A Pseudocode for PPO-EWMA

We provide pseudocode PPO as well as PPO-EWMA to make it clear what changes need to be made:

Algorithm 1 PPO Algorithm 2 PPO-EWMA
for iteration=1,2,... do for iteration=1,2,... do
for actor=1,2,..., N do for actor=1,2,..., N do
Run policy my,,, in environment Run policy 7y, ... in environment
for T" timesteps for T" timesteps
Compute advantage estimates Compute advantage estimates
A17A27"'7AT A17A27"‘7AT
end for end for
for epoch=1,2,..., E do for epoch=1,2,... E do
for each minibatch do for each minibatch do
Compute 7y . for minibatch
Optimize objective L Optimize objective Ljccoupled
with respect to # on minibatch with respect to # on minibatch
Oprox < EWMAg (@)
end for end for
end for end for
eold — 0 el)ehav — 40
end for end for

The expression EWMAg_ _ (6) is shorthand for

0 + 6prox9t—1 + BgroXGt—Q + e+ ﬂ;roxao
1 + ﬁprox + ﬁgrox +ot Bltarox
where 6y, 01, . .. 0; are the values of 6 after each gradient step. In practice, we compute this incre-

mentally by initializing 0pr0x < 0 and w < 1, and treating the update Oprox < EVVMAﬁmx (0) as
shorthand for

)

Whnew 1+ ﬁproxw

1 w
0 Jr /BpI‘OX w 9prox

new new

eprox <

W < Wpew-

For PPG-EWMA, we make the same changes to the policy phase, while leaving the auxiliary phase
unchanged. However, the EWMA should be reinitialized at the start of each policy phase, since
# changes a lot during the auxiliary phase.

Code for both PPO-EWMA and PPG-EWMA may be found at https://github.com/openai/
ppo—ewma.

14


https://github.com/openai/ppo-ewma
https://github.com/openai/ppo-ewma

B Hyperparameters

All experiments were on Procgen’s hard difficulty, without frame stack, using the convolutional neural
network from IMPALA [Espeholt et al.,2018]]. Unless stated otherwise, experiments lasted for 100
million environment steps.

Table 1: Default hyperparameters shared between PPO and PPG.

Hyperparameter Value
Workers 4
Parallel environments per worker 64
Timesteps per rollout (7" 256
Minibatches per epoch 8
Adam step size (o) 5x 1074
Value function coefficient 0.5
Entropy coefficient 0.01
PPO clipping parameter (€) 0.2
GAE discount rate () 0.999
GAE bootstrapping parameter (A\)  0.95
Reward normalization? Yes
Advantage normalization? Yes

Table 2: Default PPO-specific hyperparameter.

Hyperparameter  Value
Epochs (F) 3

Table 3: Default PPG-specific hyperparameters.

Hyperparameter Value
Policy iterations per phase (V) 32
Policy phase policy epochs (E;) 1
Policy phase value function epochs (Ey/) 1
Auxiliary phase epochs (Faux) 6
Auxiliary phase minibatches per epoch 16N,

Auxiliary phase cloning coefficient (Bcione) 1

For the purpose of the artificial staleness experiments, we clipped g, , . to keep the ratio —"2

T0hehav

below 100, for numerical stability.

For PPG-EWMA, we chose the default EWMA decay rate (3,0« such that the center of mass of the
EWMA, # — 1, equaled the number of minibatches per policy phase iteration (8), so that the
pros

maximum age of the proximal policy is the same in PPG and PPG-EWMA. We tuned this on the
first 8 of the 16 Procgen environments by also trying —3— — 1 = 2 and {—3— — 1 = 32, but did

not find these to perform better. We did not re-tune [Sp.ox 0n the last 8 Procgen environments or on
PPO-EWMA.

For the batch size-invariance experiments, we made the following changes to the above defaults:
* We reduced the number of parallel environments, first by reducing the number of workers

from 4 to 1, and then by reducing the number of parallel environments per worker from 64
tol6to4tol.
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Table 4: Default PPO-EWMA and PPG-EWMA specific hyperparameter.

