
A Proofs

A.1 Proof of Theorem 1

Theorem 1. Let the observed data be sampled from a nonlinear ICA model as defined in Eqs. (1)
and (2). Suppose the following assumptions hold:

i. Mixing function f is invertible and smooth. Its inverse is also smooth.

ii. For all i ∈ {1, . . . , n} and j ∈ Fi,:, there exist {s(ℓ)}|Fi,:|
ℓ=1 and T s.t.

span{Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 = Rn

Fi,:
and

[
Jf (s

(ℓ))T
]
j,:

∈ Rn
F̂i,:

.

iii. |F̂ | ≤ |F|.

iv. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists Ck such that⋂
i∈Ck

Fi,: = {k}.

Then h := f̂−1 ◦ f is a composition of a component-wise invertible transformation and a permutation.

Proof. Our goal here is to show that function h := f̂−1 ◦ f is a permutation with component-wise
invertible transformation of sources, i.e., f̂ = f ◦ h−1(s). Let D(s) represents a diagonal matrix
and P represent a permutation matrix. By using chain rule repeatedly, we write f̂ = f ◦ h−1(s)
equivalently as

Jf̂ (ŝ) = Jf◦h−1(h(s))

= Jf◦g−1◦P−1(Pg(s))

= Jf◦g−1

(
P−1Pg(s)

)
JP−1(Pg(s))

= Jf◦g−1(g(s))JP−1(Pg(s))

= Jf

(
g−1g(s)

)
Jg−1(g(s))JP−1(Pg(s))

= Jf (s)D(s)P,

(9)

where g is an invertible element-wise function. Thus our goal is equivalent to show that

Jf̂ (ŝ) = Jf (s)D(s)P. (10)

Because Jf̂ (ŝ) and Jf (s) are both invertible, we have the following equation

Jf̂ (ŝ) = Jf (s)T(s), (11)

where T(s) is an invertible matrix.

Note that we denote F as the support of Jf (s), F̂ as the support of Jf̂ (ŝ) and T as the support of
T(s). Besides, we denote T as a matrix with the support T . According to Assumption ii, we have

span{Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 = Rn

Fi,:
. (12)

Since {Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 forms a basis of Rn

Fi,:
, for any j0 ∈ Fi,:, we are able to rewrite the one-hot

vector ej0 ∈ Rn
Fi,:

as

ej0 =
∑

ℓ∈Fi,:

αℓJf (s
(ℓ))i,:, (13)

where αℓ is the corresponding coefficient. Then

Tj0,: = ej0T =
∑

ℓ∈Fi,:

αℓJf (s
(ℓ))i,:T ∈ Rn

F̂i,:
, (14)

where the final “∈” follows from Assumption ii that each element in the summation belongs to Rn
F̂i,:

.
Thus

∀j ∈ Fi,:, Tj,: ∈ Rn
F̂i,:

. (15)

13



Then we are able to draw connections between these supports according to Defn. 3

∀(i, j) ∈ F , {i} × Tj,: ⊂ F̂ . (16)

According to Assumption i, T(s) is an invertible matrix, indicating that it has a non-zero determinant.
Representing the determinant of the matrix T(s) as its Leibniz formula yields

det(T(s)) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

T(s)i,σ(i)

)
̸= 0, (17)

where Sn is the set of n-permutations. Then there exists at least one term of the sum that is non-zero,
i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, sgn(σ)
n∏

i=1

T(s)i,σ(i) ̸= 0. (18)

This is equivalent to
∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, T(s)i,σ(i) ̸= 0. (19)

Then we can see that this σ is in the support of T(s), which implies that

∀j ∈ {1, . . . , n}, σ(j) ∈ Tj,:. (20)

Together with Eq. (16), it follows that

∀(i, j) ∈ F , (i, σ(j)) ∈ {i} × Tj,: ⊂ F̂ . (21)

Denote
σ(F) = {(i, σ(j)) | (i, j) ∈ F}. (22)

Then we have
σ(F) ⊂ F̂ . (23)

According to Assumption iii, we can see that

|F̂ | ≤ |F| = |σ(F)|. (24)

Together with Eq. (23), we have
σ(F) = F̂ . (25)

Suppose T(s) ̸= D(s)P, then

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (26)

Besides, consider j3 ∈ {1, . . . , n} such that

σ(j3) ∈ Tj1,: ∩ Tj2,:. (27)

Because j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. A similar strategy has
previously been used in (Lachapelle et al., 2022). By Assumption iv, there exists Cj1 ∋ j1 such that⋂

i∈Cj1
Fi,: = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,:, (28)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,:. (29)

