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Abstract

Perceptual organization is a challenging visual task that aims to perceive and group
the individual visual element so that it is easy to understand the meaning of the
scene as a whole. Most recent methods building upon advanced Convolutional
Neural Network (CNN) come from learning discriminative representation and
modeling context hierarchically. However, when the visual appearance difference
between foreground and background is obscure, the performance of existing meth-
ods degrades significantly due to the visual ambiguity in the discrimination process.
In this paper, we argue that the figure-ground assignment mechanism, which con-
forms to human vision cognitive theory, can be explored to empower CNN to
achieve a robust perceptual organization despite visual ambiguity. Specifically,
we present a novel Figure-Ground-Aided (FGA) module to learn the configural
statistics of the visual scene and leverage it for the reduction of visual ambiguity.
Particularly, we demonstrate the benefit of using stronger supervisory signals by
teaching (FGA) module to perceive configural cues, i.e., convexity and lower re-
gion, that human deem important for the perceptual organization. Furthermore,
an Interactive Enhancement Module (IEM) is devised to leverage such configu-
ral priors to assist representation learning, thereby achieving robust perception
organization with complex visual ambiguities. In addition, a well-founded visual
segregation test is designed to validate the capability of the proposed FGA mecha-
nism explicitly. Comprehensive evaluation results demonstrate our proposed FGA
mechanism can effectively enhance the capability of perception organization on
various baseline models. Nevertheless, the model augmented via our proposed
FGA mechanism also outperforms state-of-the-art approaches on four challenging
real-world applications.

1 Introduction

Perceptual organization, which is a vital visual task, refers to the processes by which the disjoint
bits of visual information are structured into the larger coherent units that we eventually experience
as environmental objects. Thanks to the developments of discriminative representation learning
and hierarchical context modeling with convolutional neural networks [17, 33, 48, 77], the past few
years have witnessed tremendous progress in perceptual organization. Recent advanced methods are
usually based on the framework of fully convolutional network (FCN) [5, 33, 50, 76], which learn
a discriminative feature representation and hierarchically model the local context by supervision
derived from human-given labels.

However, the performance of existing methods degrades significantly when deployed in some
challenging tasks with complex visual ambiguity, such as camouflaged object detection [11, 27],
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medical image segmentation [12, 50], and visual industrial detection [74]. Since the visual appearance
differences between the foreground and background are obscure, it is difficult to perceive the
correlation between individual visual elements and determine the boundaries. The visual ambiguities
impede CNN’s represent learning and contextual modeling, leading to inaccurate and incomplete
perceptual organization.
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Figure 1: Main idea. (A) The process of a perceptual organi-
zation first requires perceiving discriminative visual elements,
then segregation is obtained by grouping parts together. (B)
This process is obscured in scenarios with ambiguity. (C) In
this paper, we explore Figure-Ground Assignment to facili-
tate in reducing visual ambiguities. Best viewed in color.

To address this issue, more perceptual
knowledge is required to be incorpo-
rated into visual organization. In the
1920s, the Gestalt psychologists iden-
tified Grouping and Figure-Ground
as two important principles underly-
ing the process of perceptual organiza-
tion [24, 25, 53, 66]. Grouping prin-
ciple refers to bring together individ-
ual visual elements that produce stim-
uli to form a holistic perception. It
has attracted more attention because
it is intuitively similar to the contex-
tual modeling ability of CNN. Differ-
ent from Grouping, Figure-Ground as-
signment refers to the perception that
assigns a boundary separating two re-
gions to one of them [52]. By intro-
ducing the configural statistics of the
natural world in which the visual sys-
tem evolved [3], the Figure-Ground
assignment principle is thought to be
important in reducing the visual ambiguousness of a scene. In addition, Cognitive science studies
[15, 47, 81] have found that neural activity associated with the Figure-Ground assignment mechanism
in the V2 cortex of human vision occurs as early as 10-25 ms after the generation of visual stimuli,
providing strong support for the role of local bottom-up processing. Another study [43] on the “mean-
ingfulness principle” also showed that assigned figures tend to be associated with neighborhoods
with familiar shapes, pointing to the integration of knowledge from the top-down.