Hyperparameter Value
Proximal policy EWMA decay rate (Bprox) 0.889

¢ For the policy phase, we adjusted the Adam step size (), the proximal policy EWMA decay
rate (Bprox), advantage normalization, and the number of policy iterations per phase (/V) in
the way described in Section 4]

* For the auxiliary phase, we initially tried adjusting the Adam step size in the same way as
for the policy phase. This worked well in terms of batch size-invariance, but resulted in
prohibitively large wall-clock times at small batch sizes, due to the large number of auxiliary
epochs. We therefore simply kept the auxiliary phase minibatch size per worker constant,
and only adjusted the Adam step size when reducing the number of workers, not when
reducing the number of parallel environments per worker.
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C Adam square root step size adjustment

In Section [3, we stated that SGD and Adam have different learning rate adjustment rules. To
compensate for the batch size being divided by some constant ¢, one must divide the SGD learning
rate by ¢, but divide the Adam step size by /c [Hardin, |2017].

The reason for the difference is that Adam divides the gradient by a running estimate of the root mean
square gradient. If the gradient vector at the current step is g, then this denominator is approximately

Var B
VE [97] E [g:)° + Var[g;] = E [g,] 1 + -

where all operations including the variance operator are applied componentwise, n is the batch size,
and B is a componentwise version of the gradient noise scale defined by McCandlish et al.|[2018]], a
measure of the noise-to-signal ratio of the gradient that approximates the critical batch size. Hence if
the batch size is small compared to the critical batch size, then 5 > n for most components, and so
the Adam denominator is approximately proportional to \/15

It follows that if the batch size is divided by some constant ¢, then the Adam denominator is multiplied
by approximately /¢ (providing the batch size is small compared to the critical batch size). Hence
Adam is effectively dividing the learning rate by 1/c automatically, and so the step size « only needs
to be adjusted by an additional 1/c to effectively divide the learning rate by ¢ overall.

This all ignores Adam’s € hyperparameter, which is usually negligible, but is sometimes used to
interpolate between Adam and momentum SGD.

To verify the square root rule for Adam, we conducted an ablation of our batch size-invariance
experlments in which we made the exact same adjustments, except that we divided the Adam step
size by ¢ instead of by /c. Our results are shown in Figure E When compared with Figure |: this
clearly shows that the square root rule is superior in our setting. Full results on each of the individual
environments can be found in Appendix [F2,

PPG-EWMA with linear instead of square root Adam step size adjustment

0.8 1
0.6 1
=
E
5]
o
(5}
N
= 0.4
g
3
=
% Batch size
= 0.2 1 —— Default
—— Default/4
—— Default/ 16
Default / 64
0.0 Default / 256
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Environment steps x108

Figure 5: PPG-EWMA at different batch sizes, averaged over all 16 Procgen environments, with
hyperparameters adjusted as in Figure 2} except with a linear rather than a square root adjustment to
the Adam learning rate. Mean and standard deviation over 3 seeds shown.

Our results are in tension with those of [Smith et al. [2017]], who verified batch size-invariance for
Adam using the linear rather than the square root rule. However, they achieved a lower degree of
batch size-invariance with Adam than with SGD (see Figure 4 in that work), and moreover, our results
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show that the batch size needs to be reduced significantly before the difference between the two rules
is noticeable. We believe that this accounts for their experimental results, and that the square root
rule is superior in general (with the exception of when Adam’s e hyperparameter is high enough for it
to behave like momentum SGD).
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D Adam f; and 3; adjustments

As discussed in Section E there is an additional adjustment one should make when using Adam,
other than to the step size . To compensate for the batch size being divided by some constant ¢, one
should also raise the exponential decay rates 8; and (s to the power of 1/c [Hardin, [2017].

We omitted this adjustment in most of our experiments, and were still able to achieve a high degree
of batch size invariance. For all except one environment, the difference in normalized return between
the largest and smallest batch sizes at the end of training was at most 0.11 (see Figure3). For these
environments, it would probably have required many additional experiments to detect any further
improvement that adjusting 8; and > might provide. However, for the Heist environment, this
difference was 0.55. We hypothesized that this might be explained by the fact that we did not adjust

p1 and fa.

We therefore conducted a version of our batch size-invariance experiments in which we either adjusted
only S32 using the above rule, or adjusted both 3; and 5. Our results are shown in Figure|6| In both
cases there was still a large difference in performance at the largest and smallest batch sizes.