Because j1 ∈ Fi3,:, we have (i3, j1) ∈ F . Then according to Eq. (16), we have the following
equation

{i3} × Tj1,: ⊂ F̂ . (30)
Notice that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (31)

Then by Eqs. (31) and (30), we have

(i3, σ(j3)) ∈ F̂ , (32)

which implies (i3, j3) ∈ F by Eq. (25) and Eq. (22), therefore contradicting Eq. (29). Thus, we
prove by contradiction that T(s) = D(s)P. Replacing T(s) with D(s)P in Eq. (11), we prove Eq.
(10), which is the goal.
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A.2 Proof of Corollary 1

Corollary 1. Let the observed data be sampled from a nonlinear ICA model as defined in Eqs. (1)
and (2). Suppose the following assumptions hold:

i. The function h := f̂−1 ◦ f is a composition of a component-wise invertible transformation
and a permutation.

ii. The mixing function f is volume-preserving.

iii. The source distribution ps(s) is a factorial multivariate Gaussian.

Then h := f̂−1 ◦ f is a composition of a component-wise linear transformation and a permutation.

Proof. The proof technique of this corollary is inspired by Thm. 2 in Yang et al. (2022). According
to Assumption iii, true sources s are from a factorial multivariate Gaussian distribution. Together
with the estimated sources ŝ from the same type of distribution, we represent the densities of the true
and estimated sources as

ps(s) =

n∏
i=1

1

Zi
exp

(
−θ′i,1si − θ′i,2s

2
i

)
,

pŝ(ŝ) =

n∏
i=1

1

Zi
exp

(
−θi,1ŝi − θi,2ŝ

2
i

)
,

(33)

where Zi > 0 is a constant. The sufficient statistics θi,1 and θi,2 are assumed to be linearly
independent.

Applying the change of variable rule, we have ps(s) = pŝ(ŝ)|det(Jh(s))|, which, by plugging in Eq.
(33) and taking the logarithm on both sides, yields

n∑
i=1

log psi(si)− log |det(Jh(s))| = −
n∑

i=1

(
θi,1hi(s) + θi,2hi(s)

2 + logZi

)
. (34)

Because of Assumption ii and the corresponding estimating process, det(Jh(s)) = 1. Thus
n∑

i=1

log psi(si) = −
n∑

i=1

(
θi,1hi(s) + θi,2hi(s)

2 + logZi

)
. (35)

According to Assumption i, function h is a component-wise invertible transformation of sources, i.e.,

hi(s) = hi(si). (36)

Combining Eqs. (33) and (36) with Eq. (35), it follows that
n∑

i=1

(
−θ′i,1si − θ′i,2s

2
i

)
= −

n∑
i=1

(
θi,1hi(si) + θi,2hi(si)

2 + logZi

)
.

Then we have
θ′i,1si + θ′i,2s

2
i + logZi = θi,1hi(si) + θi,2hi(si)

2.

Therefore, hi(si) is a linear function of si.

A.3 Proof of Proposition 1

Proposition 1. Let the observed data be sampled from a linear ICA model defined in Eqs. (1) and
(3) with Gaussian sources. Suppose the following assumptions hold:

i. Mixing matrix A is invertible.

ii. There exists a matrix Â s.t. for all j ∈ supp(A)i,:, supp(ÂA−1)j,: ∈ Rn
supp(Â)i,:

.

iii. | supp(Â)| ≤ | supp(A)|.
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iv. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists Ck such that⋂
i∈Ck

supp(Ai,:) = {k}.

Then Â = ADP, where D is a diagonal matrix and P is a column permutation matrix.

Proof. Let Â = AT, where T ∈ Rn×n is an arbitrary matrix. Because our goal is to prove
Â = ADP, it is equivalent to prove the following equation:

T = DP. (37)

For brevity of notation, we denote A as the support of Â, Â as the support of A and T as the support
of T.

According to Assumption ii, we have

∀j ∈ supp(A)i,:, supp(ÂA−1)j,: ∈ Rn
supp(Â)i,:

, (38)

which is equivalent to
∀j ∈ Ai,:, Tj,: ∈ Rn

Âi,:
. (39)

Then we have
∀(i, j) ∈ A, {i} × Tj,: ⊂ Â. (40)

According to Assumption i, T is an invertible matrix, indicating that it has a non-zero determinant.
Representing the determinant of the matrix T as its Leibniz formula yields

det(T) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

Ti,σ(i)

)
̸= 0, (41)

where Sn is the set of n-permutations. Then there exists at least one term of the sum that is non-zero,
i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, sgn(σ)
n∏

i=1

Ti,σ(i) ̸= 0. (42)

This is equivalent to
∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, Ti,σ(i) ̸= 0. (43)