Inspired by these studies, as shown in Fig. 1, we argue that exploring figure-ground assignment
mechanism can empower CNN the ability of perceptual organization despite visual ambiguity, and
consequently presents a novel Figure-Ground-Aided (FGA) module that learns the configural statistics
of visual scene, and leverages it for representation learning. Specifically, we firstly investigate the
configural cues related to the Figure-Ground assignment mechanism in human psychophysics and find
that the figural region usually takes on the shape instructed by the separating boundary and appears
closer to the viewer, while the ground region is seen as extending behind the figure [43]. Typically,
as shown in Fig. 2 (a), Convexity cue [21, 34, 39, 44] corresponds to the regions on either side of
the boundary where the scene depth changes abruptly and is beneficial for analyzing the hierarchical
relationship between neighboring regions in the image, facilitating hierarchical contextual modeling.
And lower region cues [16, 62] usually corresponds to the region of the scene where occlusion has
occurred and is beneficial for analyzing the occlusion relationship between various neighborhoods in
an image and determining the shape attribution of foreground objects and background regions.

After that, instead of using a weak form of directly using mask labels as supervision, we refer to
the method in [32] of teaching the FGA module to perceive the configural cues that human deem
important for the perceptual organization by using human-derived labels as stronger supervisory
signals. Notably, the Ground-Truth (GT) segmentation masks imply the prior knowledge of the
annotators’ understanding of natural scenes. Therefore, we easily generate the labels of the two
configural cues from the Ground-Truth (GT) label without the intervention of additional information
and exploit them as supervisions for the FGA module, facilitating the modeling of the configural
statistics of natural scenes. Furthermore, an Interactive Enhancement Module (IEM) is presented
to progressively enhance the discriminative features for boundary assignment via a local/global
interactive strategy. Specifically, a collaborative local interaction process is first introduced by
swapping queries to align locally between contextual co-occurring configural features. Then, a global
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interaction process is introduced to establish global spatial correlations of local configural features,
resulting in complete object boundaries. Moreover, a Lambda strategy is utilized to improve the
computational efficiency and performance of the original self-attention module.
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Figure 2: Figure-Ground Cues. (a) The Figure (F)-
Ground (G) assignment cues used in this paper. We im-
plement the two cues of Convexity and Lower Region
as two 2-channel labels, which are directly calculated
from GT labels without the intervention of additional
information. We represent the concave region and the
convex region as different labels to reflect their struc-
tural differences for the convexity cues. We represent
intra-boundary and extra-boundary regions differently
for lower region cues to reflect the differences between
the two sides of the boundary. (b) The example of cues.
“Convexity” represents the convexity cue. “LR” repre-
sents the lower region cue. Best viewed in color.

To systematically investigate the perfor-
mance of our proposed method for the
Figure-Ground assignment, we design a
synthetic computer vision task inspired
by an important experiment in cognitive
science—Figure-Ground Segregation [26,
46, 49, 55]. Furthermore, the compre-
hensive experiments demonstrate that our
proposed FGA module can facilitate the
CNN to learn more efficiently in the reduc-
tion of visual ambiguities with low data
requirements. Finally, we also validate
the performance of our proposed mecha-
nism in four challenging visual applica-
tions, including camouflaged object detec-
tion [11, 71], polyp detection [12], and
lung anomaly detection [13]. The results
demonstrate the superiority of our method
over SOTA methods. The contributions are
summarized as follows:

(1) This paper explores the Figure-Ground
assignment mechanism from human vision
cognitive theory to empower CNN to learn
configural statistics to reduce visual ambi-
guities, thereby achieving robust percep-
tual organization. (2) This paper presents
a novel Figure-Ground-Aided module to
integrate figure-ground-aided cues in a hi-
erarchical manner. An Interactive Enhance-
ment Module is devised to progressively enhance the discriminative features for Figure-Ground
assignment via a local/global interactive strategy. (3) This paper introduces the Figure-Ground
Segregation test, a synthetic visual perception challenge to systematically investigate the perfor-
mance of models in Figure-Ground assignment. Experimental results demonstrate our proposed FGA
module consistently improves the Figure-Ground assignment performance of several representative
networks on datasets of different difficulty levels. (4) Extensive experiments are also performed on
four challenging robust object segmentation applications, showing that the model constructed via our
FGA module outperforms SOTAs.

