
Appendix

1 Positional Encoding

Transformer requires a positional encoding to identify the position of the current processing token [17].
Through a series of comparison experiments, we choose untied positional encoding, which is proposed
in TUPE [10], as the positional encoding solution of our tracker. In addition, we generalize the untied
positional encoding to arbitrary dimensions to fit with other components in our tracker.

The original transformer [17] proposes a absolute positional encoding method to represent the
position: a fixed or learnable vector pi is assigned to each position i. Starting from the basic attention
module, we have:

Atten(Q,K, V ) = softmax
(QKT

√
dk

V
)
, (1)

where Q,K,V are the query vector, key vector and value vector, which are the parameters of the
attention function, dk is the dimension of key. Introducing the linear projection matrix and multi-head
attention to the attention module (1), we get the multi-head variant defined in [17]:

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO, (2)

where headi = Atten(QWQ
i ,KWK

i , V WV
i ), WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈
Rdmodel×dv , WO

i ∈ Rhdv×dmodel and h is the number of heads. For simplicity, as in [10], we assume
that dk = dv = dmodel, and use the single-head version of self-attention module. Denoting the input
sequence as x = x1, x2, . . . , xn, where n is the length of sequence, xi is the i-th token in the input
data. Denoting the output sequence as z = (z1, z2, . . . , zn). Self-attention module can be rewritten
as

zi =

n∑
j=1

exp(αij)∑n
j′=1 exp(αij′)

(xjW
V ), (3)

where αij =
1√
d
(xiW

Q)(xjW
K)T . (4)

Obviously, the self-attention module is permutation-invariance. Thus it can not "understand" the
order of input tokens.

Untied absolute positional encoding. By adding a learnable positional encoding [17] to the single-
head self-attention module, we can obtain the following equation:

αAbs
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K)T√
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d
+
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d
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d
+
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K)T√
d

.

(5)

The equation (5) is expanded into four terms: token-to-token, token-to-position, position-to-token,
position-to-position. [10] discuss the problems that exist in the equation and proposes the untied
absolute positional encoding, which unties the correlation between tokens and positions by removing
the token-position correlation terms in equation (5), and using an isolated pair of projection matrices
UQ and UK to perform linear transformation upon positional embedding vector. The following is
the new formula for obtaining αij using the untied absolute positional encoding in the l-th layer:

αij =
1√
2d

(xl
iW

Q,l)(xl
jW

K,l)T

+
1√
2d

(piU
Q)(pjU

K)T .

(6)

where pi and pj is the positional embedding at position i and j respectively, UQ ∈ Rd×d and
UK ∈ Rd×d are learnable projection matrices for the positional embedding vector. When extending
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to the multi-head version, the positional embedding pi is shared across different heads, while UQ and
UK are different for each head.

Relative positional bias. According to [16], relative positional encoding is a necessary supplement
to absolute positional encoding. In [10], a relative positional encoding is applied by adding a relative
positional bias to equation (6):

αij =
1√
2d

(xl
iW

Q,l)(xl
jW

K,l)T

+
1√
2d

(piU
Q)(pjU

K)T + bj−i,

(7)

where for each j − i, bj−i is a learnable scalar. The relative positional bias is also shared across
layers. When extending to the multi-head version, bj−i is different for each head.

Generalize to multiple dimensions. Before working with our tracker’s encoder and decoder
network, we need to extend the untied positional encoding to a multi-dimensional version. One
straightforward method is allocating a positional embedding matrix for every dimension and summing
up all embedding vectors from different dimensions at the corresponding index to represent the final
embedding vector. Together with relative positional bias, for an n-dimensional case, we have:
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n
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(8)

Generalize to concatenation-based fusion. In order to work with concatenation-based fusion, the
untied absolute positional encoding is also concatenated to match the real position, the indexing tuple
of relative positional bias now appends with a pair of indices to reflect the origination of query and
key involved currently.

Take l-th layer in the encoder as the example:

αij,mn,g,h =
1√
2d

(xl
ij,gW

Q,l)(xl
mn,hW
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+
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Q
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(9)

where g and h are the index of the origination of query and key respectively, for instance, 1 for the
tokens from the template image, 2 for the tokens from the search image. The form in the decoder is
similar, except that g is fixed. In our implementation, the parameters of untied positional encoding
are shared inside the encoder and the decoder, respectively.

2 The Effect of Pre-training Datasets

The two variants of our tracker, SwinTrack-T-224 and SwinTrack-B-384 are using different pre-
training datasets, which are derived from the settings from Swin Transformer [12]. Specifically,
SwinTrack-T-224 adopts ImageNet-1k and SwinTrack-B-384 adopts ImageNet-22k.

