
Supplementary material for Adjoint-aided inference of Gaussian process driven
differential equations

Latent force models using Green’s functions

Existing approaches to latent force models rely upon the concept of a Green’s function (e.g. Higdon,
2002; Boyle & Frean, 2005; Alvarez et al., 2009, 2013; Guarnizo & Alvarez, 2018). Here, we briefly
describe this approach and how it links to our adjoint-aided approach, and discuss the advantages and
disadvantages of both methods. Consider the linear system

Lu = f for x ∈ Ω (18)
u = 0 for x ∈ ∂Ω.

Here, L is assumed to be a differential operator, and the solution u is a function of x with domain Ω.
The Green’s function for this system, Gy(x), satisfies

L∗Gy(x) = δy(x) for x ∈ Ω (19)
Gy(x) = 0 for x ∈ ∂Ω

where δy(x) = δ(x − y) is the Dirac delta function, and L∗ is the adjoint of L. Once we have
determined a Green’s function, solution of the original problem (18) can be found by computing the
convolution of G with f :

u(y) = ⟨δy, u⟩ by definition of Dirac delta
= ⟨L∗Gy, u⟩ by Eq. (19)
= ⟨Gy, Lu⟩ by definition of the adjoint
= ⟨Gy, f⟩ by Eq. (18)

=

∫
Gy(x)f(x)dx.

The standard approach to latent force models then assumes f is a Gaussian process, f ∼ GP (0, k),
and uses the linearity of this expression and the closure of Gaussian processes under linear operations
(Rasmussen & Williams, 2006) to conclude that u is also distributed as a Gaussian process,

u ∼ GP (0, ku)

with covariance function

ku(y, y
′) =

∫
Gy(x)

∫
Gy′(x′)k(x, x′)dx′dx. (20)

For some forms of the kernel k, e.g. the exponentiated quadratic kernel, it is possible to evaluate
these integrals analytically when G is known. Alternatively, we can resort to numerical integration to
evaluate Eq. (20), for example, using random Fourier features (Guarnizo & Alvarez, 2018). Other
works have represented G using a polynomial series (Guarnizo & Álvarez, 2018) or have put another
GP prior over G (Tobar et al., 2015).

When the Green’s function is known for a given system, this approach can work efficiently and may
perform as well or better than the adjoint-aided approach. See Cole (2000) for a comprehensive list
of Green’s functions. However, for many systems (particularly operators with spatially/temporally
varying coefficients) the Green’s functions are not analytically computable. For diagonalizable
operators, we can try to find the eigenfunctions of L, i.e., λi, and ϕi(x) such that Lϕi = λiϕi, then
we can write

Gy(x) =

∞∑
i=1

1

λi
ϕi(x)ϕi(x

′).

If we can estimate λi and ϕi(x) numerically (i.e., by numerically solving the differential equation
Lϕi = λiϕi on some computational mesh) we can then truncate this sum and form a numerical
approximation of Gy(x). But in this case, we would then need to use our numerical approximation of
G in a further numerical approximation of the integral in Eq.(̃20) which can easily lead to numerical
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instabilities and low accuracy. In addition, not all differential operators are diagonalizable (i.e., admit
a basis of eigenfunctions), for example, operators which are not self-adjoint.

In contrast, our adjoint-aided approach relies solely on the existence of the adjoint operator L∗ and our
ability to solve adjoint systems numerically. To do this, we can deploy modern finite element solvers
that are efficient, stable, and offer good error-control. A full numerical analysis of the respective
errors of the two approaches is beyond the scope of this paper, and would necessarily be specialized
to the implementation details of all the particular numerical algorithms used.

In summary, we would recommend that in the special case where G is known and Eq. (20) is tractable,
that a Green’s function approach be used. In other situations, the ease of the adjoint approach
introduced here is likely to be an attractive alternative both in terms of accuracy, numerical stability,
and ease of implementation.