2 Methodology

Architecture. In this paper, we propose a novel Figure-Ground-Aided (FGA) module that uses con-
figuration cues from the Figure-Ground assignment process to enhance the perception of foreground-
background relationship, thereby achieving a robust perceptual organization result. It can be easily
incorporated into existing encoder-decoder models and improve their performance. Fig. 3 shows
the overall architecture of the proposed Figure-Ground-Aided module. Our proposed FGA module
is composed of two cue-aided branches and an Interactive Enhancement Module (IEM). Here, we
use ResNet-50 [17] as the backbone. Specifically, we remove the fully connected layer and retain
all convolutional bocks. Given an input image of shape H ×W , this backbone will generate five
scales of features with spatial resolution gradually decreasing by stride 2. We denote these features
as E = {Ek | k = 1, 2, 3, 4, 5}. The size of the k-th feature is

[
Ck,

H
2k
, W
2k

]
, where Ck is the number

of channels of the k-th feature. We utilize the feature from {Ek | k = 1, 2, 3, 4} as skip-connected
feature for FGA module and the decoder. D = {Dk | k = 1, 2, 3, 4, 5} are the feature maps of
the decoder part. The intermediate features ECon

k and ELR
k are derived from the feature E5. The

calculation process here is the same as in the Decoder part.
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Figure 3: The architecture of the proposed Figure-Ground Aided module (FGA). Figure-Ground
Aided module, which can be easily incorporated into encoder-decoder models, is composed of two
cue-aided branches and an Interactive Enhancement Module (IEM). The IEM is proposed to integrate
the features at different scales of branches separately to enhance the feature of the decoder branch.
We leverage the convexity and lower region cues, which can be calculated directly from the GT
label and do not require any additional information, as supervisions for perceiving the contextual
information of object boundary, respectively. We first allow the network to learn the statistical features
related to the configuration in a top-down manner. Then we use the learned features to guide the
bottom-up features from the encoder to integrate bottom-up and top-down information. Interactive
Enhancement Module (IEM), which consists of two parts: Collaborative Local Interaction (CLI)
and Global Interaction (GI). IEM has three input features (ECon, ELR, and E), two of which come
from the intermediate feature learned by the Figure-Ground assignment cues aided branches (ECon

and ELR). “Lambda” indicates the use of a Lambda strategy [1] to improve the computation efficiency
of the CLI and GI interaction.

Figure-Ground Assignment Cues. The critical process of the perceptual organization known as
figure-ground assignment [51], involves giving one of the two adjacent regions a boundary. The
figure-Ground assignment is commonly thought to follow region segmentation, and it is an essential
step in forming a perception of surfaces, shapes, and objects [63, 64]. The human visual mechanism
points out that when humans observe images, they will use some configural cues to distinguish
between foreground and background, including Convexity [21, 34, 39, 44] and Lower region [16, 62].
Accordingly, we propose to introduce the convexity and lower region cues, as shown in Fig. 2 (b). To
generate the convexity cue, we used morphological opening and closing operations [4, 45]. It can be
formed as: CueC = Cat(CueC1, CueC2), “Cat” is the concatenation operation.

CueC1 = GT − Φ◦(GT,KC), (1)
CueC2 = Φ•(GT,KC)−GT, (2)

where GT is the ground truth segmentation mask. Φ◦(.) is the opening operation. Φ•(.) is the closing
operation. KC is the structure element whose size is 10. We get the convexity Cue by concatenating
CueC1 and CueC2, whose shape is [2, H,W ]. H and W are the height and width of the mask. To
generate the lower region cue, we used morphological erosion and expansion operations. It can be
expressed as: CueL = Cat(CueL1, CueL2).

CueL1 = GT − Φ	(GT,KL), (3)
CueL2 = Φ⊕(GT,KL)−GT, (4)

where Φ	(.) is an erosion operation. Φ⊕(.) is the expansion operation. KL is the structure element
whose size is 5. We get lower region cue by concatenating CueL1 and CueL2.

