
FLASHATTENTION: Fast and
Memory-Efficient Exact Attention with IO-Awareness

Tri Dao†, Daniel Y. Fu †, Stefano Ermon †, Atri Rudra ‡, Christopher Ré †
† Department of Computer Science, Stanford University

‡ Department of Computer Science and Engineering, University at Buffalo, SUNY
{trid,danfu}@stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

Abstract

Transformers are slow and memory-hungry on long sequences, since the time and
memory complexity of self-attention are quadratic in sequence length. Approximate
attention methods have attempted to address this problem by trading off model qual-
ity to reduce the compute complexity, but often do not achieve wall-clock speedup.
We argue that a missing principle is making attention algorithms IO-aware—
accounting for reads and writes between levels of GPU memory. We propose
FLASHATTENTION, an IO-aware exact attention algorithm that uses tiling to reduce
the number of memory reads/writes between GPU high bandwidth memory (HBM)
and GPU on-chip SRAM. We analyze the IO complexity of FLASHATTENTION,
showing that it requires fewer HBM accesses than standard attention, and is optimal
for a range of SRAM sizes. We also extend FLASHATTENTION to block-sparse at-
tention, yielding an approximate attention algorithm that is faster than any existing
approximate attention method. FLASHATTENTION trains Transformers faster than
existing baselines: 15% end-to-end wall-clock speedup on BERT-large (seq. length
512) compared to the MLPerf 1.1 training speed record, 3× speedup on GPT-2 (seq.
length 1K), and 2.4× speedup on long-range arena (seq. length 1K-4K). FLASHAT-
TENTION and block-sparse FLASHATTENTION enable longer context in Transform-
ers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points
of lift on long-document classification) and entirely new capabilities: the first Trans-
formers to achieve better-than-chance performance on the Path-X challenge (seq.
length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).

1 Introduction
Transformer models [86] have emerged as the most widely used architecture in applications such
as natural language processing and image classification. Transformers have grown larger [5] and
deeper [87], but equipping them with longer context remains difficult [83], since the self-attention
module at their heart has time and memory complexity quadratic in sequence length. An important
question is whether making attention faster and more memory-efficient can help Transformer models
address their runtime and memory challenges for long sequences.

Many approximate attention methods have aimed to reduce the compute and memory requirements
of attention. These methods range from sparse-approximation [53, 77] to low-rank approxima-
tion [13, 52, 88], and their combinations [3, 9, 96]. Although these methods reduce the compute
requirements to linear or near-linear in sequence length, many of them do not display wall-clock
speedup against standard attention and have not gained wide adoption. One main reason is that
they focus on FLOP reduction (which may not correlate with wall-clock speed) and tend to ignore
overheads from memory access (IO).

In this paper, we argue that a missing principle is making attention algorithms IO-aware [1]—that is,
carefully accounting for reads and writes to different levels of fast and slow memory (e.g., between
fast GPU on-chip SRAM and relatively slow GPU high bandwidth memory, or HBM [47], Figure 1

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

FlashAttention

Memory Hierarchy with
Bandwidth & Memory Size

Attention on GPT-2

FlashAttentionPyTorch

Ti
m

e
(m

s)

Matmul

Mask

Softmax

Dropout

Matmul

Fused
Kernel

Q: N x d V: N X d

KT: d x N

Q
KT : N

 x
 N

sm(QKT)V: N x d

Outer Loop

Copy Block to SRAM

Copy

O
uter Loop

Copy

In
ne

r L
oo

p

Compute Block
on SRAM

Output to HBM

Inner Loop

Inner Loop

Outer Loop

GPU
SRAM

GPU
HBM

Main Memory
(CPU DRAM)

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

DRAM: 12.8 GB/s
 (>1 TB)

0

5

10

15

Figure 1: Left: FLASHATTENTION uses tiling to prevent materialization of the large 𝑁×𝑁 attention
matrix (dotted box) on (relatively) slow GPU HBM. In the outer loop (red arrows), FLASHATTENTION
loops through blocks of the K and V matrices and loads them to fast on-chip SRAM. In each block,
FLASHATTENTION loops over blocks of Q matrix (blue arrows), loading them to SRAM, and
writing the output of the attention computation back to HBM. Right: Speedup over the PyTorch
implementation of attention on GPT-2. FLASHATTENTION does not read and write the large 𝑁×𝑁
attention matrix to HBM, resulting in an 7.6× speedup on the attention computation.