No further adjustments Adjustment to (5 only

Adjustments to 3; and (2

7 Batch size 4 _
—— Default J
61 —— Default /4 £ . .
= Default/ 16
51 Default / 64 ] ]
Default / 256
4 - - -
y / _ _
gy Vax, A/ N 28R AN
o | padn ’ MBI
~) T 1 &5
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment steps x108 Environment steps %108 Environment steps x108

Figure 6: PPG-EWMA at different batch sizes on Heist, with hyperparameters adjusted as in Figure
2, together with further adjustments to Adam’s 31 and 3> hyperparameters as indicated. Mean and
standard deviation over 3 seeds shown.
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E Hypothesis tests for ablations

As discussed in Section 3, we conducted hypothesis tests to check the statistical significance of the
effects produced by the ablations to our batch size-invariance experiments.

Our primary metric for measuring batch size-invariance was the difference in final performance of the
algorithm at different batch sizes. To get a complete picture of how important our ablations were at
different batch sizes, we compared our default (largest) batch size with each of the other batch sizes,
and tested the hypothesis that the difference was larger for the ablation. This resulted in 16 hypotheses,
corresponding to the 4 ablations and the 4 non-default batch sizes. To test each hypothesis, we used a
van Elteren test [[van Elteren, |1960], a stratified version of the Mann—Whitney U-test, treating the
different environments as strata. This gives a non-parametric Z-test of the null hypothesis that for
each of the environments, the probability of the ablation outperforming the original experiment is the
same as the probability of the original experiment outperforming the ablation [LaVange and Koch,
2006]. To reduce noise (and thereby increase statistical power), we measured average performance
over the last 4 million timesteps (the length of a single PPG phase). We used a significance level of
0.1% and applied a Bonferroni correction to account for multiple comparisons.

Our results are shown in Table[5. For ablation (b), the difference is only significant at the smallest
batch size. For all other ablations, the difference is significant at every batch size, execpt for the
largest batch size for ablation (d).

Table 5: Effect sizes (and Z-scores, in parentheses) for each of our hypotheses. The effect size is a
difference of differences in final normalized return, between the ablation and the original experiment
and between the different batch sizes. In bold are the effect sizes found to be signifcant at the
0.1% level after applying a Bonferroni correction (i.e., with a one-tailed p-value below 0.00l/16, or
equivalently, a Z-score above 3.84).

Batch sizes: (a) No Adam step  (b) No adv. norm. (c) No EWMA (d) No EWMA,
Default vs ... size adjustment adjustment adjustment just PPG

Default / 4 0.046 (5.02) —0.014 (—1.53) 0.020 (4.58) 0.019 (3.27)
Default/ 16 0.347 (7.31) —0.033 (—1.53) 0.021 (4.47) 0.016 (4.04)
Default / 64 0.621 (6.98) 0.054 (-=0.11) 0.027 (5.02) 0.042 (5.13)
Default / 256 0.709 (6.87) 0.224 (4.47) 0.041 (4.80) 0.030 (4.58)
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F Results on individual environments

F.1 Artificial staleness
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Figure 7: Results from Figure a) (PPO with my_,, = 7,,..,.) Split across the individual environ-
ments. Mean and standard deviation over 4 seeds shown.
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Figure 8: Results from Figure |I(b) (PPO with decoupled objective) split across the individual
environments. Mean and standard deviation over 4 seeds shown.
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Figure 9: Results from Figure c) (PPO with mg_,, = 7g,.,..) split across the individual environ-
ments. Mean and standard deviation over 4 seeds shown.
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F.2 Batch size-invariance
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Figure 10: Results from Figure |Z (PPG-EWMA with all batch size-invariance adjustments) split
across the individual environments. Mean and standard deviation over 3 seeds shown.
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Figure 11: Results from Figure E(a) (no Adam step size adjustment) split across the individual
environments. Mean and standard deviation over 3 seeds shown.
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Figure 12: Results from Figure |Z(b) (no advantage normalization adjustment) split across the
individual environments. Mean and standard deviation over 3 seeds shown.
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Figure 13: Advantage standard deviation estimates for the results from the previous figure. We plot
estimates from the first seed only and perform no smoothing, since we are interested in the amount of
oscillation. Note that performance degrades with no advantage normalization adjustment only once
the estimates oscillate by factor of around 10 or more.
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Figure 14: Results from Figure c) (no EWMA adjustment) split across the individual environments.
Mean and standard deviation over 3 seeds shown.
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Figure 15: Results from Figure d) (no EWMA at all, just PPG) split across the individual environ-
ments. Mean and standard deviation over 3 seeds shown.
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Figure 16: Results from Figure (PPG-EWMA with linear instead of square root Adam step size
adjustment) split across the individual environments. Mean and standard deviation over 3 seeds
shown.
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F.3 EWMA comparison
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Figure 17: Results from Figure E (performance of all 4 algorithms) split across the individual
environments. Mean and standard deviation over 4 seeds shown.
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G Role of the proximal policy EWMA decay rate