To analyze the effect of different pre-training datasets, we conduct an experiment on the performance
of our tracker with different pre-training datasets. Other than the pre-training datasets, The experiment
follows the same settings in the ablation study in the paper, the motion token is not used and the results
on GOT-10k are trained on the full datasets as described in the paper. From Tab. 1, we can observe
that, for smaller model SwinTrack-T-224 (23M # parameters), pre-training on ImageNet-22k brings
small improvements on LaSOT (+0.6%) and TrackingNet (+0.4%) but degrades the performance on
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GOT-10k (-1.4%). For larger model SwinTrack-B-384 (91M # parameters), pre-training on ImageNet-
22k shows significant performance gains on LaSOT (+2.2%) and GOT-10k (+3.0%) but slightly
degrades the result on TrackingNet (-0.6%). On LaSOText, ImageNet-22k shows a performance
degradation on smaller model SwinTrack-T-224 (-0.9%) and brings small improvements on larger
model SwinTrack-B-384 (+0.2%).

Table 1: The effect of Imagenet-22k pre-training. The results are following the settings in the ablation
study in the paper (motion token is not used and the result on GOT-10k is trained on the full dataset).

Trackers Pre-training LaSOT [6] LaSOText [5] TrackingNet [15] GOT-10k [9]
SUC P SUC P SUC P AO SR0.5 SR0.75

SwinTrack-T-224 ImageNet-1k 66.7 70.6 46.9 52.9 86.7 80.1 69.7 79.0 65.6
SwinTrack-T-224 ImageNet-22k 67.3 71.7 46.0 51.7 81.2 78.9 69.5 78.9 65.5
SwinTrack-B-384 ImageNet-1k 68.0 72.5 47.3 53.2 83.8 82.9 71.8 80.2 67.1
SwinTrack-B-384 ImageNet-22k 70.2 75.3 47.5 53.3 86.9 80.1 70.2 80.7 65.4

Table 2: Performance comparisons with newly released Transformer-based Trackers on four bench-
marks: LaSOT, LaSOText, TrackingNet and GOT-10k.

Tracker Pre-training LaSOT [6] LaSOText [5] TrackingNet [15] GOT-10k [9]
SUC P SUC P SUC P AO SR0.5 SR0.75

STARK [20] ImageNet-1k 67.1 - - - 82.0 - 68.8 78.1 64.1
SBT [18] ImageNet-1k 66.7 71.1 - - - - 70.4 80.8 64.7

ToMP [13] ImageNet-1k 68.5 73.5 45.9 - 81.5 78.9 - - -
MixFormer [3] ImageNet-22k 70.1 76.3 - - 83.9 83.1 - - -

AiATrack [7] ImageNet-1k 69.0 73.8 47.7 55.4 82.7 80.4 69.6 80.0 63.2
Unicorn [19] ImageNet-1k 68.5 74.1 - - 83.0 82.2 - - -

OSTrack [21] MAE [8] 71.1 77.6 50.5 57.6 83.9 83.2 73.7 83.2 70.8
SwinTrack-T-224 ImageNet-1k 67.2 70.8 47.6 53.9 81.1 78.4 71.3 81.9 64.5
SwinTrack-B-384 ImageNet-22k 71.3 76.5 49.1 55.6 84.0 82.8 72.4 80.5 67.8

3 Comparison with Newly Released Transformer-based Trackers

We compare our tracker with some newly released Transformer-based trackers, including STARK [20],
SBT [18], ToMP [13], MixFormer [3], AiATrack [7], Unicorn [19], OSTrack [21] in Tab. 2 in four
challenging benchmarks. The result shows our tracker is still competitive.

Fig. 1 and Fig. 2 show the success plot and the precision plot respectively. The comparison includes
our SwinTrack-T-224, our SwinTrack-B-384, TransT[2], STARK[20], MixFormer[3], AiATrack[7]
and ToMP[13]. Our tracker obtained the best performance on this benchmark. By looking into the
curves of the figures, there is a significant advantage in the bounding box accuracy compared with
other trackers due to our fully attentional architecture.

The success AUC score under different attributes of LaSOT [6] Test set in shown in Fig. 3. Fig. 3
indicates that our tracker has no obvious shortcomings except the viewpoint change.

4 Results on UAV123 and VOT Benchmark

In this section, we report the performance of the tracker on three additional benchmarks, including
UAV123 [14], VOT2020 and VOT-STB2022 [11].

UAV123[14] is an aerial video dataset and benchmark for low-altitude UAV target tracking, containing
123 video sequences. Our tracker is on par with the state-of-the-art, AiATrack [7], on this benchmark.
The results are shown in Tab. 3.

Finally, we evaluate our tracker on the two versions of the VOT Challenge: VOT2020 and VOT-
STB2022. The VOT2020 dataset contains 60 videos with segmentation masks annotated. Since our
tracker is a bounding box only method, we compare the results with the trackers that produce the
bounding boxes as well. The result in Tab.4 shows that SwinTrack-T-224 has a better performance
than the larger SwinTrack-B-384 on this benchmark.
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In addition, We report the results on VOT-STB2022 in Tab.5. SwinTrack-T-224 has a better perfor-
mance on VOT-STB2022 as well. No comparison is made since VOT-STB2022 is a newly released
benchmark.

