continuous setting correspond
to a mirror descent, and we obtain a new proof of its (sub)linear convergence. We
also show that Expectation Maximization (EM) can always formally be written as
a mirror descent. When optimizing only on the latent distribution while fixing the
mixtures parameters – which corresponds to the Richardson–Lucy deconvolution
scheme in signal processing – we derive sublinear rates of convergence.

1 Introduction

Many important problems in machine learning and computational statistics can be cast as an optimiza-
tion problem over the space of probability distributions, where the objective functional assesses the
dissimilarity to a target distribution µ̄ on Rd. Classical dissimilarities include f -divergences, Integral
Probability Metrics (IPMs), or optimal transport distances among others. In Bayesian inference
for instance, it is common to optimize the Kullback–Leibler (KL) divergence to the target, which
corresponds to the posterior distribution of the parameters of interest. In generative modelling, the
goal is to generate data whose distribution is similar to the training set distribution defined by samples
of the target, where the similarity is often measured by an integral probability metric or an optimal
transport distance (Arjovsky et al., 2017; Dziugaite et al., 2015). In supervised learning, optimizing
an infinite-width one hidden layer neural network, e.g. through the mean squared error, corresponds
to minimizing a functional on the space of probability distributions over the parameters of the network
(Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018). In particular, the
objective functional can be identified to a Maximum Mean Discrepancy (MMD) in the well-specified
setting (Arbel et al., 2019). Many other problems in machine learning can be formalized in this
framework (Chu et al., 2019).

Once the objective functional is chosen, one has to select an optimization algorithm that is well-
suited to the geometry of the problem. In this article, we consider the widely used mirror descent
scheme, a first-order optimization method based on Bregman divergences. While the traditional
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smoothness and strong convexity assumptions, required by standard convergence analysis, do not
always hold over measure spaces, their “relative” versions have received increased interest. The
relative smoothness assumption was first suggested by Birnbaum et al. (2011) in the context of
algorithmic game theory, but remained unnoticed by the optimization community, until Bauschke
et al. (2017) discovered the same concept independently, while Lu et al. (2018) coupled it with relative
strong convexity. We extend their work to the infinite dimensional setting and target specifically the
KL divergence. Indeed, when using the entropy as Bregman divergence, mirror descent is known to
yield multiplicative updates for the measures. In this paper we study two such schemes in machine
learning, i.e. Sinkhorn’s algorithm, widely used to solve entropic optimal transport (Peyré and Cuturi,
2019), and the EM algorithm, a very common approach to fitting probabilistic models.

Related work. Chizat (2021) gave convergence rates of mirror descent on measure spaces for integral
functionals with Lipschitz gradients, working mostly in the L1 space and without leveraging relative
smoothness. However his assumptions do not cover f -divergences, such as the ubiquitous KL, nor
entropic regularized transport as in Léger (2020). His setting also implies Gâteaux differentiability,
which is classical for mirror descent in Banach spaces (Bauschke et al., 2003). As the entropy is not
differentiable in infinite dimensions, directional derivatives were instead used by Resmerita (2005)
for mirror descent, and applied by Chu et al. (2019) to gradient descent. Connections between mirror
descent and Sinkhorn iterations for the entropic optimal transport problem were first investigated in
Mishchenko (2019); Mensch and Peyré (2020); Léger (2020). Our framework is closest to Léger
(2020), which we simplify by considering primal rather than dual iterations, and extend by also
deriving a linear convergence rate. Kunstner et al. (2021) recently showed that EM over parametric
exponential mixtures corresponds to a mirror descent scheme with relative smoothness properties.
Their setting is complementary to ours since we consider instead fixed mixtures and a nonparametric
latent distribution. A prominent alternative setting to ours when optimizing over measures is based on
(grid-free) Wasserstein gradient flows, which we do not cover here (see Appendix E for a discussion
on the difference of geometries). A remarkable discussion on the optimization over measures with
different geometries can be found in Trillos and Sanz-Alonso (2020).

Contributions. We propose a rigourous framework for the analysis of the infinite-dimensional
version of mirror descent over measure spaces. In this setting, we recover the rate of convergence
of mirror descent under relative smoothness and convexity, previously shown in finite dimensions.
Defining Bregman divergences through directional derivatives, we are able to consider objective
functionals over measures that are not smooth in the "standard" sense, but satisfy relative smoothness
and/or convexity with respect to a Bregman divergence, e.g. KL. Focusing on optimization over
joint distributions, we show that both Sinkhorn’s primal iterations for entropic optimal transport
in the continuous setting and EM can be written as a mirror descent. We then obtain a new proof
of Sinkhorn’s (sub)linear convergence. For EM, when optimizing on the latent distribution while
fixing the mixtures, a choice which coincides with Richardson–Lucy deconvolution, we derive new
sublinear rates of convergence.

This paper is organized as follows. Section 2 introduces the necessary background on derivatives
in measure spaces and relative smoothness and convexity. Section 3 discusses the well-posedness
of the mirror descent scheme and provides our proof of convergence adapted from Lu et al. (2018).
Section 4 recovers the convergence of algorithms such as Sinkhorn’s iterations and latent EM as
special cases of mirror descent with relative smoothness and convexity.

2 Background and definitions

In this section, we set the mathematical framework in which we will rigourously reformulate relative
smoothness and convexity on a space of measures.