left). On modern GPUs, compute speed has out-paced memory speed [64–66], and most operations
in Transformers are bottlenecked by memory accesses [45]. IO-aware algorithms have been critical
for similar memory-bound operations, when reading and writing data can account for a large portion
of the runtime—such as database joins [74], image processing [73], numerical linear algebra [4], and
more [42, 89]. However, common Python interfaces to deep learning such as PyTorch and Tensorflow
do not allow fine-grained control of memory access.

We propose FLASHATTENTION, a new attention algorithm that computes exact attention with
far fewer memory accesses. Our main goal is to avoid reading and writing the attention matrix to
and from HBM. This requires (i) computing the softmax reduction without access to the whole
input (ii) not storing the large intermediate attention matrix for the backward pass. We apply two
well-established techniques to address these challenges. (i) We restructure the attention computation
to split the input into blocks and make several passes over input blocks, thus incrementally performing
the softmax reduction (also known as tiling). (ii) We store the softmax normalization factor from
the forward pass to quickly recompute attention on-chip in the backward pass, which is faster
than the standard approach of reading the intermediate attention matrix from HBM. We implement
FLASHATTENTION in CUDA to achieve fine-grained control over memory access and fuse all the
attention operations into one GPU kernel. Even with the increased FLOPs due to recomputation, our
algorithm both runs faster (up to 7.6x on GPT-2 [70], Figure 1 right) and uses less memory—linear
in sequence length—than standard attention, thanks to the massively reduced amount of HBM access.

We analyze the IO complexity [1] of FLASHATTENTION, proving that it requires𝑂 (𝑁2𝑑2𝑀−1) HBM
accesses where 𝑑 is the head dimension and 𝑀 is the size of SRAM, as compared to Ω(𝑁𝑑+𝑁2)
of standard attention. For typical values of 𝑑 and 𝑀 , FLASHATTENTION requires many times fewer
HBM accesses compared to standard attention (up to 9× fewer, as shown in Fig. 2). Moreover, we
provide a lower bound, showing that no exact attention algorithm can asymptotically improve on
the number of HBM accesses over all SRAM sizes.

We also show that FLASHATTENTION can serve as a useful primitive for realizing the potential of
approximate attention algorithms by overcoming their issues with memory access overhead. As
a proof of concept, we implement block-sparse FLASHATTENTION, a sparse attention algorithm
that is 2-4× faster than even FLASHATTENTION, scaling up to sequence length of 64k. We prove
that block-sparse FLASHATTENTION has better IO complexity than FLASHATTENTION by a factor
proportional to the sparsity ratio. We discuss further extensions to other operations (attention
on multi-GPU, kernel regression, block-sparse matrix multiply) in Section 5. We open-source
FLASHATTENTION to make it easier to build on this primitive1.

1FLASHATTENTION code is available at https://github.com/HazyResearch/flash-attention

2

https://github.com/HazyResearch/flash-attention

We empirically validate that FLASHATTENTION speeds up model training and improves model quality
by modeling longer context. We also benchmark the runtime and memory footprint of FLASHAT-
TENTION and block-sparse FLASHATTENTION compared to prior attention implementations.

• Faster Model Training. FLASHATTENTION trains Transformer models faster in wall-clock
time. We train BERT-large (seq. length 512) 15% faster than the training speed record in MLPerf
1.1 [60], GPT2 (seq. length 1K) 3× faster than baseline implementations from HuggingFace [91]
and Megatron-LM [80], and long-range arena (seq. length 1K-4K) 2.4× faster than baselines.

• Higher Quality Models. FLASHATTENTION scales Transformers to longer sequences, which
improves their quality and enables new capabilities. We observe a 0.7 improvement in perplexity on
GPT-2 and 6.4 points of lift from modeling longer sequences on long-document classification [14].
FLASHATTENTION enables the first Transformer that can achieve better-than-chance performance
on the Path-X [83] challenge, solely from using a longer sequence length (16K). Block-sparse
FLASHATTENTION enables a Transformer to scale to even longer sequences (64K), resulting in
the first model that can achieve better-than-chance performance on Path-256.