Table 3: Comparison to the state-of-the-arts on UAV123 [14] benchmark.

Ocean
[22]

DiMP
[1]

TransT
[2]

ToMP
50[13]

MixFormer
22k[3]

AiATrack
[7]

SwinTrack
T-224

SwinTrack
B-384

AUC (%) 62.1 65.3 69.1 69.0 70.4 70.6 68.8 70.5

Table 4: Comparison to the state-of-the-art bounding box only methods on VOT2020ST [11].

ATOM
[4]

DiMP
[1]

STARK
50[20]

STARK
101[20]

ToMP
50[13]

ToMP
101[13]

SwinTrack
T-224

SwinTrack
B-384

EAO 0.271 0.274 0.308 0.303 0.297 0.309 0.302 0.283
Accuracy 0.462 0.457 0.478 0.481 0.453 0.453 0.471 0.472
Robustness 0.734 0.734 0.799 0.775 0.789 0.814 0.775 0.741

Table 5: Results on VOT-STB2022 [11].

SwinTrack
T-224

SwinTrack
B-384

EAO 0.505 0.477
Accuracy 0.777 0.790
Robustness 0.790 0.759

5 Quantitative Analysis of the Effectiveness of Motion Token

To give a further analysis of the effectiveness of motion token, we provide the success plot (Fig. 4)
and precision plot (Fig. 5) on LaSOT test set, and the success AUC score under different attributes of
LaSOT test set in Fig. 6. The success plot and the precision plot show that the motion token improves
the performance of the trackers by boosting robustness. While the Fig. 6 further points out that the
motion token can assist the tracker to recover from a failure state when the vision features are not
reliable like an object is getting out of view or fully occluded by other objects.

6 Response Visualization for Qualitative Analysis

We provide the heatmap visualization of the response map generated by the IoU-aware classification
branch of the head in our SwinTrack-B-384 in Fig. 7. The visualized sequences are from LaSOText [5],
with challenges include fast motion, full occlusion, hard distractor, etc. The results demonstrate the
great discriminative power of our tracker. Many trackers will show a multi-peak on the response map
when the target object is occluded or multiple similar objects exist. With the vision-motion integrated
Transformer architecture, our tracker eases such phenomenon.

7 Failure Case

We show some typical failure cases of our tracker (SwinTrack-B-384 on LaSOText [5] and VOT-
STB2022 [11]) in Fig. 8. The first case suffers from a mixture of low resolution, fast motion, and
background clutter. The second case suffers from a fast occlusion by a distractor. The third case
suffers from the non-semantic target.
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Figure 1: Comparison to the state-of-the-art trackers on LaSOT [6] Test set using success (SUC)
AUC score.
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Figure 2: Comparison to the state-of-the-art trackers on LaSOT [6] Test set using precision (PRE)
AUC score.
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Figure 3: Comparison to the state-of-the-art trackers using success (SUC) AUC score under different
attributes of LaSOT [6] Test set.
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Figure 4: Success (SUC) AUC score on LaSOT [6] Test set assessing the effectiveness of the motion
token.
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Figure 5: Precision (PRE) AUC score on LaSOT [6] Test set assessing the effectiveness of the motion
token.
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Figure 6: Success (SUC) AUC score under different attributes of LaSOT [6] Test set assessing the
effectiveness of the motion token.
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Figure 7: Heatmap visualization of the tracking response map of our SwinTrack-B-384 on
LaSOText [5]. The odd rows visualize the search region patches with ground-truth bounding box
(in red rectangles). The even rows visualize the search region patches blended with the heatmap
visualization of the response map. The sequences and challenges involved: atv-10 (POC, ROT, VC,
SV, LR, ARC), wingsuit-10 (CM, BC, VC, SV, FOC, LR, ARC), rhino-9 (DEF, SV, ARC) and misc-3
(POC, MB, ROT, BC, SV, FOC, FM, LR).
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Figure 8: Heatmap visualization of the failure cases. The organizational form is the same as Fig. 7.
The sequences and challenges involved: badminton-3 in LaSOText (MB, SV, FOC, FM, OV, LR,
ARC), skatingshoe-2 in LaSOText (POC, MB, ROT, BC, SV, FOC, FM, LR, ARC) and conduction1
(non-semantic target) in VOT-STB2022.1

1IV: Illumination Variation, POC: Partial Occlusion, DEF: Deformation, MB: Motion Blur, CM: Camera
Motion, ROT: Rotation, BC: Background Clutter, VC: Viewpoint Change, SV: Scale Variation, FOC: Full
Occlusion, FM: Fast Motion, OV: Out-of-View, LR: Low Resolution, ARC: Aspect Ration Change
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