Then we can see that this σ is in the support of T, which implies that

∀j ∈ {1, . . . , n}, σ(j) ∈ Tj,:. (44)

Together with Eq. (40), it follows that

∀(i, j) ∈ A, (i, σ(j)) ∈ {i} × Tj,: ⊂ Â. (45)

Denote
σ(A) = {(i, σ(j)) | (i, j) ∈ A}. (46)

Then we have
σ(A) ⊂ Â. (47)

According to Assumption iii, we can see that

|Â| ≤ |A| = |σ(A)|. (48)

Together with Eq. (47), we have
σ(A) = Â. (49)

Suppose T ̸= DP, there must exists j1 and j2 such that

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (50)

Besides, consider j3 ∈ {1, . . . , n} such that

σ(j3) ∈ Tj1,: ∩ Tj2,:. (51)
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Because j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. By Assumption iv, there exists
Cj1 ∋ j1 such that

⋂
i∈Cj1

Ai,: = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Ai,:, (52)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Ai3,:. (53)

Because j1 ∈ Ai3,:, we have (i3, j1) ∈ A. Then according to Eq. (40), we have the following
equation

{i3} × Tj1,: ⊂ Â. (54)

Notice that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (55)

Then by Eqs. (55) and (54), we have

(i3, σ(j3)) ∈ Â, (56)

which implies (i3, j3) ∈ A by Eqs. (49) and (46), contradicting Eq. (53). Thus, we prove by
contradiction that T = DP, which is the goal (i.e., Eq. (37)).

A.4 Proof of Theorem 2

Theorem 2. Let the observed data be sampled from a linear ICA model defined in Eqs. (1) and (3)
with Gaussian sources. Differently, the number of observed variables (denoted as m) could be larger
than that of the sources n, i.e., m ≥ n. Suppose the following assumptions hold:

i. The nonzero coefficients of the mixing matrix A are randomly drawn from a distribution
that is absolutely continuous with respect to Lebesgue measure.

ii. The estimated mixing matrix Â has the minimal L0 norm during estimation.

iii. (Structural Sparsity) Given C ⊆ {1, 2, . . . , n} where |C| > 1, let AC ∈ Rm×|C| represents
a submatrix of A ∈ Rm×n consisting of columns with indices C. Then, for all k ∈ C, we
have ∣∣∣∣∣ ⋃

k′∈C

supp(Ak′)

∣∣∣∣∣− rank(overlap(AC)) > |supp(Ak)| .

Then Â = ADP with probability one, where D is a diagonal matrix and P is a column permutation
matrix.

Proof. Because of Assumptions ( ii), we consider the following combinatorial optimization

Û := argmin
U∈Rs×s;

UU⊤=Is

∥AU∥0, (57)

where A is the true mixing matrix and Û denotes the rotation matrix corresponding to the solution of
the optimization problem. Let Â = AÛ.

Suppose Â ̸= ADP, then Û ̸= DP. This implies that there exists some j′ ∈ {1, . . . , s} and
its corresponding set of row indices Ij′ (|Ij′ | > 1), such that Ûi,j′ ̸= 0 for all i ∈ I ′

j , and
Ûi,j′ = 0 for all i /∈ Ij′ . Because Û is invertible and has full row rank, there exists one row index
i′ in Ij′ that uniquely correspond to j′, in order to avoid linear dependence among columns. Let

Û :=
[
Û1 · · · Ûs

]
, we have

∥∥∥Âj′

∥∥∥
0
=
∥∥∥AÛj′

∥∥∥
0
=

∥∥∥∥∥∥
∑
i∈Ij′

AiÛi,j′

∥∥∥∥∥∥
0

. (58)
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Let AIj′ ∈ Rm×|Ij′ | represents a submatrix of A consisting of columns with indices Ij′ . Note that
with a slight abuse of notation, Ai denotes i-th column of the matrix A. According to Assumptions
(i, iii), since |Ij′ | > 1 and Ûi,j′ ̸= 0, we have

∥∥∥∥∥∥
∑
i∈Ij′

AiÛi,j′

∥∥∥∥∥∥
0

≥

∣∣∣∣∣∣
⋃

i∈Ij′

supp(Ai)

∣∣∣∣∣∣− rank(overlap(AIj′ )) > |supp(Ai′)| , (59)

where overlap(·) is defined as Defn. 4. Term rank(overlap(AIj′ )) represents the maximal number
of rows, in which all non-zero entries can be possibly cancelled out by the linear combination∑

i∈Ij′
Ai. Assumption i rules out a specific set of parameters that leads to a violation of that, e.g.,

two columns of A are identical in terms of element values and support. So it follows that