• Benchmarking Attention. FLASHATTENTION is up to 3× faster than the standard attention
implementation across common sequence lengths from 128 to 2K and scales up to 64K. Up
to sequence length of 512, FLASHATTENTION is both faster and more memory-efficient than
any existing attention method, whereas for sequence length beyond 1K, some approximate
attention methods (e.g., Linformer) start to become faster. On the other hand, block-sparse
FLASHATTENTION is faster than all existing approximate attention methods that we know of.

2 Background
We provide some background on the performance characteristics of common deep learning operations
on modern hardware (GPUs). We also describe the standard implementation of attention.

2.1 Hardware Performance
We focus here on GPUs. Performance on other hardware accelerators are similar [48, 50].

GPU Memory Hierarchy. The GPU memory hierarchy (Fig. 1 left) comprises multiple forms of mem-
ory of different sizes and speeds, with smaller memory being faster. As an example, the A100 GPU
has 40-80GB of high bandwidth memory (HBM) with bandwidth 1.5-2.0TB/s and 192KB of on-chip
SRAM per each of 108 streaming multiprocessors with bandwidth estimated around 19TB/s [46, 47].
The on-chip SRAM is an order of magnitude faster than HBM but many orders of magnitude smaller
in size. As compute has gotten faster relative to memory speed [64–66], operations are increasingly
bottlenecked by memory (HBM) accesses. Thus exploiting fast SRAM becomes more important.

Execution Model. GPUs have a massive number of threads to execute an operation (called a kernel).
Each kernel loads inputs from HBM to registers and SRAM, computes, then writes outputs to HBM.

Performance characteristics. Depending on the balance of computation and memory accesses, oper-
ations can be classified as either compute-bound or memory-bound. This is commonly measured by
the arithmetic intensity [89], which is the number of arithmetic operations per byte of memory access.

1. Compute-bound: the time taken by the operation is determined by how many arithmetic operations
there are, while time accessing HBM is much smaller. Typical examples are matrix multiply with
large inner dimension, and convolution with large number of channels.

2. Memory-bound: the time taken by the operation is determined by the number of memory accesses,
while time spent in computation is much smaller. Examples include most other operations:
elementwise (e.g., activation, dropout), and reduction (e.g., sum, softmax, batch norm, layer norm).

Kernel fusion. The most common approach to accelerate memory-bound operations is kernel fusion:
if there are multiple operations applied to the same input, the input can be loaded once from HBM,
instead of multiple times for each operation. Compilers can automatically fuse many elementwise
operations [55, 68, 78]. However, in the context of model training, the intermediate values still need
to be written to HBM to save for the backward pass, reducing the effectiveness of naive kernel fusion.

2.2 Standard Attention Implementation

Given input sequences Q,K,V∈R𝑁×𝑑 where 𝑁 is the sequence length and 𝑑 is the head dimension,
we want to compute the attention output O∈R𝑁×𝑑:

S=QK> ∈R𝑁×𝑁 , P=softmax(S) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,

3

where softmax is applied row-wise.

Standard attention implementations materialize the matrices S and P to HBM, which takes 𝑂 (𝑁2)
memory. Often 𝑁� 𝑑 (e.g., for GPT2, 𝑁 = 1024 and 𝑑 = 64). We describe the standard attention
implementation in Algorithm 0. As some or most of the operations are memory-bound (e.g.,
softmax), the large number of memory accesses translates to slow wall-clock time.

This problem is exacerbated by other elementwise operations applied to the attention matrix, such
as masking applied to S or dropout applied to P. As a result, there have been many attempts to fuse
several elementwise operations, such as fusing masking with softmax [80].

In Section 3.2, we will show that the standard attention implementation performs HBM accesses
quadratic in the sequence length 𝑁 . We also compare the number of FLOPs and number of HBM
accesses of standard attention and of our method (FLASHATTENTION).

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM.
1: Load Q,K by blocks from HBM, compute S=QK>, write S to HBM.
2: Read S from HBM, compute P=softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O=PV, write O to HBM.
4: Return O.