Interactive Enhancement Module. To effectively utilize the important configural cues (convexity
and lower region) provided by the Figure-Ground assignment mechanism, a novel Interactive En-
hancement Module (IEM) is devised. The IEM has three input features, two of which come from the
intermediate feature learned by the Figure-Ground assignment cue-aided branches. We define them
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as ECon and ELR, respectively. Moreover, the remaining branch is the skip-connection feature E
from the encoder. We further improve the representation ability of the encoder feature by establishing
the interactions among the features of the skip-connection features and aided branches feature. As
shown in Fig. 3, the interactions in the IEM consist of collaborative local interaction and global
interaction. 1) Collaborative Local (CLI) interaction: the local interaction of the two Figure-Ground
cues integrates the local structural context features. 2) Global interaction (GI): the global interaction
between base features and local contextual features aims to enhance foreground features and suppress
the background with structural context features.

The detailed structure of the Interactive Enhancement Module is illustrated in Fig. 3. We use a
spatial self-attention mechanism that considers both content and location interactions to achieve
local or global interaction of features. This paper uses an efficient Lambda layer [1], which captures
interactions of feature elements by transforming available contexts into linear functions, termed
lambdas, and applying these linear functions to each input separately. For the collaborative local
interaction part, it can be expressed as follows:

Y = Lambda(ELR, P LR)QCon + Lambda(ECon, PCon)QLR, (5)

where Y is the output of CLI. P denotes the relative position embeddings. QLR is the query, which is
computed by: QLR = ELRW LR

Q . QCon is calculated in the same way. W LR
Q is the learnable weights.

Lambda(.) is defined as:

Lambda(ECue, PCue) = (Softmax(ECueWCue
K ))>(ECueWCue

V ) + (PCue)>(ECueWCue
V ), (6)

where the range of relative position in CLI is set to 5. Cue ∈ LR,Con For the global interaction part,
it can be expressed as follows:

M = Lambda(EG, PG)QG, (7)

where EG = Cat(Y,E). EG and M correspond to the feature maps shown on the right side of the
IEM in Fig. 3. The Lambda(.) function is defined as follows:

Lambda(EG, PG) = (Softmax(EGWG
K))>(EGWG

V ) + (PG)>(EGWG
V ), (8)

where the range of relative position in GI is set to the whole feature map size.

Loss Function. In this section, we introduce the loss function used to train FGA-Net. We adopt a
deep supervision strategy for each sub-side output prediction map from the decoder and calculate
the binary cross-entropy (BCE) [40] loss. The total loss LD for the decoder of the proposed network
could be expressed as follows: LD =

∑I
i L

(i)
d , where L(i)

d represents the loss of the i-th sub-side
output prediction. For the other two aided branches in FGA module, we also use BCE loss to obtain
the losses LCon and LLR. Unlike the decoder, we do not use a deep supervision strategy. The final
loss for the entire network is defined as follows: Ltotal = aLD + bLCon + cLLR, where a, b, and c
are the hyper-parameters to balance different loss terms. In this paper, we set a = 1, b = 0.9, and
c = 0.9, respectively. Note that all experiments use the same hyper-parameters.

3 Experiments

3.1 Figure-Ground Segregation Test

(a) (b)
Figure 4: Figure-Ground Segregation Test.
(a) Exemplars from the Figure-Ground Segre-
gation experiment in cognitive research. (b)
Exemplars from the FGS test.

To investigate the validity of our proposed Figure-
Ground Aided module (FGA), we design and estab-
lish a set of tasks to evaluate the Figure-Ground as-
signment ability of deep convolutional neural net-
works, inspired by the Figure-Ground Segregation
test in cognitive science experiments [26, 46, 49, 55]
as shown in Fig. 4 (a). This task is described in detail
as shown in Fig. 4 (b), by sampling the content of
a randomly given texture image and filling the fore-
ground and background of the given image using that
texture content to generate the desired sample finally.
Here we use a synthetic dataset to test a deep convolutional neural network to remove distracting
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Figure 5: FGA module has a better capability of Figure-Ground assignment. (a) FGA module
consistently improves the Figure-Ground assignment performance of several representative networks
on all three datasets. Different dash boxes represent different levels. The x-axis and the y-axis are the
S-measure and IoU scores, respectively. UNet+Edge/DeepLabv3+Edge indicates UNet/DeepLabv3
with auxiliary edge supervision. UNet+FGA/DeepLabv3+FGA means UNet/DeepLabv3 with FGA
module. (b) FGA-Net is more data-efficient. The x-axis and the y-axis represent different proportions
of the normal dataset and the IoU score, respectively. (c) Visual comparisons on the Normal level
dataset. The UNet [50] is used as our baseline model.

factors. Standard computer vision datasets make it difficult to pinpoint the relative contributions of
different visual strategies since the performance of architecture may be affected by several factors,
including dataset biases, model hyper-parameters, and the number of samples [22, 31].