∥∥∥∥∥∥
∑
i∈Ij′

AiÛi,j′

∥∥∥∥∥∥
0

> |supp(Ai′)| = ∥Ai′∥0 =
∥∥∥Ai′Ûi′,j′

∥∥∥
0
. (60)

Then we can construct Ũ :=
[
Ũ1 · · · Ũs

]
. First, we set Ũi′,j′ as a unique non-zero entry in column

Ũj′ . For simplicity, we can just set Ũi′,j′ = 1. For other column Ũj , where j ̸= j′ and Ûi,j ̸= 0,
we set Ũi,j = 1. Therefore


∥∥∥AÛj

∥∥∥
0
>
∥∥∥AŨj

∥∥∥
0
, j = j′,∥∥∥AÛj

∥∥∥
0
=
∥∥∥AŨj

∥∥∥
0
, j ̸= j′.

(61)

Since Assumption iii covers all columns, Eq. (60) holds for any j′ ∈ {1, . . . , s}. If there are multiple
columns of Û with more than one nonzero entry, we derive Eq. (60) for each of them. We denote the
set of different target column indices j′ as J. For j ∈ J, we set Ũij ,j = 1, where ij is the unique
index of the corresponding non-zero entry in column Ûj . For other column Ũj , where j /∈ J and
Ûi,j ̸= 0, we set Ũi,j = 1. Then we have


∥∥∥AÛj

∥∥∥
0
>
∥∥∥AŨj

∥∥∥
0
, j ∈ J,∥∥∥AÛj

∥∥∥
0
=
∥∥∥AŨj

∥∥∥
0
, j /∈ J.

(62)

As noted previously, every column index j corresponds to a unique row index. Ũ is a permutation
matrix and ŨŨ⊤ = Is. It then follows that

∥∥∥AÛ
∥∥∥
0
>
∥∥∥AŨ

∥∥∥
0
, which contradicts the definition of

Û.

A.5 Proof of Theorem 3

Theorem 3. Given a nonlinear ICA model defined in Eqs. (1) and (2), where f is the true mixing
function. Consider f̂ = f ◦ G−1 ◦ U ◦ G, where G denotes an invertible Gaussianization3 that
maps the distribution to an standard isotropic (rotation-invariant) Gaussian, U denotes a rotation,
and G−1 maps the distribution back to that before applying Û ◦G. If Assumptions i, ii and iii of
Thm. 2 are satisfied by replacing A with Jf (s) and Â with Jf̂ (s), then function h := f̂−1 ◦ f is a
composition of a component-wise invertible transformation and a permutation with probability one.

3One example is described in (Gresele et al., 2021), i.e., a composition of the element-wise CDFs of a smooth
factorised density and a Gaussian, respectively.
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Proof. Let D(s) represents a diagonal matrix and P represent a permutation matrix. By using the
chain rule repeatedly, we write f̂ = f ◦ h(s) equivalently as

Jf̂ (ŝ) = Jf◦h(h(s))

= Jf◦g−1◦P−1(Pg(s))

= Jf◦g−1

(
P−1Pg(s)

)
JP−1(Pg(s))

= Jf◦g−1(g(s))JP−1(Pg(s))

= Jf

(
g−1g(s)

)
Jg−1(g(s))JP−1(Pg(s))

= Jf (s)D(s)P,

(63)

where g is an invertible element-wise function. Thus our goal is equivalent to show that

Jf̂ (ŝ) = Jf (s)D(s)P. (64)

We prove it by contrapositive.

Because f̂ = f ◦G−1 ◦U ◦G, we write

Jf̂ (s) = Jf◦G−1◦Û◦G(s)

= Jf◦G−1◦Û(G(s))JG(s)

= Jf◦G−1(ÛG(s))JÛ (G(s))JG(s)

= Jf (G
−1ÛG(s))JG−1(ÛG(s))JÛ (G(s))JG(s)

= Jf (s)JG−1(ÛG(s))JÛ(G(s))JG(s)

= Jf (s)D1(s)ÛD2(s),

(65)

where we have used the chain rule repeatedly. Because G is an invertible element-wise transformation,
D1(s) and D2(s) are both diagonal matrices.

Because Assumption ii of Thm. 2 is satisfied for Jf (s), we consider the following combinatorial
optimization problem

Û := argmin
U∈Rs×s;

UUT=Is

∥Jf (s)U∥0. (66)

Let Ū = D1(s)ÛD2(s). Because Jf̂ (s) = Jf (s)Ū, then if J(f̂) = Jf (s)D(s)P, we have Ū =
D(s)P. Thus, for every j ∈ {1, . . . , s}, there exists a corresponding i′, such that Ūi′,j ̸= 0, and
Ūi,j = 0 for all i ̸= i′. Because the columns of the matrix of an orthogonal transformation form an
orthogonal set, columns of Ū are linearly independent. Thus, different j cannot correspond to the
same i′, otherwise it is possible for these columns to be linearly dependent.