3 FLASHATTENTION: Algorithm, Analysis, and Extensions
We show how to compute exact attention with fewer HBM reads/writes and without storing
large intermediate matrices for the backward pass. This yields an attention algorithm that is both
memory efficient and faster in wall-clock time. We analyze its IO complexity, showing that our
method requires much fewer HBM accesses compared to standard attention. We further show that
FLASHATTENTION can serve as a useful primitive by extending it to handle block-sparse attention.

We focus here on the forward pass for ease of exposition; Appendix B contains details for the
backward.

3.1 An Efficient Attention Algorithm With Tiling and Recomputation

Given the inputs Q,K,V ∈R𝑁×𝑑 in HBM, we aim to compute the attention output O ∈R𝑁×𝑑 and
write it to HBM. Our goal is to reduce the amount of HBM accesses (to sub-quadratic in 𝑁).

We apply two established techniques (tiling, recomputation) to overcome the technical challenge
of computing exact attention in sub-quadratic HBM accesses. We describe this in Algorithm 1. The
main idea is that we split the inputs Q,K,V into blocks, load them from slow HBM to fast SRAM,
then compute the attention output with respect to those blocks. By scaling the output of each block
by the right normalization factor before adding them up, we get the correct result at the end.

Tiling. We compute attention by blocks. Softmax couples columns of K, so we decompose the large
softmax with scaling [53, 62, 69]. For numerical stability, the softmax of vector 𝑥 ∈R𝐵 is computed:

𝑚(𝑥) :=max
𝑖

𝑥𝑖 , 𝑓 (𝑥) :=
[
𝑒𝑥1−𝑚(𝑥) ... 𝑒𝑥𝐵−𝑚(𝑥)

]
, ℓ(𝑥) :=

∑︁
𝑖

𝑓 (𝑥)𝑖 , softmax(𝑥) := 𝑓 (𝑥)
ℓ(𝑥) .

For vectors 𝑥 (1) ,𝑥 (2) ∈R𝐵, we can decompose the softmax of the concatenated 𝑥=
[
𝑥 (1) 𝑥 (2)

]
∈R2𝐵 as:

𝑚(𝑥)=𝑚(
[
𝑥 (1) 𝑥 (2)

]
)=max(𝑚(𝑥 (1)),𝑚(𝑥 (2))), 𝑓 (𝑥)=

[
𝑒𝑚(𝑥

(1))−𝑚(𝑥) 𝑓 (𝑥 (1)) 𝑒𝑚(𝑥
(2))−𝑚(𝑥) 𝑓 (𝑥 (2))

]
,

ℓ(𝑥)=ℓ(
[
𝑥 (1) 𝑥 (2)

]
)=𝑒𝑚(𝑥 (1))−𝑚(𝑥)ℓ(𝑥 (1))+𝑒𝑚(𝑥 (2))−𝑚(𝑥)ℓ(𝑥 (2)), softmax(𝑥)= 𝑓 (𝑥)

ℓ(𝑥) .
Therefore if we keep track of some extra statistics (𝑚(𝑥),ℓ(𝑥)), we can compute softmax one block
at a time.2 We thus split the inputs Q,K,V into blocks (Algorithm 1 line 1), compute the softmax
values along with extra statistics (Algorithm 1 line 1), and combine the results (Algorithm 1 line 1).

Recomputation. One of our goals is to not store 𝑂 (𝑁2) intermediate values for the backward pass.
The backward pass typically requires the matrices S,P∈R𝑁×𝑁 to compute the gradients with respect
to Q,K,V. However, by storing the output O and the softmax normalization statistics (𝑚,ℓ), we
can recompute the attention matrix S and P easily in the backward pass from blocks of Q,K,V in
SRAM. This can be seen as a form of selective gradient checkpointing [10, 36]. While gradient

2This style of aggregation is called algebraic aggregation [35].

4

checkpointing has been suggested to reduce the maximum amount of memory required [69], all
implementations (that we know off) have to trade speed for memory. In contrast, even with more
FLOPs, our recomputation speeds up the backward pass due to reduced HBM accesses (Fig. 2). The
full backward pass description is in Appendix B.

Implementation details: Kernel fusion. Tiling enables us to implement our algorithm in one CUDA
kernel, loading input from HBM, performing all the computation steps (matrix multiply, softmax,
optionally masking and dropout, matrix multiply), then write the result back to HBM (masking and
dropout in Appendix B). This avoids repeatedly reading and writing of inputs and outputs from and
to HBM.