Test Design. We use segmentation labels from the Pascal VOC [8] dataset and the rich texture
dataset (DTD [7]) to synthesize our dataset. Referring to the cognitive science experiments which
exclude irrelevant factors from the test conditions, such as excluding other irrelevant factors for
Figure-Ground Segregation, we also need to exclude the influence of several factors, i.e., 1) excluding
the influence of contextual information brought by semantic labels since utilizing semantic labels
of different objects helps to learn discriminative feature representation; 2) excluding the influence
of spatial contexts provided by multiple instances belonging to the same class since they contribute
to learning robust (e.g., scale-invariant or occlusion-aware) feature representation; and 3) excluding
segmentation cues due to significant appearance differences between foreground and background
since their distinct textures [72, 73], colors, and illumination help to learn cheap features to distinguish
them. Guided by the above principles, the whole process of sample generation can be divided into the
following steps: 1) select a random image in the Pascal dataset and use one of the object instances as
a figure and the remaining regions as the ground; 2) given a collection of texture images, randomly
select a texture image from it; 3) two random transformations (such as rotation and scaling) are
performed on the texture image independently; and 4) fill the figure region and the ground region
with the two transformed textures respectively, resulting in a synthetic sample. In addition, for a more
comprehensive evaluation, three datasets of different difficulty levels (Easy, Normal, and Hard) are
established by varying the transformations, the division of the set of texture images, and the size of
figure regions. Each dataset contains 2,500 unique images with a 224 × 224 resolution, split into
training (2,000) and test (500) sets.

Experimental Conditions. In this paper, we conduct experiment on two representative architectures:
U-Net [50] and Deeplabv3 [6]. U-Net is one of the most popular architectures in the field of
segmentation, which has a typical encoder-decoder architecture, and the shallow features are directly
fed into the decoder through skip connections. Deeplabv3 is a highly competitive network for
semantic segmentation. Through atrous spatial pyramid pooling, it can expand the receptive field
while ensuring detailed modeling. Each model is trained using the Adam optimizer with a batch size
of 16 and a learning rate of 1e−4 for the Figure-Ground Segregation test. To isolate the influence of
pre-trained weights, all weights are randomly initialized. We train each model for 20,000 iterations.
For the evaluation of the results, we focus on the differences between the output and the ground
truth in terms of structure and filling completeness, so we choose S-measure [9], and IoU [33] as
evaluation metrics.
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LR Covx IEM Sα IoU
Baseline .745 .580

(a) X .771 .612
(b) X .761 .603
(c) X X .793 .635

FGA X X X .816 .659

Image Baseline (a) (b) (c) FGA GT
Figure 6: Ablation study of the proposed FGA-Net on the normal dataset. “Covx” (“LR”)
denotes convexity (lower region). The UNet [50] is used as our baseline model.

Table 1: Ablation study of IEM on the nor-
mal dataset. “Local” means use local interaction.
“Collaborative” means use collaborative strategey.
“Global” means use global interaction. “Lambda”
indicates the use of Lambda [1] strategy.