Comparison to competing methods

We conducted a comparison between the adjoint method, the Green’s function method and a classical
Gaussian process on the ordinary differential equation model presented in section 4.1. Observations
were taken at 20 time points over t ∈ [0, 10] with a grid resolution of 200.

• The Gaussian process had a mean squared error of 0.0055 between the true output and the
inferred output.

• The Green’s function method (as in Alvarez et al. (2009)) had an MSE of 0.0051 for the
output error and 0.0860 for the source error.

• The Green’s function method with random Fourier features (as in Guarnizo & Alvarez
(2018)) achieved the following MSEs:

– 20 features: Source MSE of 0.099 and output MSE of 0.0058
– 200 features: Source MSE of 0.0927 and output MSE of 0.0055.
– 500 features: Source MSE of 0.0856 and output MSE 0f 0.0052.
– 2000 features: Source MSE of 0.0861 and outpute MSE of 0.0051.

• The adjoint method with M=2000 random Fourier features had an MSE of 0.0056 between
the ground truth concentration and the inferred concentration and an MSE of 0.079 between
the ground truth and inferred sources.

All three methods achieve a similar quality of inference over the system output. This is to be expected
as all three methods utilise a similar statistical model. For larger numbers of features (M ∼ 200)
the adjoint method and the GP predicted the system response with similar accuracy. It should be
noted that by using a classical GP approach it is not possible to infer the unknown forcing function, f ,
which is one of the key advantages of the adjoint method. The Green’s function method also performs
to a similar level of accuracy as the adjoint method, though the Green’s function method with Fourier
features appears to perform better at low numbers of features for this particular test case.

Derivation of the Advection Diffusion Adjoint Equation

Consider the advection diffusion operator discussed in Section 4.2:

Lu =
∂u

∂t
+ p1 · ∇u−∇ · (p2∇u) in X × [0, T ] (21)

with initial condition
u(x, 0) = 0 for all x ∈ X (22)

and Neumann boundary condition

∇nu = 0 for x ∈ ∂X , (23)

where ∂X is the boundary of X , ∇nu = ∇u · n̂ denotes the normal derivative of u, with n̂(x) the
outward facing normal of ∂X at x. Let Ω = X × [0, T ] denote the spatial temporal domain of u.
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The adjoint of the system defined by Eqs (21–23) will depend on both the differential operator, and
the specific initial and boundary conditions imposed. To derive this, we need to find a linear operator
L∗ and a set of boundary conditions so that the bilinear identity

⟨Lu, v⟩ = ⟨u,L∗v⟩

is satisfied for all sufficiently smooth functions u and v with compact support in Ω. Let v be such a
function, and consider

⟨Lu, v⟩ =
∫
Ω

(
∂u

∂t
+ p1 · ∇u−∇ · (p2∇u)

)
v dΩ. (24)

In the derivation below, we’ll assume p1 and p2 are constant, and follow the general steps outlined in
Estep (2004). As in the ODE example, the derivation essentially relies upon repeated application of
integration by parts. For the first term in Eq. (24):∫

Ω

∂u

∂t
v dΩ =

∫
Ω

∂

∂t
(uv)− u

∂v

∂t
dΩ

=

∫
X

∫ T

0

∂

∂t
(uv) dtdx−

∫
Ω

u
∂v

∂t
dΩ

=

∫
X
u(x, T )v(x, T )− u(x, 0)v(x, 0) dx−

∫
Ω

u
∂v

∂t
dΩ.

For the second term in Eq. (24):

p1 ·
∫
Ω

v∇u = p1 ·
(∫

Ω

∇(uv) dΩ−
∫
Ω

u∇v dΩ

)
= p1 ·

(∫ T

0

∫
X
∇(uv) dxdt−

∫
Ω

u∇v dΩ

)

= p1 ·

(∫ T

0

∮
∂X

uvn̂ dx dt−
∫
Ω

u∇v dΩ

)
where the first equality uses the vector product rule, and the third the divergence theorem. For the
third term in Eq. (24) we have

p2

∫
Ω

v∇ · ∇udΩ = p2

(∫ T

0

∮
∂X

v∇u · n̂ dxdt−
∫
Ω

∇v · ∇udΩ

)
.