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM, on-chip SRAM of size 𝑀 .
1: Set block sizes 𝐵𝑐 =

⌈
𝑀
4𝑑
⌉
,𝐵𝑟 =min

(⌈
𝑀
4𝑑
⌉
,𝑑
)
.

2: Initialize O= (0)𝑁×𝑑 ∈R𝑁×𝑑 ,ℓ= (0)𝑁 ∈R𝑁 ,𝑚= (−∞)𝑁 ∈R𝑁 in HBM.
3: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1,...,Q𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

4: Divide O into 𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, divide ℓ into 𝑇𝑟 blocks ℓ𝑖 ,...,ℓ𝑇𝑟 of size
𝐵𝑟 each, divide 𝑚 into 𝑇𝑟 blocks 𝑚1,...,𝑚𝑇𝑟 of size 𝐵𝑟 each.

5: for 1≤ 𝑗 ≤𝑇𝑐 do
6: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
7: for 1≤ 𝑖≤𝑇𝑟 do
8: Load Q𝑖 ,O𝑖 ,ℓ𝑖 ,𝑚𝑖 from HBM to on-chip SRAM.
9: On chip, compute S𝑖 𝑗 =Q𝑖K𝑇

𝑗
∈R𝐵𝑟×𝐵𝑐 .

10: On chip, compute �̃�𝑖 𝑗 = rowmax(S𝑖 𝑗) ∈ R𝐵𝑟 , P̃𝑖 𝑗 = exp(S𝑖 𝑗 − �̃�𝑖 𝑗) ∈ R𝐵𝑟×𝐵𝑐 (pointwise),
ℓ̃𝑖 𝑗 = rowsum(P̃𝑖 𝑗) ∈R𝐵𝑟 .

11: On chip, compute 𝑚new
𝑖

=max(𝑚𝑖 ,�̃�𝑖 𝑗) ∈R𝐵𝑟 , ℓnew
𝑖

=𝑒𝑚𝑖−𝑚new
𝑖 ℓ𝑖+𝑒�̃�𝑖 𝑗−𝑚new

𝑖 ℓ̃𝑖 𝑗 ∈R𝐵𝑟 .
12: Write O𝑖←diag(ℓnew

𝑖
)−1 (diag(ℓ𝑖)𝑒𝑚𝑖−𝑚new

𝑖 O𝑖+𝑒�̃�𝑖 𝑗−𝑚new
𝑖 P̃𝑖 𝑗V 𝑗) to HBM.

13: Write ℓ𝑖←ℓnew
𝑖

, 𝑚𝑖←𝑚new
𝑖

to HBM.
14: end for
15: end for
16: Return O.

We show FLASHATTENTION’s correctness, runtime, and memory requirement (proof in Appendix C).

Theorem 1. Algorithm 1 returns O = softmax(QK>)V with 𝑂 (𝑁2𝑑) FLOPs and requires 𝑂 (𝑁)
additional memory beyond inputs and output.

3.2 Analysis: IO Complexity of FLASHATTENTION

We analyze the IO complexity of FLASHATTENTION, showing significant reduction in HBM accesses
compared to standard attention. We also provide a lower bound, proving that no exact attention algo-
rithm can asymptotically improve on HBM accesses over all SRAM sizes. Proofs are in Appendix C.

Theorem 2. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM
with 𝑑 ≤ 𝑀 ≤ 𝑁𝑑. Standard attention (Algorithm 0) requires Θ(𝑁𝑑 + 𝑁2) HBM accesses, while
FLASHATTENTION (Algorithm 1) requires Θ(𝑁2𝑑2𝑀−1) HBM accesses.

For typical values of 𝑑 (64-128) and 𝑀 (around 100KB), 𝑑2 is many times smaller than 𝑀 , and thus
FLASHATTENTION requires many times fewer HBM accesses than standard implementation. This
leads to both faster execution and lower memory footprint, which we validate in Section 4.3.