Local Collaborative Global Lambda Sα IoU
X .801 .640
X X .805 .645

X .797 .638
X X X .810 .652
X X X X .816 .659

Result and Discussion. Through experiments
on the Figure-Ground segregation test, we can
get the following four conclusions. IFirst, with
different difficulty levels, the proposed FGA
can consistently improve the performance of
the base model (in Fig. 5 (a)). It shows that
our method has a strong capability of the Figure-
Ground assignment by introducing human cog-
nitive cues. ISecond, as shown in Fig. 5 (a),
our proposed FGA-Net has a better performance
compared to the straightforward strategy of di-
rectly adding edge supervision. Its segmentation
results are more complete in terms of both structure and filling of foreground regions as shown in Fig.
5 (c). Using the edge supervision can only provide local perception at the foreground boundary, while
more structural priors and perception of the foreground region are required for the Figure-Ground
assignment. IThird, as shown in Fig. 5 (b), it can be seen that as the number of training samples
decreases, our model still outperforms the contenders. Our FGA trained on only 1% of the dataset
is comparable to Baseline+Edge trained on 10% of the dataset, suggesting that FGA is more data-
efficient. The supervisions from the Figure-Ground cues help the network learn an inductive bias [68]
that the network focuses on the foreground and background and their differences at the boundaries,
thereby reducing the amount of data required. IFourth, as shown in Fig. 6, the LR cue provides a
more complete edge for segmentation results, the Convexity cue enhances the perception of shape
detail, and the IEM enhances the consistency within the foreground. In addition, we find that using
two branches to learn both priors separately is more effective than using a single branch to learn both
priors. This phenomenon explains to some extent the certain orthogonality between the two cues,
which depend on different features. And we also conduct an ablation study on the IEM, as shown in
Table 1, which identifies the performance contribution of each sub-module in the IEM. It is worth
mentioning that the local interactions bring more improvement than the global interactions. This may
be due to the boundary assignment process that tends to capture discriminative features from the local
region.

3.2 Applications

We verify the effectiveness of our proposed method on four challenging visual tasks, i.e., Camouflaged
Object Detection (COD) [11], Polyp Segmentation (PS) [12], and Lung Infection Segmentation (LIS)
[13]. The COD task mainly manifests in complex background/edges, small targets/structures, slender
trunks/limbs, and partially occluded objects. The main feature of the PS task is its high diversity of
size and texture. The main difficulty of the LIS task lies in the complex structures of the foreground.
In addition, we also verify the effectiveness of our proposed method on the non-challenging figure-
ground task.

Camouflaged Object Detection. Datasets: We evaluate our model on three challenging visual
Camouflaged Object Detection datasets, i.e., CHAMELEON (CHA) [59], CAMO (CAM) [27], and
COD10K (COD) [11]. CHA is collected from the Internet by searching “camouflaged animal” as the
keyword. CAM is the first publicly released COD dataset. COD is the most challenging dataset with
higher image quality. Implementation Details: We implement our model with PyTorch, and TITAN
Xp GPUs are used for training and testing. ResNet-50 [17] is used as a encoder in our model, which is
initialized as the pre-trained weights on ImageNet. In this paper, we use the resolution of 480 × 480
during both the training phase and testing phase. Our model is trained for 100 epochs using the Adam
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Table 2: Comparison with 6 SOTA methods on
the CHA [59], CAM [27], and COD [11] datasets.
↑ indicates higher is better.

[78] [11] [10] [70] [38] [69] Ours
C

H
A

[5
9] S(↑) .848 .869 .888 .893 .882 .888 .902

E(↑) .870 .891 .942 .923 .942 .918 .947
F (↑) .702 .740 .816 .813 .810 .796 .840
M(↓) .050 .044 .030 .030 .033 .031 .030

C
A

M
[2

7] S(↑) .732 .751 .820 .775 .782 .785 .803
E(↑) .768 .771 .882 .847 .852 .859 .871
F (↑) .583 .606 .743 .673 .695 .686 .748
M(↓) .104 .100 .070 .088 .085 .086 .068

C
O

D
[1

1] S(↑) .727 .771 .815 .814 .800 .818 .821
E(↑) .779 .806 .887 .865 .868 .850 .895
F (↑) .509 .551 .680 .666 .660 .667 .687
M(↓) .056 .051 .037 .035 .040 .035 .031

Table 3: Comparison with six SOTA methods on
the COVID-19 CT segmentation dataset.

Dice(↑) Sen.(↑) Spec.(↑) S(↑) E(↑)M(↓)
[50] .439 .534 .858 .622 .625 .186
[41] .583 .637 .921 .744 .625 .112
[54] .623 .658 .926 .725 .739 .102
[29] .515 .594 .840 .655 .814 .184
[82] .581 .672 .902 .722 .662 .120
[13] .682 .692 .943 .781 .720 .082
[20] .700 .751 − − .860 .084

Ours .754 .748 .973 .799 .911 .056

Table 4: Performance on DUTS-Test [65] and
PASCAL-S [30].