Suppose Jf̂ (s) ̸= Jf (s)P, then Ū ̸= P. There exists j′ ∈ {1, . . . , s} and its corresponding set of
row indices Ij′ (|Ij′ | > 1), such that Ūi,j′ ̸= 0 for all i ∈ I ′

j , and Ūi,j′ = 0 for all i /∈ Ij′ . Similarly,
there exists one row index i′ in Ij′ that uniquely correspond to j′, in order to avoid linear dependence
among columns. Let Ū :=

[
Ū1 · · · Ūs

]
, we have

∥∥Jf̂ (s)j′
∥∥
0
=
∥∥Jf (s)Ūj′

∥∥
0
=

∥∥∥∥∥∥
∑
i∈Ij′

Jf (s)iŪi,j′

∥∥∥∥∥∥
0

. (67)

Let Jf (s)Ij′ ∈ Rm×|Ij′ | represents a submatrix of Jf (s) consisting of columns with indices Ij′ .
Note that with a slight abuse of notation, Jf (s)i denotes i-th column of the matrix Jf (s). Because
Assumptions (i, iii) of Thm. 2 hold for Jf (s), with |Ij′ | > 1 and Ūi,j′ ̸= 0, we have

∥∥∥∥∥∥
∑
i∈Ij′

Jf (s)iŪi,j′

∥∥∥∥∥∥
0

≥

∣∣∣∣∣∣
⋃

i∈Ij′

supp(Jf (s)i)

∣∣∣∣∣∣− rank(overlap(Jf (s)Ij′ )) > |supp(Jf (s)i′)| , (68)
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where overlap(·) is defined as Defn. 4. Note that here we slightly abuse the notation overlap(·)
to make it apply for the matrix-valued function Jf (s). Term rank(overlap(Jf (s)Ij′ )) generally
represents the maximal number of rows, in which all non-zero entries can be cancelled out by the
linear combination

∑
i∈Ij′

Jf (s)i. Also with a slight abuse of the notation, Assumption i of Thm. 2
rules out a specific set of parameters that leads to a violation of that, e.g., two columns of Jf (s) are
identical in terms of element values and support. So it follows that

∥∥∥∥∥∥
∑
i∈Ij′

Jf (s)iŪi,j′

∥∥∥∥∥∥
0

> |supp(Jf (s)i′)| = ∥Jf (s)i′∥0 =
∥∥Jf (s)i′Ūi′,j′

∥∥
0
. (69)

Then we can construct Ũ :=
[
Ũ1 · · · Ũs

]
. First, we set Ũi′,j′ as a unique non-zero entry in column

Ũj′ . For simplicity, we can just set Ũi′,j′ = 1. For other column Ũj , where j ̸= j′ and Ūi,j ̸= 0,
we set Ũi,j = 1. Therefore


∥∥Jf (s)Ūj

∥∥
0
>
∥∥∥Jf (s)Ũj

∥∥∥
0
, j = j′,∥∥Jf (s)Ūj

∥∥
0
=
∥∥∥Jf (s)Ũj

∥∥∥
0
, j ̸= j′.

(70)

Since Assumption iii of Thm. 2 covers all columns, Eq. (69) holds for any j′ ∈ {1, . . . , s}. If there
are multiple columns of Ū with more than one nonzero entry, we derive Eq. (69) for each of them.
We denote the set of different target column indices j′ as J. For j ∈ J, we set Ũij ,j = 1, where ij is
the unique index of the corresponding non-zero entry in column Ûj . For other column Ũj , where
j /∈ J and Ūi,j ̸= 0, we set Ũi,j = 1. Then we have


∥∥Jf (s)Ūj

∥∥
0
>
∥∥∥Jf (s)Ũj

∥∥∥
0
, j ∈ J,∥∥Jf (s)Ūj

∥∥
0
=
∥∥∥Jf (s)Ũj

∥∥∥
0
, j /∈ J.

(71)

As noted previously, every column index j corresponds to a unique row index i. Ũ is a permutation
matrix and ŨŨ⊤ = Is. It then follows that

∥∥Jf (s)Ū
∥∥
0
>
∥∥∥Jf (s)Ũ

∥∥∥
0
, which contradicts the

definition of Ū.