The main idea of the proof is that given the SRAM size of 𝑀, we can load blocks of K,V of
size Θ(𝑀) each (Algorithm 1 line 1). For each block of K and V, we iterate over all blocks of Q
(Algorithm 1 line 1) to compute the intermediate values, resulting in Θ(𝑁𝑑𝑀−1) passes over Q.
Each pass loads Θ(𝑁𝑑) elements, which amounts to Θ(𝑁2𝑑2𝑀−1) HBM accesses. We similarly
prove that the backward pass of standard attention requires Θ(𝑁𝑑+𝑁2) HBM accesses while the
backward pass of FLASHATTENTION requires Θ(𝑁2𝑑2𝑀−1) HBM accesses (Appendix B).

We prove a lower-bound: one cannot asymptotically improve on the number of HBM accesses for
all values of 𝑀 (the SRAM size) when computing exact attention.

5

Attention Standard FLASHATTENTION
GFLOPs 66.6 75.2

HBM R/W (GB) 35.3 4.4
Runtime (ms) 35.1 11.7

Sparsity Speedup

% Non-Zero Blocks
20 60

50

100

150

Fw
d

+
Bw

d
(m

s)

E�ect of Block Size

Block Size
64 128 256 512

Fw
d Runtim

e (m
s)

6

2

H
BM

 A
cc

es
se

s
(G

B)

Dense
FlashAttention

Block-Sparse

FlashAtte
ntio

n
2

4

6

RuntimeHBMAccesses

Figure 2: Left: Forward + backward runtime of standard attention and FLASHATTENTION for seq. length 1024,
head dim. 64, 16 heads, batch size 64, key-padding mask and no dropout on A100 GPU. HBM access is one of the
primary factors affecting runtime. Middle: Forward runtime of FLASHATTENTION (seq. length 1024, head dim.
64, 16 heads, batch size 64) on A100 GPU. Fewer HBM accesses result in faster runtime, up to a point. Right: The
runtime (for seq. length 4K) of block-sparse FLASHATTENTION is faster than FLASHATTENTION by a factor
proportional to the sparsity.

Proposition 3. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM with
𝑑 ≤𝑀 ≤ 𝑁𝑑. There does not exist an algorithm to compute exact attention with 𝑜(𝑁2𝑑2𝑀−1) HBM
accesses for all 𝑀 in the range [𝑑,𝑁𝑑].

The proof relies on the fact that for 𝑀 =Θ(𝑁𝑑) any algorithm must perform Ω(𝑁2𝑑2𝑀−1)=Ω(𝑁𝑑)
HBM accesses. This type of lower bound over a subrange of 𝑀 is common in the streaming
algorithms literature [92]. We leave proving parameterized complexity [29] lower bounds in terms
of 𝑀 as exciting future work.

We validate that the number of HBM accesses is the main determining factor of attention run-time.
In Fig. 2 (left), we see that even though FLASHATTENTION has higher FLOP count compared to stan-
dard attention (due to recomputation in the backward pass), it has much fewer HBM accesses, resulting
in much faster runtime. In Fig. 2 (middle), we vary the block size 𝐵𝑐 of FLASHATTENTION, which
results in different amounts of HBM accesses, and measure the runtime of the forward pass. As block
size increases, the number of HBM accesses decreases (as we make fewer passes over the input), and
runtime decreases. For large enough block size (beyond 256), the runtime is then bottlenecked by other
factors (e.g., arithmetic operations). Moreover, larger block size will not fit into the small SRAM size.

3.3 Extension: Block-Sparse FLASHATTENTION

We extend FLASHATTENTION to approximate attention: we propose block-sparse FLASHATTEN-
TION, whose IO complexity is smaller than FLASHATTENTION by a factor proportional to the sparsity.

Given inputs Q,K,V∈R𝑁×𝑑 and a mask matrix M̃∈ {0,1}𝑁×𝑁 , we want to compute:
S=QK> ∈R𝑁×𝑁 , P=softmax(S�𝟙M̃) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,

where (S�𝟙M̃)𝑘𝑙 =S𝑘𝑙 if M̃𝑘𝑙 =1 and −∞ if M𝑘𝑙 =0. We require M̃ to have block form: for some
block sizes 𝐵𝑟 ,𝐵𝑐 , for all 𝑘,𝑙, M̃𝑘,𝑙 =M𝑖 𝑗 with 𝑖= b𝑘/𝐵𝑟 c, 𝑗 = b𝑙/𝐵𝑐c for some M∈ {0,1}𝑁 /𝐵𝑟×𝑁 /𝐵𝑐 .