We can then repeat this process on the final term above∫
Ω

∇v · ∇udΩ =

∫ T

0

∮
∂X

u∇v · n̂ dxdt−
∫
Ω

u∇ · ∇v dΩ.

Combining all of these terms together gives

⟨Lu, v⟩ =
∫
Ω

(
−∂v

∂t
− p1 · ∇v −∇ · (p2∇v)

)
udΩ

+

∫
X
u(x, T )v(x, T )− u(x, 0)v(x, 0) dx

+

∫ T

0

∮
∂X

uvp1.n̂− p2v∇u · n̂+ p2u∇v · n̂ dxdt

= ⟨u,L∗v⟩+ boundary terms.

As in the ODE case, we then choose the boundary and initial conditions on v to make the boundary
terms above vanish. Firstly, as u(x, 0) = 0 for all x, setting the final condition v(x, T ) = 0 for all
x eliminates the first boundary term. Secondly, as ∇u · n̂ is 0 on the boundary (from the boundary
conditions on u, Eq. 22), the third term also vanishes. Finally, to set the remainder of the boundary
integral to 0 we assume p1v + p2∇v = 0 for all x ∈ ∂X .
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Thus our adjoint operator is

L∗v = −∂v

∂t
− p1∇ · v −∇ · (p2∇v) (25)

with final condition
v(x, T ) = 0 for all x ∈ X

and mixed condition
p1v + p2∇v = 0 for x ∈ ∂X .

Note that when solving the original and adjoint systems numerically, checking that the bilinear
identity does indeed hold is a useful validation of the derivation and PDE solvers.

PDE Inference Examples

Various factors effect the quality of source inference when using the adjoint method. These include
the number of random Fourier features (RFFs), M , the number of observations, n, the locations of the
sensors, and the ratio of the ground truth source lengthscale, λ, to the size of the domain. In Section
4.2 we investigated the effect of changing the values of n and M (see Table 2) for a system with a
fixed lengthscale. Here we briefly illustrate the effect of changing λ. We consider a 10× 10× 10
grid in space and time and two scenarios:

1. 100 sensors arranged in a grid, with readings at 10 points in time, using 1000 RFFs to infer
the source (n = 1000, M = 1000);

2. 16 sensors arranged in a grid, with readings at 5 time points, using 500 RFFs (n = 80,
M = 500).

We generated three ground truth sources using length-scales l = 5, 2 and 1. In each case, we used
the adjoint method in the scenarios described to infer the posterior distribution of the source. Fig. 4
shows the ground truth generated with l = 5 and the inferred source in each scenario at a single
time-slice. In this case both models perform similarly on visual inspection. The MSE between the
inferred source and the ground truth is 0.004 for scenario 1 (n = 1000, M = 1000), and 0.008 in
scenario 2 (n = 80,M = 500).

Fig. 5 shows the same information for the source generated with length-scale l = 2. In this case, we
can visually see that the posterior inference is much more accurate in scenario 1. The MSEs are 0.07
for scenario 1 and 0.68 for scenario 2. Finally, in the case where l = 1 (see Fig. 6), visual inspection
reveals that in scenario 2, the posterior mean bears little resemblance to the ground truth, whereas
key features of the ground truth are visible in the posterior mean for scenario 1. This is reflected in
the MSEs, which are 1.85 for scenario 1 (n = 1000) and 2.55 for scenario 2 (n = 80).