A.6 Proof of Proposition 2

Proposition 2. Let the observed data be sampled from a nonlinear ICA model as defined in Eqs. (1),
(2), and (7). Suppose the following assumptions hold:

i. (Independent Influences): The influence of each source on the observed variables is inde-
pendent of each other, i.e., each partial derivative ∂f/∂si is independent of the other sources
and their influences in a non-statistical sense.

ii. The mixing function f and its inverse are twice differentiable.

iii. The Jacobian determinant of mixing function can be factorized as det(Jf (s)) =
∏n

i=1 yi(si),
where yi is a function that depends only on si. Note that volume-preserving transformation
is a special case when yi(si) = 1, i = 1, . . . , n.

iv. During estimation, the columns of the Jacobian of the estimated unmixing function are
regularized to be mutually orthogonal and with equal euclidean norm.

Then h := f̂−1 ◦ f is a composition of a component-wise invertible transformation and a permutation.
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Proof. We first restate the setup here. Consider the following data-generating process of nonlinear
ICA

ps(s) =

n∏
i=1

psi(si), (72)

x = f(s), (73)

where x denotes the observed random vector, s is the latent random vector representing the marginally
independent sources, psi is the marginal PDF of si, ps is the joint PDF, and f : s → x denotes a
nonlinear mixing function. We preprocess the observational data by centering the columns of the
Jacobian of the mixing function. This could be achieved by applying a fixed transformation on the
observational data that is equivalent to left multiplying the Jacobian of the mixing function with
the centering matrix U := In − (1/n)11⊤, where In is the identity matrix of size n and 1 is the n-
dimensional vector of all ones. After centering, according to the assumption of independent influences,
the columns of the Jacobian matrix are uncorrelated and of zero-means, and thus orthogonal to each
other 4. Since the preprocessing transformation U is fixed w.r.t. no variables other than n, which is
the fixed number of dimensions, it could always be recovered after reconstruction.

We assume that the distribution of the estimated sources ŝ follows a factorial multivariate Gaussian:

pŝ(ŝ) =

n∏
i=1

1

Zi
exp

(
−θi,1ŝi − θi,2ŝ

2
i

)
, (74)

where Zi > 0 is a constant. The sufficient statistics θi,1 = − µi

σ2
i

and θi,2 = 1
2σ2

i
are assumed to be

linearly independent. We set the variances σ2
i to be distinct without loss of generality, which can

be placed as a constraint during the estimation process as the sufficient statistics of the estimated
distribution are trainable.

Our goal here is to show that function h = f̂−1 ◦f is a composition of a permutation and a component-
wise invertible transformation of sources. By using chain rule repeatedly, we write the Jacobian of
function h := f̂−1 ◦ f as

Jh(s) = Jf̂−1◦f (s)

= Jf̂−1(f(s))Jf (s)

= Jf̂−1(x)Jf (s)

= Ô(x)λ̂(x)O(s)D(s)

= λ̂(x)Ô(x)O(s)D(s),

(75)

where λ̂(x) is a scalar, Ô(x) and O(s) represent the corresponding orthogonal matrices, and D(s)
denotes the corresponding diagonal matrix. The fourth equality follows from assumption i.

Since Jh(s) = λ̂(x)Ô(x)O(s)D(s) by Eq. (75) and Ô(x)O(s) is an orthogonal matrix, the columns
of Jh(s) are orthogonal to each other, i.e.,

Jh(s)
⊤
:,jJh(s):,k = 0, ∀j ̸= k, (76)

where Jh(s):,j is the j-th column of matrix Jh(s). This can be rewritten as
n∑

i=1

(
∂hi

∂sj

∂hi

∂sk

)
= 0, ∀j ̸= k. (77)

By assumption, the components of the true sources s are mutually independent, while the estimated
sources ŝ follows a multivariate Gaussian distribution:

ps(s) =

n∏
i=1

psi(si),

pŝ(ŝ) =

n∏
i=1

1

Zi
exp

(
−θi,1ŝi − θi,2ŝ

2
i

)
,

(78)

4Similarly, Gresele et al. (2021) directly formalize the notion of Independent Mechanism Analysis as
orthogonality of the columns of the Jacobian.
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where Zi > 0 is a constant. The sufficient statistics θi,1 and θi,2 are assumed to be linearly
independent.