Given a predefined block sparsity mask M ∈ {0,1}𝑁 /𝐵𝑟×𝑁 /𝐵𝑐 we can easily adapt Algorithm 1 to
only compute the nonzero blocks of the attention matrix. The algorithm is identical to Algorithm 1,
except we skip zero blocks. We reproduce the algorithm description in Algorithm 5 in Appendix B.

We also analyze the IO complexity of block-sparse FLASHATTENTION.
Proposition 4. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM with
𝑑 ≤ 𝑀 ≤ 𝑁𝑑. Block-sparse FLASHATTENTION (Algorithm 5) requires Θ(𝑁𝑑 +𝑁2𝑑2𝑀−1𝑠) HBM
accesses where 𝑠 is the fraction of nonzero blocks in the block-sparsity mask.

We see that applying block-sparsity yields a direct improvement by the sparsity to the larger term in
the IO complexity. For large sequence lengths 𝑁 , 𝑠 is often set to 𝑁−1/2 [12] or 𝑁−1log𝑁 [3, 18, 96],
resulting in Θ(𝑁

√
𝑁) or Θ(𝑁log𝑁) IO complexity. For downstream experiments, we use the fixed

butterfly sparsity pattern [18], which has been shown to be able to approximate arbitrary sparsity [17].

In Fig. 2 (right), we validate that as the sparsity increases, the runtime of block-sparse FLASHATTEN-
TION improves proportionally. On the LRA benchmark, block-sparse FLASHATTENTION achieves
2.8× speedup, while performing on par with standard attention (Section 4).

4 Experiments
We evaluate the impact of using FLASHATTENTION to train Transformer models. We validate two
claims about training time and model accuracy, and report attention runtime and memory benchmarks.

6

• Training Speed. FLASHATTENTION outperforms the MLPerf 1.1 [60] speed record for BERT
by 15%, and speeds up GPT-2 up to 3× over HuggingFace [91] and 1.8× over Megatron [80] over
standard Transformers. FLASHATTENTION speeds up the long-range arena (LRA) benchmark 2.4×.

• Quality. FLASHATTENTION scales Transformers to longer sequences, yielding higher quality.
FLASHATTENTION trains GPT-2 with context length 4K faster than Megatron trains GPT-2 with
context length 1K, while achieving 0.7 better perplexity. Modeling longer sequences yields 6.4
points of lift on two long-document classification tasks. Finally, FLASHATTENTION yields the first
Transformer that can achieve better-than-random performance on the challenging Path-X task
(sequence length 16K), and block-sparse FLASHATTENTION yields the first sequence model that
we know of that can achieve better-than-random performance on Path-256 (sequence length 64K).

• Benchmarking Attention. We measure the runtime and memory performance of FLASHATTEN-
TION and block-sparse FLASHATTENTION based on sequence length. We confirm that the memory
footprint of FLASHATTENTION scales linearly with seq. length and is up to 3× faster than standard
attention for common seq. lengths (up to 2K). We confirm that runtime of block-sparse FLASHAT-
TENTION scales linearly in seq. length and is faster than all existing approximate attention baselines.

Additional experiment details are in Appendix E.

4.1 Faster Models with FLASHATTENTION

BERT. FLASHATTENTION yields the fastest single-node BERT training speed that we know
of. We train a BERT-large [24] model with FLASHATTENTION on Wikipedia. Table 1 compares
our training time to the implementation from Nvidia that set the training speed record for MLPerf
1.1 [60, 63]. Our implementation is 15% faster.

Table 1: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to
reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8×A100 GPUs.

BERT Implementation Training time (minutes)
Nvidia MLPerf 1.1 [63] 20.0 ± 1.5

FLASHATTENTION (ours) 17.4 ± 1.4

GPT-2. FLASHATTENTION yields faster training times for GPT-2 [70] on the large OpenWebtext
dataset [34] than the widely used HuggingFace [91] and Megatron-LM [80] implementations.
Table 2 shows up to 3× end-to-end speedup compared to Huggingface and 1.7× speedup compared
to Megatron-LM. FLASHATTENTION achieves the same perplexity as the other two implementations,
as we do not change the model definition. Appendix E includes plots of the validation perplexity
throughout training, confirming that FLASHATTENTION is as numerically stable as the baselines
and produces the same training / validation curves.