DUTS-Test PASCAL-S
M(↓) F (↑) S(↑) E(↑) M(↓) F (↑) S(↑) E(↑)

[79] .041 .807 .885 .914 .062 .800 .858 .891
[67] .035 .840 .892 .927 .062 .825 .862 .901
[28] .032 .866 .899 .937 .061 .824 .863 .903
Ours .033 .868 .902 .940 .061 .827 .866 .907

Table 5: Comparison with four SOTA meth-
ods on Kvasir, CVC-612, ColonDB, ETIS,
and Endo datasets.

[50] [82] [14] [12] [80] Ours

K
va

si
r[

18
] Dice(↑) .818 .821 .723 .898 .907 .911

IoU(↑) .746 .743 .611 .840 .862 .858
F (↑) .794 .808 .670 .885 .893 .898
S(↑) .858 .862 .782 .915 .922 .922

Em(↑) .893 .910 .849 .948 .944 .953
M(↓) .055 .048 .075 .030 .028 .025

C
V

C
-6

12
[2

] Dice(↑) .823 .794 .700 .899 .921 .924
IoU(↑) .755 .729 .607 .849 .879 .884
F (↑) .811 .785 .647 .896 .914 .930
S(↑) .889 .873 .793 .936 .941 .943

Em(↑) .954 .931 .885 .979 .972 .982
M(↓) .019 .022 .042 .009 .008 .008

C
ol

on
D

B
[6

0] Dice(↑) .512 .483 .469 .709 .755 .768
IoU(↑) .444 .410 .347 .640 .678 .683
F (↑) .498 .467 .379 .696 .737 .746
S(↑) .712 .691 .634 .819 .836 .842

Em(↑) .776 .760 .765 .869 .883 .868
M(↓) .061 .064 .094 .045 .041 .040

E
T

IS
[5

8]
Dice(↑) .398 .401 .297 .628 .719 .723
IoU(↑) .335 .344 .217 .567 .664 .651
F (↑) .366 .390 .231 .600 .678 .680
S(↑) .684 .683 .557 .794 .840 .822

Em(↑) .740 .776 .633 .841 .830 .834
M(↓) .036 .035 .109 .031 .020 .015

E
nd

o
[6

1]

Dice(↑) .710 .707 .467 .871 .869 .889
IoU(↑) .627 .624 .329 .797 .807 .817
F (↑) .684 .687 .341 .843 .849 .865
S(↑) .843 .839 .640 .925 .925 .929

Em(↑) .876 .898 .817 .972 .943 .978
M(↓) .022 .018 .065 .010 .010 .007

[23] optimizer with an initial learning rate of 0.0001, decreased by 0.1 at 50 epochs. The batch size is
32. Evaluation Criteria: S-measure (Sα) [9], mean E-measure (Eφ) [37], weighted F-measure (Fωβ )
[37], and Mean Absolute Error (MAE) [42] are used as the evaluation metrics. Comparison with
SOTA: We compare the performance of FGA-Net with SOTA methods, including EGNet [78], SINet
[11], SINetv2 [10], MGL [70], PFNet [38], and UGTR [69]. Quantitative results are listed in Table
2. Obviously, our model outperforms the contenders. In particular, FGA-Net achieves significant
performance improvement compared to the second-best method SINetv2 [10] on the challenging
COD10K dataset. It proves that with the help of Figure-Ground assignment mechanism, it can make
the network more efficient in solving the problem of separating ambiguous regions, which is caused
by camouflaged objects that are highly similar to background in appearance.

Polyp Segmentation. Datasets: We evaluate our model on five challenging Polyp Segmentation
(PS) datasets, Kvasir (Kvasir) [18], CVC-ClinicDB/CVC-612 (CVC-612) [2], CVC-ColonDB
(ColonDB) [60], ETIS (ETIS) [58], and EndoScene (Endo) [61]. Kvasir is the most challenging
dataset, which contains 1,000 images. CVC-612 dataset includes 612 open-access images from
31 colonoscopy clips. ColonDB and ETIS consist of 380 and 196 polyp images. Note that the
training set only contains the data of Kvasir and CVC-612. We follow [12] to split all datasets.
Implementation Details: We use the same implementation method as COD task, except that the
batch size is 16. We use the resolution of 352 × 352 during both the training phase and testing phase.
Evaluation Criteria: Dice [19], IoU [18], Fωβ , Sα, maximum E-measure (Emax

φ ), and MAE are
used as the metrics. Comparison with SOTA: We compare our FGA-Net with four SOTA medical
image segmentation methods, including UNet [50], UNet++ [82], SFA [14], Pra [12], and MSNet
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[80]. Quantitative results are listed in Table 5. We can observe that our FGA-Net surpasses the
aforementioned methods in most of the metrics. Compared to the second-best methods on each
dataset, FGA-Net outperforms all of them on five datasets. Similar results can also be observed in
terms of the MAE score.