Notation. Given a topological vector space Y with topology τ , the domain dom(f) of an extended-
valued function f : Y → R ∪ {±∞} is the set of points of Y where f takes finite values. The
function f is said to be proper if dom(f) is non-empty and if f never takes the value −∞. It is
τ -lower semicontinuous (l.s.c.) if its sublevel sets are τ -closed. We consider a dual pair (Y,Y∗)
with duality product ⟨·, ·⟩Y∗×Y which induces a Y∗-weak topology on Y (see Aliprantis and Border,
2006). We write IntC for the interior of a set C ⊂ Y . Let X ⊂ Rd, and fix a locally convex
topological vector space of measures (M(X ), τ), which could be for instance L1(dρ), L2(dρ) where
ρ is a reference measure, or the space of Radon measures Mr(X ) with the total variation (TV) norm.
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Fix M∗(X ) a topological dual of M(X ). For µ ∈ M(X ) and f ∈ M∗(X ), we use the shorthand
⟨f, µ⟩ = ⟨f, µ⟩M∗(X )×M(X ), formally equal to

∫
X f(x)µ(dx). We denote by P(X ) the subset of

measures µ ∈ M(X) with mass 1, and, for any µ, ν ∈ M(X ), we write µ≪ ν when µ is absolutely
continuous w.r.t ν, i.e. when it has a Radon–Nikodym derivative dµ/dν.

Consider a convex functional F : M(X ) → R ∪ {+∞} and the following minimization problem

min
ν∈C

F(ν) (1)

where C ⊂ M(X ) is a convex set. To solve this convex optimization problem, a classical choice is
to resort to a mirror descent scheme (see e.g. Beck and Teboulle, 2003). The latter is a first-order
optimization scheme based on the knowledge of the “derivative” of the objective functional F at
each iteration. The difficulty is to choose the appropriate notion of derivative. Indeed, Gâteaux and
Fréchet derivatives have to be defined in every direction (see Appendix A), thus requiring that the
points of differentiability belong to the interior of the domain Int(dom(F)) of the functional F
considered. In infinite dimensions, for functionals defined on positive measures, such as the negative
entropy, Int(dom(F)) is however empty1. Consequently, following Resmerita (2005), we favor a
weaker notion, that of directional derivatives.2 This comes at the price of manipulating ±∞ values
but ensures that the considered derivatives are always well-defined for convex functionals. Besides,
whenever the directional derivative is a linear function in a restricted set of directions, the notion
of first variation that comes next will enable us to perform all the computations we need, as if the
function was Gâteaux differentiable.
Definition 1 (Directional derivative). If it exists, the directional derivative of F : M(X ) →
R ∪ {±∞} at a point ν ∈ dom(F) in the direction µ ∈ M(X ) is defined as

d+F(ν)(µ) = lim
h→0+

F(ν + hµ)−F(ν)

h
. (2)

Remark 1. In particular, for convex and proper functions, d+F(ν)(µ) exists and belongs to
R ∪ {±∞} (Aliprantis and Border, 2006, Lemma 7.14). This is a direct consequence of the
nondecreasingness of R∗

+ ∋ h 7→ F(ν+hµ)−F(ν)
h for any ν, µ and convex F . The monotonicity also

entails that d+F(ν)(µ) ≤ F(ν+µ)−F(ν) <∞ whenever ν and ν+µ belong to dom(F) and that
d+ is a linear operation over the cone of convex functions. Note that µ 7→ d+F(ν)(µ) is not always
τ -l.s.c. although it is always positively homogeneous, and, whenever F is convex, it is convex.
Definition 2 (First variation). Let F : M(X ) → R ∪ {+∞} be a functional and C be a subset of
M(X ). If it exists, the first variation of F over C evaluated at µ ∈ dom(F) ∩ C is the element
∇CF(µ) ∈ M∗(X ), unique up to orthogonal components to span(dom(F) ∩ C − µ), such that:

⟨∇CF(µ), ξ⟩ = d+F(µ)(ξ) (3)

for all ξ = ν − µ ∈ M(X ), where ν ∈ dom(F) ∩ C.

By Remark 1, we have that d+F(µ)(ξ) ∈ [−∞,∞), since ν, µ ∈ dom(F) ∩ C. Naturally, if F has
a Fréchet or Gâteaux derivative at µ, which implies that µ ∈ Int(dom(F)), then it coincides with
the first variation at µ. Calling first variations the derivatives of functionals stems from the field of
calculus of variations; a pragmatic approach when dealing with probability measures can be found
in Santambrogio (2015, Definition 7.12), where ∇P(X )F(µ) is defined as a measurable function,
we instead take it most in often in L∞(X ). We now introduce Bregman divergences over measures
through directional derivatives.
Definition 3. (Bregman divergence) Let ϕ : M(X ) → R ∪ {+∞} be a convex functional. For
µ ∈ dom(ϕ), the ϕ-Bregman divergence is defined for all ν ∈ dom(ϕ) by

Dϕ(ν|µ) = ϕ(ν)− ϕ(µ)− d+ϕ(µ)(ν − µ) ∈ [0,+∞], (4)

and +∞ elsewhere. The function ϕ is referred to as the Bregman potential.

1Intuitively if X contains an open set, then any positive measure can be infinitesimally perturbed to have
negative values. For finite sets X , this phenomenon does not occur, see also Example 2.