These results demonstrate the expected phenomena, namely that as the ratio of the length-scale to
the grid size decreases, more features and observations are required to accurately infer the ground
truth. Furthermore, in the short length-scale case the accuracy of inference is generally lower, as the
source varies more between sensor locations than in the longer length-scale case. Additionally, in
longer length-scale cases, fewer features and observations are required for high quality inference,
thus enabling inference with less computational resource.

Finally, Fig. 7 shows the trace plot for the q parameters for an implementation of the Metropolis
Hastings algorithm in the case where M = 10 features are used. See the main text (Sect. 4.2) for
details.

Bayesian Optimisation Output

Although not our focus here, we note that we can infer the remaining parameters p1, p2 (PDE)
and τ2, λ (GP hyperparameters) in a variety of ways. By way of illustration, here we use the
GPyOpt (González & Dai, 2016) package to maximise the negative log-likelihood using the expected
improvement acquisition function in a Bayesian optimization approach (Shahriari et al., 2015).

To perform inference for p1, p2, τ
2, λ, we wrote a function which, given a parameter array θ, estimates

the posterior predictive accuracy of our source posterior when using θ (here θ may contain a subset
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Figure 4: Ground truth and posterior mean of the source when using kernel length-scale, l = 5
(time-slice at t = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=0.008), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE= 0.004).
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Figure 5: Ground truth and posterior mean of the source when using kernel length-scale, l = 2
(time-slice at t = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=0.68), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE=0.07).
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Figure 6: Ground truth and posterior mean of the source from with kernel length-scale, l = 1
(time-slice at t = 5). The left image shows the ground truth source, the middle image shows the
posterior mean inferred using 80 observations and 500 features (MSE=1.85), the right shows the
posterior mean inferred using 1000 observations and 1000 features (MSE=2.55).
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Figure 7: Trace plots for MCMC corresponding to Table 1
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of the parameters). We do this by first simulating 100 realizations from the posterior mean of the
source for a fixed parameter, i.e., f1, . . . , f100 ∼ p(f |z, θ), and we push these through the PDE to
get a posterior predictive sample of concentration fields u1, . . . , u100 ∼ p(u|z, θ). The negative
log-likelihood is then calculated between these and the training observations giving us a way to score
parameter θ. The negative log-likelihood function was used as the objective function in a Bayesian
Optimisation routine González & Dai (2016). To test this approach we generated various ground
truth source and solution fields using fixed values of θ.

Fig. 8 shows the exploration and eventual convergence in a particular case where we used λ = 2
to generate a ground truth source. In this case, the maximum likelihood estimate of λ was found
to be λ̂ = 2.52 which the optimization found after 29 iterations. In a case where the true kernel
length-scale and variance were both 2, and the wind-speed was 0.04, Bayesian optimisation found
the maximum likelihood values of 1.24, 3.20 and 0.031 respectively after 20 iterations. Further work
is needed to fully explore how to embed this approach into parameter estimation schemes, but we
hope it gives some insight into how parameter estimation could be performed. Finally, note that the
adjoint approach gives the possibility of estimating the gradient of the loss function. This would
enable the adjoint approach to be embedded into gradient based inference algorithms such as the
VAE and Hamiltonian Monte Carlo, hopefully accelerating inference.
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Figure 8: The output of the Bayesian Optimisation algorithm used to infer the value of the GP kernel
length-scale, λ. In this case the true value of λ is 2 and the algorithm found the minimum of the
negative log-likelihood at λ = 2.52. This plot shows where the objective function was evaluated, and
the posterior mean and variance at each point.