In this section we discuss the role of the hyperparameter 3,,0x in PPO-EWMA and PPG-EWMA in
more depth.

Recall that in PPO-EWMA and PPG-EWMA, the proximal policy network parameter vector fpyox
is an exponentially-weighted moving average (EWMA) of the policy network parameter vector 6,
meaning that

975 + Bproxetfl + Bgrox€t72 +F IBf,mxeo
1+ BPTOX + Bgrox et /BIt)rox

where 6y, 01, . . . 0, are the values of 6 after each gradient step.

eprox = )

Rather than working with the decay rate Sprox of this EWMA directly, it is conceptually clearer to
work with the center of mass of this EWMA,

. . O+ﬁpr0x1+ﬁgrox2+"'+ﬂ§>r0xt 1
COMpox := lim 5 — n = —
t—oo 1 + BPTOX + Bprox + + Bprox 1 BPYOX

This is average age of a term in the EWMA in the limit as ¢ — oo, and so if 6 were to follow a
straight line path for example, then § — 6,0 would be approximately proportional to COMp;ox.

1.

Suppose then that we halve COM,ox. What is the effect of this?

Consider the gradient of the KL divergence from the current policy to the proximal policy, as a
function of the proximal policy parameter vector,

Grad-KL (Oprox) := Vo KL [mg,... (- | 5¢) .70 (- | s¢)] -

Since KL divergence is always greater than or equal to 0, with equality if and only if the input
distributions are equal, Grad-KL (§) = 0, and hence, to first-order, Grad-KL (f,r0x) 8 a linear
function of § — 0p,ox. Therefore halving COM,o should have a similar effect to halving the KL
penalty coefficient 3. In other words, we should be able to compensate for halving COMp,ox by
doubling the KL penalty coefficient.

Intuitively, the KL penalty acts like a rubber band pulling the policy towards the proximal policy.
Halving COM,,ox is analogous to attaching the rubber band to a point half as far away, while
doubling the KL penalty coefficient is analogous to doubling the thickness of the rubber band. Doing
both simultaneously results in the same overall force.

We tested this hypothesis using a hyperparameter grid search over the EWMA center of mass and the
KL penalty coefficient, for PPG-EWMA on StarPilot. We used our smallest batch size, along with
our corresponding batch size-invariance adjustments, to allow the greatest scope for reducing Cprox
without making the EWMA degenerate into averaging over a single data point.

Our results are shown in Figure[I8. The diagonal banding clearly demonstrates the expected effect.
However, the effect only holds locally: as COMp,ox is continually halved and the KL penalty
coefficient is continually doubled, performance gradually degrades.

We believe that this is because reducing COM,ox has a second-order effect, which is to increase the
variance of § — 0,0« This is both because the EWMA is averaging over a smaller effective sample
size, and because 0; — 0,_, has a lower signal-to-noise ratio as k decreases. Therefore if COMp;ox
has been halved too many times, we should expect to no longer be able to fully compensate for this
by continuing to double the KL penalty coefficient.
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Figure 18: Performance on PPG-EWMA on StarPilot after 20 million environment timesteps, using a
single parallel copy of the environment along with our batch size-invariance adjustments. The default
hyperparameter settings correspond to square in the bottom right corner. Mean over 2 seeds shown.
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