2In finite dimensions, Maddison et al. (2021) also defined Bregman divergences through directional deriva-
tives, but under the stringent assumption of essentially smooth convex functions, an assumption which does not
extend well to infinite dimensions.
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In the previous definition, the restriction to dom(ϕ) is necessary to avoid the substraction of infinite
values. As a direct consequence of Lemma 12 in Appendix, a stricly convex ϕ entails that the
Bregman divergence Dϕ separates measures, i.e. Dϕ(ν|µ) = 0 if and only if ν = µ. Note that
Dϕ(·|µ) is a difference of convex functions, so it is not convex in general. Nevertheless the existence
of a first variation (3) of ϕ over C, resulting in the last term in (4) being linear, is sufficient to
ensure the convexity of the restriction of Dϕ(·|µ) to C. Bregman divergences have useful immediate
properties: since d+ is a linear operation over convex functions, so is the Bregman divergence, i.e. for
two convex ϕ, ψ, Dϕ+ψ = Dϕ +Dψ . Moreover, it is idempotent, as shown in the following lemma.
Lemma 1 (Idempotence of Bregman divergence). Let ϕ : M(X ) → R ∪ {+∞} be a convex
functional. Assume that given ξ ∈ dom(ϕ), the first variation ∇Cϕ(ξ) exists, then, for all µ, ν ∈
C ∩ dom(ϕ), DDϕ(·|ξ)(ν|µ) = Dϕ(ν|µ).

Proof. Since ψ : µ̃ 7→ −d+ϕ(ξ)(µ̃− ξ) = −⟨∇Cϕ(ξ), µ̃− ξ⟩ is convex over C ∩ dom(ϕ), we can
apply the linearity of the Bregman divergence:

DDϕ(·|ξ)(ν|µ) = Dϕ(ν|µ) +D−ϕ(ξ)(ν|µ) +Dψ(ν|µ) = Dϕ(ν|µ),

since the Bregman divergence of a constant or of a linear form is null.

We are now ready to introduce the notions of relative smoothness (Bauschke et al., 2017) and
convexity (Lu et al., 2018) of a functional w.r.t a Bregman potential.
Definition 4. (Relative smoothness and convexity) Let F : M(X ) → R ∪ {+∞} be a convex
proper functional. Given a scalar L ≥ 0, we say that F is L-smooth relative to ϕ over C if, for any
µ, ν ∈ dom(F) ∩ dom(ϕ) ∩ C, we have

DF (ν|µ) = F(ν)−F(µ)− d+F(µ)(ν − µ) ≤ LDϕ(ν|µ). (5)

Conversely, we say that F is l-strongly convex relative to ϕ over C, for some scalar l ≥ 0, if, for any
µ, ν ∈ dom(F) ∩ dom(ϕ) ∩ C, we have

DF (ν|µ) ≥ lDϕ(ν|µ). (6)

Example 1 (L-smoothness). Choosing ϕ(µ) = ∥µ∥2M(X ) the square norm on M(X ) shows that
relative smoothness extends the notion of L-smooth functionals (see for instance Chizat (2021,
Lemma 3.1)), i.e. functionals with L-Lipschitz Gâteaux derivative, thus satisfying:

F(ν)−F(µ)− d+F(µ)(ν − µ) ≤ L∥ν − µ∥2. (7)

Notice that by Lemma 1, provided ∇Cϕ(ξ) is well-defined, a Bregman divergence objective Dϕ(·|ξ)
is always 1-relatively smooth and strongly convex w.r.t. ϕ. This we will heavily exploit for mirror
descent schemes that involve the KL divergence both as an objective and Bregman divergence
in Section 4. Interestingly, relative smoothness and convexity can be characterized in different,
equivalent ways, see Lemma 13 in the Appendix. We now turn to the analysis of the mirror descent
scheme using the above framework.

3 Mirror descent over measures and convergence

In the following, ϕ is assumed to be strictly convex. The relative smoothness assumption (5) of the
convex objective functional F w.r.t. a Bregman potential ϕ suggests to minimize iteratively over
ν ∈ C the function ν 7→ F(µ) + d+F(µ)(ν − µ) + LDϕ(ν|µ), acting as an upper approximation of
F(ν). Starting from a given µ0 ∈ M(X ), the mirror descent iterates are thus defined at each time
n ≥ 0 as

µn+1 = argmin
ν∈C

{d+F(µn)(ν − µn) + LDϕ(ν|µn)}. (8)

Let R ⊂ C be a given subset. As proven later in this section, sufficient conditions for the convergence
of the scheme (8) are:

(A1) (Existence) The sequence of iterates (µn)n∈N defined by (8) exist, belong to R, and are unique.
(A2) (Relative smoothness/convexity) For some l, L ≥ 0, the functional F is L-smooth and l-strongly

convex relative to ϕ as in Definition 4 for elements of R.
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(A3) (Existence of first variation of ϕ) For each n ≥ 0, the first variation ∇Cϕ(µn) exists.

These assumptions have to be verified on a case-by-case basis. In the simplest case, one can take
R = C. However the set R does not have to be convex (see Section 4). On the other hand,
Assumption (A’1) below, ensures that the iterates in (8) are well-defined, uniqueness resulting from
the strict convexity of ϕ.

(A’1) (Lower semicontinuity and coercivity) (i) the set C is τ -closed in M(X ), the functionals
Gn(·) := d+F(µn)(· − µn) and Dϕ(·|µn) are proper and τ -l.s.c. when restricted to C, and the
functional Gn +Dϕ(·|µn) + iC

3 has at least one τ -compact sublevel set. (ii) For each n ≥ 0,
the first variations ∇Cϕ(µn) exist. (iii) The iterates belong to R.