Lung Infection Segmentation. Datasets: We also evaluate our model for Lung Infection Segmenta-
tion (LIS) on the COVID-19 CT segmentation dataset, including 100 axial CT images from different
COVID-19 patients. We follow [13] to randomly select 45 CT images as training samples, 5 images
for validation, and 50 images for testing. Implementation details: We use the same implementation
method as COD task, except that the batch size is 24. We use the resolution of 352 × 352 during both
the training phase and testing phase. Evaluation Criteria: Dice, Sensitivity (Sen.) [56], Specificity
(Spec.) [57], Sα, Emean

φ , and MAE are used as the metrics. Comparison with SOTA: We compare
our FGA-Net with six SOTA medical image segmentation methods including UNet [50], UN++ [82],
AUN [41], GUN [54], DUN [29], Inf [13], and ERRNet [20]. Quantitative results are listed in Table
3. We can observe that our model consistently outperforms all other contenders across all metrics.

Non-Challenging Figure-Ground Task. In Table 4, we conduct experiments on more non-
challenging Figure-Ground datasets (salient object detection), and the results show that the FGA-Net
proposed in our paper is also competent for salient object detection. It indicates that FGA helps for
different segmentation tasks by improving the boundary assignment capability of the model, which in
turn improves the final performance.

4 Related Work

Historically, the visual phenomenon most closely associated with the perceptual organization is
grouping, and Figure-Ground assignment [24, 25, 53, 66]. In general, grouping determines what the
qualitative elements of perception are, and figure-ground assignment determines the interpretation
of those elements in terms of their shapes and relative locations in the layout of surfaces in the
real-world [63, 64]. Figure-Ground assignment refers to the perceptual process of assigning a
boundary separating two regions to one of them [52] and provides important configural prior for
scene perception. Accordingly, the studies of the Figure-Ground assignment process [43, 63, 64]
show that it plays a central role in aiding higher levels of visual perception.

Therefore, we hope to introduce the Figure-Ground assignment process into the segmentation model
to help address the object segmentation. Factors that affect Figure-Ground assignment include
size, surroundedness, orientation and contrast [52], symmetry [15], parallelism [39], convexity
[21, 34, 39, 44], meaningfulness [43], and lower region [62]. In this paper, we mainly consider the
cues related to the configuration, i.e., convexity and lower region. Compared to recent research
[35, 36] applying the Figure-Ground Assignment mechanism in some vision tasks without considering
high-level supervisions, our work instead explores an end-to-end figure-ground aided approach that
can be easily incorporated into existing encoder-decoder models and improve their performance.

5 Conclusion

In this paper, we demonstrate that the Figure-Ground cues inspired by the perceptual organization of
human vision can be effectively utilized to improve the performance of a CNN model for different
challenging robust perception organization tasks, e.g., camouflaged object detection, polyp segmenta-
tion, and lung infection segmentation. Specifically, we investigate the proposed FGA module, on a
carefully established synthetic dataset for the Figure-Ground Segregation test, which aims to measure
the capability of Figure-Ground Assignment. The empirical study shows that the proposed new
module consistently improves the performance of several representative networks in reducing visual
ambiguities. Moreover, the model implemented via our proposed FGA mechanism outperforms SOTA
approaches in three challenging real-world applications. We believe this study provides valuable
insights to the community and attracts attention to exploring the Figure-Ground principles for other
visual perception tasks.

Societal Impact. Perceptual organization is one of the most challenging computer vision tasks. Albeit
being challenging, Perceptual organization is beneficial to a wide range of applications [75, 83].
However, there also exists the risk that the technology is utilized in the scenario of the illegal shoot,
malicious edit, and incorrect use.
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