PDE model applied to the Round Hill II dataset

To test the approach using data from a physical experiment, we used the Round Hill II advection-
diffusion experiment (Cramer & Record, 1957). In this study, researchers deployed 183 midget
impingers for measuring sulphur dioxide in three partial concentric rings, 50m, 100m and 200m
downwind from the release site, spanning 69◦. A constant source of sulphur dioxide (releasing
approximately 5-10 gs−1) was used over a ten minute period, during which the impingers took
measurements of average concentration over the first 30 seconds, 3 minutes and 10 minutes. The
average wind speed and direction was recorded (2.14 ms−1). We modelled this with our adjoint
approach, as in section 4.2, over a 250m× 250m domain spanning 13 minutes, using 10,000 random
Fourier bases to approximate the Gaussian process forcing term. We tested two aspects of our model’s
capabilities. First: Source attribution. The model’s mean source prediction was roughly flat except
for a peak approximately 45m downwind of the true release site, see Figure 9. This discrepancy
is expected as the true dataset contained a point source while our model had a GP prior (with EQ
kernel and lengthscale of 10m) over the source. This leads to an inferred broader source, slightly
closer to the ring of sensors. The second test was predicting the SO2 concentration: We removed
the middle (100m) ring of sensors from the training data, then tried to predict their measurements.
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For comparison we used a Gaussian process with a length-scale of 30m (and 30s) to predict the
concentration. We found it useful to threshold the concentrations to be non-negative for both methods.
Our model performed considerably better than the GP model. For the three measurement periods the
results were:

Our Model GP Model
30s 14444 21385
180s 6628 12968
600s 4503 8490

[measurement units were mg/m3, so these MSEs are in (mg/m3)2 ] See figure 10 for a comparison
of the inferred concentrations between the two models. Figure 10b indicates that the Gaussian process
generally overestimated the right hand side of the left out sensor array, whereas it can be seen from
10a that the adjoint method predicted the true high concentration area fairly well, with some smaller
overprediction at the left and right hand sides of the array.
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Figure 9: The mean inferred source in the Roundhill experiment at t = 0. The white circle indicates
the true source location.

Shift operators

Here we provide an example of the adjoint method applied to a non-differential operator: the shift
operator. Consider the operator La : R → R such that

La(u(t)) = u(t+ a). (26)
This is the right shift operator. We can derive the adjoint of the right shift operator by taking the
following inner product and using a change of variable (x=t+a).

⟨Lu, v⟩ =
∫ ∞

−∞
u(t+ a)v(t)dt =

∫ ∞

−∞
u(x)v(x− a)dx (27)
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(a) The relative pollutant concentrations in the
Roundhill experiment between the predicted con-
centration inferred using the adjoint method and
the true values.
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(b) The relative pollutant concentrations in the
Roundhill experiment between the predicted con-
centration inferred using a Gaussian process and
the true values.

Figure 10

and so the adjoint of the right shift operator is the left shift operator, L∗
a : R → R, where L∗

av(t) =
v(t − a). Having derived the adjoint of the right shift operator, it is possible to apply the adjoint
method to an example system

Lau(t) = u(t+ a) = f(t) (28)
where f(t) is an unknown forcing function and observations of u are obtained as noisy averages over
short time windows (see equation 16).

Figure 11 shows the inferred and true f(t) and u(t) of the system given in equation 28 with a = 2
and 20 observations evenly spaced between t = 2 and t = 8. Observations were generated with
Gaussian noise, ϵ ∼ N(0, 0.05). The output u(t) is well predicted within the observation range with
relatively high certainty, the prediction is uncertain outside of the observation range. The forcing
function, f is well predicted between t = 0 and t = 6, i.e. the observation range shifted left by a = 2.
The MSE between the observations and the mean value of u(t) inferred at the observations points is
0.003. For reference, the standard deviation of the observations is 1.001.
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(a) Inferred and ground truth source in the shift
operator system with a = 2
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(b) Inferred and ground truth output, u(t) in the
shift operator system with a = 2

Figure 11

It seems evident that to predict the source and output more confidently over the entire real line would
require observations over the entire real line. Furthermore, it does not seem possible to infer the shift
parameter, a. For example, if the true shift parameter is a∗ and the the model used to infer the source
assumes shift parameter a, the inferred source will simply be shifted left by a and the quality of
prediction of observation points would be indistinguishable (given a fixed basis for expansion of f ).
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