By Attouch et al. (2014, Theorem 3.2.2), Assumption (A’1) implies (A1). Indeed, (i) τ -lower
semicontinuity and τ -compactness guarantee the existence of minimizers of the objective (8), while
(ii) the existence of ∇Cϕ(µn) guarantees that Dϕ(·|µn) is strictly convex (since ϕ is assumed strictly
convex) hence unicity of the minimizer. Regarding Assumption (A’1)(i), notice that Gn is proper and
M∗(X )-weak-l.s.c. as soon as F has a first variation at µn, since in this case Gn is linear on C. We
refer to Appendix B for more details on proving that Assumption (A’1) holds for some F , ϕ and C.

Mirror descent can also be defined through a subdifferential constraint if F also has first variations.

Lemma 2 (Mirror descent dual iteration). If ∇CF(µn) and ∇Cϕ(µn) exist for all n ≥ 0, then (8) is
equivalent to

∇Cϕ(µn)−
1

L
∇CF(µn) ∈ ∂Cϕ(µn+1) := {p | ∀ν ∈ C, ⟨p, ν − µn+1⟩ ≤ d+ϕ(µn+1)(ν − µn+1)}

(9)
Thus, if ∂Cϕ(µn+1) = {∇Cϕ(µn+1)}, (8) corresponds to ∇Cϕ(µn+1)−∇Cϕ(µn) = − 1

L∇F(µn).

Proof. The minimization (8) is equivalent to having, for all ν ∈ C,

d+F(µn)(ν − µn) + LDϕ(ν|µn) ≥ d+F(µn)(µn+1 − µn) + LDϕ(µn+1|µn)
⟨∇CF(µn)− L∇Cϕ(µn), ν − µn+1⟩+ L(ϕ(ν)− ϕ(µn+1)) ≥ 0.

Take ν̃ ∈ C, set ν = µn+1+t(ν̃−µn+1) for t ∈ [0, 1]. Taking the limit t→ 0+ yields the result.

In the general case, as discussed in finite dimensions in Bauschke et al. (2017, Remark 3), one
needs extra assumptions to justify that µn+1 exists in (9), akin to the invertibility of ∇ϕ or that ϕ is
essentially smooth or of Legendre type. To avoid any restrictive assumption required to use (9), we
stick with the minimal formulation (8) as was also done by Bauschke et al. (2017); Lu et al. (2018).

We now state a preliminary result, known as the "three-point inequality" or "Bregman proximal
inequality" in the optimization literature (Chen and Teboulle, 1993, Lemma 3.2), (Lan et al., 2011,
Lemma 1), useful to prove the convergence of the mirror descent scheme, similarly to Lu et al. (2018).

Lemma 3 (Three-point inequality). Given µ ∈ M(X ) and some proper convex functional G :
M(X ) → R∪ {+∞}, if ∇Cϕ(µ) exists, as well as ν̄ = argminν∈C{G(ν) +Dϕ(ν|µ)}, then for all
ν ∈ C ∩ dom(ϕ) ∩ dom(G):

G(ν) +Dϕ(ν|µ) ≥ G(ν̄) +Dϕ(ν̄|µ) +Dϕ(ν|ν̄). (10)

Proof. The existence of ∇Cϕ(µ) entails that C ∩ dom(Dϕ(·|µ)) = C ∩ dom(ϕ). Set f(·) =
G(·) +Dϕ(·|µ). Then, by linearity of the Bregman divergence and Lemma 1, we obtain that, for any
ν ∈ C ∩ dom(ϕ) ∩ dom(G),

Df (ν|ν̄) = DG(ν|ν̄) +DDϕ(·|µ)(ν|ν̄) = DG(ν|ν̄) +Dϕ(ν|ν̄) ≥ Dϕ(ν|ν̄). (11)

By optimality of ν̄, for all ν ∈ C, d+(f)(ν̄)(ν − ν̄) = limh→0+(f((1− h)ν̄ + hν)− f(ν̄))/h ≥ 0;
which is equivalent to f(ν) ≥ f(ν̄) +Df (ν|ν̄). We conclude using (11) and the definition of f .

3iC denotes the indicator function of the set C, defined by iC(µ) = 0 if µ ∈ C, +∞ otherwise for any
µ ∈ M(X ). Notice that iC being τ -l.s.c. is equivalent to C being τ -closed in M(X ).
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The following theorem gives the rate of convergence of mirror descent for relatively smooth and
convex pairs of functionals, and extends to infinite dimensions the convergence result of Lu et al.
(2018, Theorem 3.1). Its proof can be found in Appendix F.1.
Theorem 4 (Convergence rate). Assume that Assumptions (A1), (A2) and (A3) hold. Consider the
mirror descent scheme (8), then for all n ≥ 0 and all ν ∈ dom(F) ∩ dom(ϕ) ∩R, we have

F(µn)−F(ν) ≤ lDϕ(ν|µ0)Ä
1 + l

L−l

än
− 1

≤ L

n
Dϕ(ν|µ0), (12)

where, in the case l = 0, the middle expression is defined in the limit as l → 0+.
Remark 2 (About the proof of convergence). Our proof resembles the one of Lu et al. (2018), which
also relies on a three-point inequality as stated in Lemma 3. However, the proof of the latter inequality
in finite dimensions relies on a sum of subdifferentials formula, which is hard to verify for general
functionals and in particular for the KL divergeence defined below (see also Remark 6 in Appendix).
On the contrary, by working with directional derivatives and first variations, we circumvent most of
the difficulties related to (sub)differentiability.