Applying the change of variable rule, we have ps(s) = pŝ(ŝ)|det(Jh(s))|, which, by plugging in Eq.
(78) and taking the logarithm on both sides, yields

n∑
i=1

log psi(si)− log |det(Jh(s))| = −
n∑

i=1

(
θi,1hi(s) + θi,2hi(s)

2 + logZi

)
. (79)

According to assumption iii, we have the factorization det(Jh(s)) =
∏n

i=1 yi(si), where yi is a
function that depends only on si. This implies that

n∑
i=1

(log psi(si)− |yi(si)|) = −
n∑

i=1

(
θi,1hi(s) + θi,2hi(s)

2 + logZi

)
. (80)

Then, based on Lemma 1 by Yang et al. (2022), we have the following equation:
n∑

i=1

(
1

σ2
i

∂hi

∂sj

∂hi

∂sk

)
= 0, ∀j ̸= k. (81)

Specifically, Eq. (80) is similar to Eq. (17’) and Eq. (17) in Yang et al. (2022). Eq. (81) is similar
to Eq. (20) in Yang et al. (2022). The only difference is that there is no auxiliary variable in Eqs.
(80) and (81), which does not influence the deriviation of Lemma 1 by Yang et al. (2022). The
assumptions of the lemma are satisfied here, with the alternation that Eq. (12) in Yang et al. (2022) is
weakened to Eq. (17’) in Yang et al. (2022), which does not influence the deriviation according to
Appx. B in Yang et al. (2022). Thus, based on Lemma 1 in (Yang et al., 2022) but without auxiliary
variables, we could obtain Eq. (81).

Then, we define the following matrices:

Λ1 = diag

(
1

σ2
1

, · · · , 1

σ2
n

)
,

Λ2 = In,

Σ(1, s) = diag

(
n∑

i=1

1

σ2
i

(
∂hi

∂s1

)2

, · · · ,
n∑

i=1

1

σ2
i

(
∂hi

∂sn

)2
)
,

Σ(2, s) = diag

(
n∑

i=1

(
∂hi

∂s1

)2

, · · · ,
n∑

i=1

(
∂hi

∂sn

)2
)
.

(82)

We rewrite Eq. (81) and Eq. (77) as{
Jh(s)

⊤Λ1Jh(s) = Σ(1, s),
Jh(s)

⊤Λ2Jh(s) = Σ(2, s).
(83)

Because all elements in matrices defined in Eq. (82) are positive, we can take sqaure roots on both
sides of equations in Eq. (83), yielding{

Λ
1/2
1 Jh(s) = O1Σ(1, s)1/2,

Λ
1/2
2 Jh(s) = O2Σ(2, s)1/2,

(84)

where O1 and O2 are the corresponding orthogonal matrices (OT
1O1 = OT

2O2 = In) and Λ1/2

denotes the matrix by applying entry-wise square root to the entries of diagonal matrix Λ. Then we
rewrite Eq. (84) as {

Jh(s) = Λ
−1/2
1 O1Σ(1, s)1/2,

Jh(s) = Λ
−1/2
2 O2Σ(2, s)1/2.

(85)

By reformulating, we have

Σ(1, s)1/2Σ(2, s)−1/2 = O−1
1 Λ

1/2
1 Λ

−1/2
2 O2. (86)
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We consider both sides of Eq. (86) as a singular value decomposition of the LHS. Since σj ̸=
σk,∀j ̸= k, elements in Λ

1/2
1 Λ

−1/2
2 are distinct. Therefore, non-zero elements in Λ

1/2
1 Λ

−1/2
2 are

also distinct because Λ2 is an identity matrix.

Because the mixing function is assumed to be invertible, the Jacobian of the mixing function Jf (s) =

O(s)D(s) is of full-rank. Therefore, all diagonal elements in the diagonal matrix Λ
1/2
1 Λ

−1/2
2 are

non-zero.

Then, based on the uniqueness of singular value decomposition (see e.g. Proposition 4.1 in Trefethen
and Bau III (1997)), O2 is a composition of a permutation matrix and a signature matrix. Therefore,
Jh(s) = Λ

−1/2
2 O2Σ(2, s)1/2 is a generalized permutation matrix. It thus follows that the function

h := f̂−1 ◦ f is a composition of a component-wise invertible transformation and a permutation.

A.7 Proof of Proposition 3

Proposition 3. The following inequality holds

n log

(
1

n

n∑
i=1

∥∥∥∥∥∂ f̂−1

∂xi

∥∥∥∥∥
2

)
− log

∣∣det(Jf̂−1(x))
∣∣ ≥ 0, (8)

with equality iff. Jf̂−1(x) = O(x)λ(x), where O(x) is an orthogonal matrix and λ(x) is a scalar.