An important example is the one discussed below where ϕ is chosen to be the negative entropy ϕe.
Example 2 (The KL divergence and negative entropy). The Kullback–Leibler (KL) divergence and
the negative entropy are defined for µ≪ µ̄ and µ≪ ρ, writing µ(x) = dµ/dρ(x), respectively as

KL(µ|µ̄) =
∫
X
ln (dµ/dµ̄(x)) dµ(x), ϕe(µ) =

∫
X
ln(µ(x))µ(x)dρ(x) = KL(µ|ρ), (13)

where ρ is some reference finite measure on X . It is straightforward to show that KL can be written
as a Bregman divergence of ϕe if µ ≪ µ̄ ≪ ρ, i.e. Dϕe

(µ|µ̄) = KL(µ|µ̄); hence one can choose
ϕ = ϕe for the mirror descent scheme (8). Assumption (A’1), guaranteeing that the iterates (8) are
well-posed, is satisfied for instance when M(X ) = L1(X ) and if there exists κ0, κ1 > 0 such that
κ0 ≤ dµn/dµ̄(x) ≤ κ1 almost everywhere over X for any n, which is the case for Sinkhorn’s and
EM iterates. This implies that the first variations of the negative entropy or KL belong to L∞ at
µn, see also Remark 5 in Appendix for more details. Moreover, by Lemma 2, exponentiating the
dual iteration (9) recovers the classical multiplicative scheme: µn+1 = µne

− 1
L∇F(µn), n ≥ 0. This

observation generalizes to the Iterative Proportional Fitting Procedure, also known as Sinkhorn’s
algorithm.

KL is a strong Bregman divergence, in the sense that it dominates a wide range of objective functionals
F . Indeed, we already know from Section 2 and the idempotence property that F = KL(·|µ̄) is
1-relatively smooth w.r.t. ϕe, since for any µ, ν ∈ dom(F), DF (ν|µ) = Dϕe

(ν|µ) = KL(ν|µ). In
Section 4 we will extensively use this fact (sometimes applying KL to joint distributions rather than
marginals, e.g. for Sinkhorn’s algorithm). This is of crucial importance because F = KL(·|µ̄) is not
a smooth objective in the "standard" sense (see Example 1) - hence convergence proofs requiring
the latter cannot apply -, but it is relatively smooth w.r.t. itself. Indeed the KL diverges for Dirac
masses, so is unbounded over the bounded set P(X ), and thus KL does not have subquadratic growth
(7) w.r.t. any norm on measures. Other objective functionals can be dominated by KL, such as the
Maximum Mean Discrepancy (MMD) for bounded kernels, see Proposition 14 in Appendix D.

4 Applications to Sinkhorn and EM with convergence rates

We now analyze the convergence of two algorithms, Sinkhorn and Expectation-Maximization (EM),
by showing that they can be written as mirror descent schemes based on the KL divergence, in order
to apply the results of Section 3. Note that the relative smoothness was first introduced by Birnbaum
et al. (2011) for this very purpose, to study the convergence of Proportional Response Dynamics.

In both the Sinkhorn and EM settings we will be given two probability spaces (X , µ̄) and (Y, ν̄). We
recall that P(X ×Y) denotes the subset of Radon measures Mr(X ×Y) with mass 1. We equip Mr

with L∞(X ×Y) as dual space. A joint measure π ∈ P(X ×Y) is also called a coupling between its
first pXπ and second pYπ marginals. We denote by Π(µ̄, ∗) the set of couplings having first marginal
µ̄ and Π(∗, ν̄) the set of couplings having second marginal ν̄, and Π(µ̄, ν̄) = Π(µ̄, ∗) ∩Π(∗, ν̄) the
couplings with marginals (µ̄, ν̄). We now recall an instrumental disintegration formula:
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Let π, π̄ ∈ P(X × Y) with π ≪ π̄, Kπ̄(x, dy) = π̄(dx,dy)/pX π̄(dx). We have π̄ = pX π̄ ⊗Kπ̄ and4

KL(π|π̄) = KL(pXπ|pX π̄)+
∫
X
KL(Kπ|Kπ̄) dpXπ = KL(pXπ|pX π̄)+KL(π|pXπ⊗Kπ̄). (14)

This decomposition is at the heart of the two objective functions FS and FEM considered below.

4.1 Sinkhorn

To describe the entropic optimal transport problem we follow Nutz (2021). Consider a cost function
c ∈ L∞(X ×Y, µ̄⊗ ν̄) and a regularization parameter ϵ > 0. The entropic optimal transport problem
is the minimization problem

OTϵ(µ̄, ν̄) = min
π∈Π(µ̄,ν̄)

KL(π|e−c/ϵµ̄⊗ ν̄). (15)

By adding a constant to c we can assume without loss of generality that e−c/ϵµ̄⊗ ν̄ has mass 1. Since
c is bounded, (15) admits a unique solution π∗. We use a characterization (Nutz, 2021, Theorem 4.2,
Lemma 4.9, Section 6) of the set of cyclically invariant couplings, and define it as follows, as the set
of couplings π that solve an entropic optimal transport problem for their own marginals,

Πc = {π ∈ P(X ×Y) | KL(π|e−c/ϵµ⊗ν) = min
π̃∈Π(µ,ν)

KL(π̃|e−c/ϵµ⊗ν), (µ, ν) = (pXπ, pYπ)}.

(16)
Moreover when π ∈ Πc, there exist f ∈ L∞(X ) and g ∈ L∞(Y) such that π = e(f+g−c)/ϵµ⊗ ν.

The Sinkhorn algorithm in its primal formulation solves (15) by alternating (entropic) projections on
Π(µ̄, ∗) and Π(∗, ν̄) (Ruschendorf, 1995), i.e. initializing with π0 ∈ Πc, iterate

πn+ 1
2
= argmin
π∈Π(µ̄,∗)

KL(π|πn), (17)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|πn+ 1
2
). (18)

Let µn = pXπn. More explicitly, (17) is a “rescaling of the rows”, πn+ 1
2
(dx, dy) =

πn(dx, dy)µ̄(dx)/pXπn(dx), while (18) is a “rescaling of the columns”, πn+1(dx, dy) =
πn+ 1

2
(dx, dy)ν̄(dy)/pYπn+ 1

2
(dy). This can be seen as a consequence of (14), as in (17) the first

marginal is fixed, so the optimum of (17) is such that the integral term of (14) vanishes. One can also
show recursively that πn ∈ Πc (see Nutz, 2021, Section 6, Lemma 6.22).

Define the constraint set C = Π(∗, ν̄), R = C ∩Πc and the objective function

FS(π) = KL(pXπ|µ̄). (19)

Connections between mirror descent and Sinkhorn iterations for the entropic regularized optimal
transport problem were first discovered in Mishchenko (2019); Mensch and Peyré (2020); Léger
(2020). We propose yet another mirror descent interpretation of Sinkhorn in the spirit of Léger (2020),
and use the primal formulation (17)–(18) directly instead of introducing dual potentials. This is stated
in the following Proposition, whose complete proof can be found in Appendix F.2.
Proposition 5 (Sinkhorn as mirror descent). The Sinkhorn iterations (17) can be written as a mirror
descent with objective FS and Bregman divergence KL over the constraint C = Π(∗, ν̄),

πn+1 = argmin
π∈C

⟨∇CFS(πn), π− πn⟩+KL(π|πn) with ∇CFS(πn) = ln(dµn/dµ̄) ∈ L∞(X × Y).

Sketch of proof. Let µn = pXπn where πn is defined in (17). We have the identity:

FS(πn) + ⟨∇CFS(πn), π − πn⟩+KL(π|πn) = KL(π|µ̄⊗ πn/µn) = KL(π|πn+ 1
2
).

We conclude by taking the argmin over π ∈ C.

We first show relative smoothness of FS relatively to ϕe, as a consequence of the standard KL data
processing inequality, i.e. KL of the marginals is smaller than KL of the plans.

4The last equality uses: KL(π|pXπ ⊗Kπ̄) =
∫
ln
Ä
pXπ⊗Kπ
pXπ⊗Kπ̄

ä
dpXπ ⊗Kπ =

∫
X KL(Kπ|Kπ̄) dpXπ .
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Lemma 6. The functional FS is convex and is 1-relatively smooth w.r.t. ϕe over P(X × Y).

Proof. Let π, π̃ ∈ P(X × Y) with pX π̃ ≪ pXπ ≪ µ̄. Then with straightforward computations,
DFS(π̃|π) = KL(pX π̃|pXπ) ≥ 0, so FS is convex. Then (14) results in DFS(π̃|π) ≤ KL(π̃|π).

By considering singular first marginals, it is obvious that there exists no l > 0 such that DFS(π̃|π) ≥
lKL(π̃|π) for all π̃, π ∈ C; i.e. that relative strong convexity of FS relatively to ϕe does not hold over
all C. However, we show in the next Proposition that this inequality actually holds over R = Πc ∩C.
Its complete proof can be found in Appendix F.3.

Proposition 7. Let Dc :=
1
2 supx,y,x′,y′ [c(x, y) + c(x′, y′)− c(x, y′)− c(x′, y)] <∞. For π̃, π ∈

Πc ∩ C, we have that
KL(π̃|π) ≤ (1 + 4e3Dc/ϵ)KL(pX π̃|pXπ), (20)

in other words FS is (1 + 4e3Dc/ϵ)−1-relatively strongly convex w.r.t. KL over Πc ∩ C.

Sketch of proof. For π, π̃ ∈ Πc ∩ C with their potentials and marginals (f, g, µ, ν̄) and (f̃ , g̃, µ̃, ν̄)
respectively, setting ∥f∥var = (supX f)− (infX f), we can derive the bound

ϵKL(π̃|π) ≤ ∥f̃ − f∥var∥µ̃− µ∥TV + ϵKL(µ̃|µ). (21)

We can then bound the potentials by the marginals using Proposition 15 in Appendix:

∥f − f̃∥var + ∥g − g̃∥var ≤ 2ϵ e3Dc/ϵ
(
∥µ− µ̃∥TV + ∥ν̄ − ν̄∥TV

)
. (22)

Then, chaining (21) and (22) we conclude using Pinsker’s inequality.

We are now ready to recover convergence rates for Sinkhorn leveraging relative smoothness and
strong convexity.