Proof. According to Hadamard’s inequality, we have

n∑
i=1

log

∥∥∥∥∥∂ f̂−1

∂xi

∥∥∥∥∥
2

− log
∣∣det(Jf̂−1(x))

∣∣ ≥ 0, (87)

with equality iff. vectors ∂ f̂−1

∂xi
, i = 1, 2, . . . , n are orthogonal. Then applying the inequality of

arithmetic and geometric means yields

n log

(
1

n

n∑
i=1

∥∥∥∥∥∂ f̂−1

∂xi

∥∥∥∥∥
2

)
− log

∣∣det(Jf̂−1(x))
∣∣

≥
n∑

i=1

log

∥∥∥∥∥∂ f̂−1

∂xi

∥∥∥∥∥
2

− log
∣∣det(Jf̂−1(x))

∣∣
≥0,

(88)

with the first equality iff. for all i = 1, 2, . . . , n,
∥∥∥∂ f̂−1

∂xi

∥∥∥
2

is equal. Because Jf̂−1(x) is non-singular,
∂ f̂−1

∂xi
are orthogonal and equal to each other for all i = 1, 2, . . . , n iff. Jf̂−1(x) = O(x)λ(x).
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B Experiments

In order to generate observational data satisfying the required assumptions, we simulate the sources
and mixing process as follows:

SS. To guarantee that the ground-truth nonlinear mixing process satisfies the structured sparsity
condition (Assumption iv in Thm. 1), we generate observed variables with “structured” multi-layer
perceptrons (MLPs): Each observed variables is only a nonlinear mixture of its own parents. For
example, if the observed variable x1 has parents s1 and s2, then x1 = MLP(s1, s2). The MLP here
could be replaced by any nonlinear functions.

II. We generate the mixing functions based on Möbius transformations with scaled sources and
constant volume. According to Liouville’s results (Flanders, 1966) (also summarized in Theorem
F.2 in Gresele et al. (2021)), the Möbius transformation guarantees the orthogonality between the
columns vectors of its Jacobian matrix, which achieves uncorrelatedness after centering. We scaled
the sources while preserving volumes before Möbius transformation with distinct scalers to make
sure that the generating process is not a conformal map. We center the columns of the Jacobian as
described in Appx. A.6.

VP. Here we describe the generating process with a factorizable Jacobian determinant but not
necessarily with orthogonal columns of Jacobian. We use a volume-preserving flow called GIN
(Sorrenson et al., 2020) to generate the mixing function. GIN is a volume-preserving version of
RealNVP (Dinh et al., 2016), which achieves volume preservation by setting the scaling function of
the final component to the negative sum of previous ones.5 We use the official implementation of
GIN (Sorrenson et al., 2020), which is part of FrEIA.

Base. Here we describe the generating process without restrictions on having a factorizable Jacobian
determinant and orthogonal columns of the Jacobian. Following (Sorrenson et al., 2020), we use
GLOW (Kingma and Dhariwal, 2018) to generate the mixing function. The difference between the
coupling block in GLOW and GIN is that the Jacobian determinant of the former is not constrained
to be one. The implementation of GLOW is also included in the official implementation of GIN
(Sorrenson et al., 2020), which is also part of FrEIA.

The ground-truth sources are sampled from a multivariate Gaussian, with zero means and variances
sampled from a uniform distribution on [0.5, 3]6. It is worth noting that we sample sources from a
single multivariate Gaussian so that all sources are marginally independent, which is different from
all previous works assuming conditional independence given auxiliary variables.

Regarding the model evaluation, we use the mean correlation coefficient (MCC) between the ground-
truth and recovered latent sources. We first compute pair-wise correlation coefficients between the
true sources and recovered ones. Then we solve an assignment problem to match each recovered
source to the ground truth with the highest correlation between them. MCC is a standard metric to
measure the degree of identifiability up to component-wise transformation in the literature (Hyvärinen
and Morioka, 2016). All results are of 10 trials with different random seeds.

The sample size for the synthetic datasets is 10000. For experiments conducted on them, the learning
rate is 0.01 and batch size is 1000. The number of coupling layers for both GIN and GLOW is set as
24. Regarding the image dataset, we have 25000 32× 32 images of the drawn triangle. The statistic
of the dataset is described in (Yang et al., 2022), with the difference that we only use one class of
triangles for unconditional priors. For experiments conducted on images, the learning rate is 3×10−4

and batch size is 100. The number of coupling layers for the estimating method GIN is set as 10. The
experiments are directly conducted with the official implementation of GIN (Sorrenson et al., 2020) 7

with additional regularization terms and on 4 CPU cores with 16 GB RAM.

5In the official implementation of GIN, the volume-preservation is achieved in a slightly different way
compared to that in its original paper for better stability of training. There is no difference in the theoretical
result w.r.t. volume-preservation.

6These are of the same values as previous works (Khemakhem et al., 2020; Sorrenson et al., 2020).
7https://github.com/VLL-HD/GIN
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