Proposition 8 (Sinkhorn convergence). For all n ≥ 0, the Sinkhorn iterates verify, for π∗ the
optimum of (15) and µ∗ its first marginal,

KL(µn|µ∗) ≤
KL(π∗|π0)

(1 + 4e
3Dc
ϵ )
ÄÄ

1 + 4e−
3Dc
ϵ

än
− 1
ä ≤ KL(π∗|π0)

n
. (23)

Proof. Fix n ≥ 0, we know that πn, π∗ ∈ R := C ∩ Πc. We conclude by applying Theorem 4 to
F = FS and ϕ = KL(·|π∗), leveraging the results of Lemma 6 and Proposition 7.

The linear convergence of Sinkhorn for bounded costs c has been known since at least Franklin
and Lorenz (1989) and has then been derived also in the non-discrete case and in multimarginal
settings (see Carlier, 2022, and references therein). To derive this linear rate (the first inequality
in (23)), we require relative strong convexity of the objective - hence we also fundamentally rely
on the boundedness of the cost, as one can see from the assumptions of Proposition 7. Indeed the
proof of Proposition 7 relies on the classical result that the soft c-transforms are contractions in
the Hilbert metric; a result also at the heart of other proofs for the linear rate (see Franklin and
Lorenz, 1989; Chen et al., 2016, for a proof). Regarding the sublinear convergence (the second
inequality in (23)), Léger (2020) first obtained sublinear rates for unbounded costs leveraging relative
smoothness, using (9) formally and through dual iterations on the potentials. In this Section we
assumed c ∈ L∞(X × Y), in order to manipulate finite quantities in our computations (e.g. first
variations in the proof of Proposition 5) - hence the latter can be seen as a convenient working
hypothesis. In this paper we derive the same rate as Léger (2020) rigorously with a more direct proof
using primal iterations, and complete the picture by recovering linear rates of convergence.

4.2 Expectation-Maximization

In this subsection, we show how the EM algorithm can always formally be written as a mirror descent
scheme, and, when optimizing the latent variable distribution, results in a convex problem with
sublinear convergence rates. Consider the following probabilistic model: we have a latent, hidden
random variable X ∈ (X , µ̄), an observed variable Y ∈ Y distributed as ν̄, and we posit a joint
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distribution pq(dx, dy) parametrized by an element q of some given set Q. As presented in Neal and
Hinton (1998), the goal is to infer q by solving

min
q∈Q

KL(ν̄|pYpq), (24)

where pYpq(dy) =
∫
X pq(dx, dy). The EM approach starts by minimizing a surrogate function of q

upperbounding KL(ν̄|pYpq). For any π ∈ Π(∗, ν̄), by the data processing inequality,

KL(ν̄|pYpq) ≤ KL(π|pq) =: L(π, q).

Again, as a consequence of the disintegration formula (14), there is equality if and only if

π(dx, dy) = pq(dx, dy)ν̄(dy)/pYpq(dy). (25)

EM then proceeds by alternate minimizations of L(π, q) (see Neal and Hinton, 1998, Theorem 1):

qn = argmin
q∈Q

KL(πn|pq), (26)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|pqn). (27)

The above formulation consists in (26), optimizing the parameters qn at step n (M-step), and then
(27), optimizing the joint distribution πn+1 at step n+ 1 (E-step). We choose this order to highlight
the analogy of (27) with Sinkhorn’s (18). The minimization (27) corresponds to taking an explicit
expectation, according to (25) justifying the denomination. On the contrary making explicit the
M-step is often difficult.

Define the constraint set C = Π(∗, ν̄) and the, possibly non-convex, objective function

FEM(π) = inf
q∈Q

KL(π|pq). (28)

We first show that EM can be formally written as a mirror descent scheme in the following Proposition,
whose precise statement with additional assumptions can be found in Appendix F.4.
Proposition 9 (EM as mirror descent, formal). The EM iterations (26)–(27) can be written as a
mirror descent iteration with objective function FEM, Bregman potential ϕe and constraints C,

πn+1 = argmin
π∈C

⟨∇CFEM(πn), π − πn⟩+KL(π|πn) with ∇CFEM(πn) = ln(dπn/dpqn). (29)

Sketch of proof. Let πn be the current EM iterate. Formally, we use the envelope theorem to differ-
entiate FEM and find that ∇CFEM(πn) = ln(dπn/dpqn) (see Appendix F.4 for a justification based
on directional derivatives and Milgrom and Segal (2002, Theorem 3)). Then for any coupling π, we
have the identity

FEM(πn) + ⟨∇CFEM(πn), π − πn⟩+KL(π|πn) = KL(π|pqn).
Thus (29) matches (27).

Since FEM is in general non-convex, we cannot apply outright the framework developed in Section 3.
There is however one direct case of pq making FEM convex, by optimizing only over its first marginal.

Latent EM. We consider the case where pq(dx, dy) = µ(dx)K(x, dy), i.e. pq is of the form µ⊗K,
with Q = P(X ) and K kept fixed along iterations. In other words, we choose to only optimize over
the density of the latent variable, and keep the mixture parameters fixed. Here K can be interpreted
as the conditional distribution of Y given X , K(x, dy) = P(Y = y | X = x). We consider in the
following Gibbs distributions with K(x, dy) = e−c(x,y)ν̄(dy) with c uniformly bounded. The term c
can be interpreted as a cost similarly to the entropic optimal transport (15).
Remark 3 (Various EM). The general goal of EM is to fit, through the objective function FEM, a
parametric distribution, e.g. a mixture of Gaussians, to some observed data Y . One needs to estimate
both the latent variable distribution on X (i.e. weights of each Gaussian) and the parameters of
conditionals P (Y |X = x) (e.g. means and covariances of each Gaussian). Latent EM focuses on
learning the mixture weights, since it consists in optimizing over the nonparametric latent distribution
µ, which can be continuous or discrete. In contrast, the parametric setting considered by Kunstner
et al. (2021), who obtained O(1/n) rates of convergence in KL for EM, can be seen as complementary
to ours since they consider a fixed µ and a variable exponential mixture Kθ, with q = θ.
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Parametrizing by the first marginal, EM iterations (26)–(27) takes the following form for Latent EM:

µn = argmin
µ∈P(X )

KL(πn|µ⊗K), (30)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|µn ⊗K). (31)

First, we necessarily have from (30) that µn = pXπn. Indeed, from the disintegration formula (14),
(30) corresponds to minimizing over first marginals. Then, since the E-step (31) corresponds to
computing (25), we can rewrite (30)–(31) as:

µn+1(·) =
∫
Y
πn+1(·, dy) = µn(·)

∫
Y

K(·, dy)ν̄(dy)∫
X K(x, dy)µn(dx)

. (32)

Define FLEM(π) := infµ∈P(X ) KL(π|µ ⊗ K). Notice that by disintegration (14), FLEM takes the
form FLEM(π) = KL(π|pXπ ⊗K). To take care of the initialization, we define the operator TK :
µ ∈ P(X ) 7→

∫
X µ(dx)K(x, ·) ∈ Mr(Y), with K(x, dy) = k(x, y)ν̄(dy) and take µ0 = ef0 µ̄

with f0 ∈ L∞ and assume that TK µ̄≫ ν̄ (in other words we assume that the mixture applied to the
latent space is compatible with all the observations).
Proposition 10 (Latent EM as mirror descent). The latent EM iterations (30)–(31) can be written as
mirror descent with objective FLEM, Bregman potential ϕe and the constraints C = Π(∗, ν̄),

πn+1 = argmin
π∈C

⟨∇CFLEM(πn), π−πn⟩+KL(π|πn) with ∇CFLEM(πn) = ln

Å
dπn

d(µn ⊗K)

ã
∈ L∞.

Proof. Similarly to Proposition 9, we have the identity

FLEM(πn) + ⟨∇CFLEM(πn), π − πn⟩+KL(π|πn) = KL(π|pXπn ⊗K),

where ∇CFLEM(πn) = ln(πn/pXπn⊗K) ∈ L∞(X ,R), see Appendix F.5 for rigorous justifications.
Since µn = pXπn due to (30), we conclude by minimizing over π ∈ C.

We are now ready to state convergence rates of latent EM in the following proposition. The reader
may refer to Appendix F.6 for a complete proof.
Proposition 11 (Convergence rate for Latent EM). Set µ∗ ∈ argminµ∈P(X ) KL(ν̄|TK(µ)). The
functional FLEM is convex and 1-smooth relative to ϕe. Moreover for π0 ∈ Π(∗, ν̄),

KL(ν̄|TKµn) ≤ KL(ν̄|TKµ∗) +
KL(µ∗|µ0) + KL(ν̄|TKµ∗)−KL(ν̄|TKµ0)

n
.

Sketch of proof. By the disintegration formula (14), we can decompose FLEM as

FLEM(π) = KL(ν̄|pY(pXπ ⊗K)) +

∫
KL(π/ν̄|(pXπ ⊗K)/pY(pXπ ⊗K))dν̄, (33)

and show then straightforwardly that π∗ defined by π∗(dx, dy) = µ∗(dx)k(x, dy)ν̄(dy)/(TKµ∗)(dy)
is a minimizer of FLEM with FLEM(π∗) = KL(ν̄|TKµ∗). Then, by the disintegration formula (14) and
linearity of the Bregman divergence, KL(π|π̃) = DFS(π|π̃)+DFLEM(π|π̃), hence FLEM is 1-relatively
smooth w.r.t. ϕe. Consequently, Theorem 4 yields:

FLEM(πn) ≤ FLEM(π∗) +
KL(π∗|π0)

n
,

Finally: KL(ν̄|TKµn) = KL(pYπn|pY(pXπn ⊗K)) ≤ KL(πn|pXπn ⊗K) = FLEM(πn).

Remark 4 (Richardson–Lucy). Interestingly, the iterations (32) of latent EM correspond precisely
to that of Richardson–Lucy deconvolution (Richardson, 1972; Lucy, 1974) where K is a known
convolution and one aims at recovering the original signal µ∗ based on the observations ν̄. Thus our
proof yields rates of convergence for this other algorithm from signal processing, a novel result to the
best of our knowledge.

Conclusion: We have provided a rigorous proof of convergence of mirror descent under relative
smoothness and convexity, which holds in the infinite-dimensional setting of optimization over
measure spaces. The latter condition can handle objective functionals that are not smooth in the
standard sense, such as the ubiquitous KL. It enabled us to provide a new and simple way to derive
rates of convergence for Sinkhorn’s algorithm. We also derived new convergence rates for EM when
restricted to the latent distribution, obtaining complementary rates to Kunstner et al. (2021).
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