Table 2: GPT-2 small and medium using FLASHATTENTION achieve up to 3× speed up compared to Huggingface
implementation and up to 1.7× compared to Megatron-LM. Training time reported on 8×A100s GPUs.

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [91] 18.2 9.5 days (1.0×)

GPT-2 small - Megatron-LM [80] 18.2 4.7 days (2.0×)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5×)
GPT-2 medium - Huggingface [91] 14.2 21.0 days (1.0×)

GPT-2 medium - Megatron-LM [80] 14.2 11.5 days (1.8×)
GPT-2 medium - FLASHATTENTION 14.2 6.9 days (3.0×)

Long-range Arena. We compare vanilla Transformer (with either standard implementation
or FLASHATTENTION) on the long-range arena (LRA [83]) benchmark. We measure accuracy,
throughput, and training time of all models. Each task has a different sequence length varying
between 1024 and 4096. We follow the implementation and experimental setting in Tay et al.
[83]and Xiong et al. [94].3 Table 3 shows that FLASHATTENTION achieves up 2.4× speed-up
compared to standard attention. Block-sparse FLASHATTENTION is faster than all of the approximate
attention methods that we have tested.

4.2 Better Models with Longer Sequences
Language Modeling with Long Context. The runtime and memory-efficiency of FLASHAT-
TENTION allow us to increase the context length of GPT-2 by 4× while still running faster
than the optimized implementation from Megatron-LM. Table 4 shows that that GPT-2 with

3LRA accuracy results are known to be highly dependent on the tuning procedure [94]. Our reproduced
baselines perform better than as reported in the original comparison [83].

7

Table 3: The performance of standard attention, FLASHATTENTION, block-sparse FLASHATTENTION, and
approximate attention baselines on the Long-Range-Arena benchmarks.

Models ListOps Text Retrieval Image Pathfinder Avg Speedup
Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4×
Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8×

Linformer [88] 35.6 55.9 77.7 37.8 67.6 54.9 2.5×
Linear Attention [52] 38.8 63.2 80.7 42.6 72.5 59.6 2.3×

Performer [13] 36.8 63.6 82.2 42.1 69.9 58.9 1.8×
Local Attention [83] 36.1 60.2 76.7 40.6 66.6 56.0 1.7×

Reformer [53] 36.5 63.8 78.5 39.6 69.4 57.6 1.3×
Smyrf [20] 36.1 64.1 79.0 39.6 70.5 57.9 1.7×

FLASHATTENTION and context length 4K is still 30% faster than GPT-2 from Megatron with context
length 1K, while achieving 0.7 better perplexity.

Table 4: GPT-2 small with FLASHATTENTION, with 4× larger context length compared to Megatron-LM, is still
30% faster while achieving 0.7 better perplexity. Training time on 8×A100 GPUs is reported.

Model implementations Context length OpenWebText (ppl) Training time (speedup)
GPT-2 small - Megatron-LM 1k 18.2 4.7 days (1.0×)

GPT-2 small - FLASHATTENTION 1k 18.2 2.7 days (1.7×)
GPT-2 small - FLASHATTENTION 2k 17.7 3.0 days (1.6×)
GPT-2 small - FLASHATTENTION 4k 17.2 3.6 days (1.3×)

Long Document Classification. Training Transformers with longer sequences with FLASHAT-
TENTION improves performance on the MIMIC-III [49] and ECtHR [6, 7] datasets. MIMIC-III
contains intensive care unit patient discharge summaries, each annotated with multiple labels. ECtHR
contains legal cases from the European Court of Human Rights, each of which is mapped to articles
of the Convention of Human Rights that were allegedly violaged. Both of these datasets contain
very long text documents; the average number of tokens in MIMIC is 2,395 tokens, and the longest
document contains 14,562 tokens, while the average and longest numbers in ECtHR are 2,197 and
49,392, respectively. We evaluate lift from increasing the sequence length of a pretrained RoBERTa
model [58] (we repeat the positional embeddings, as in Beltagy et al. [3]).

Table 5 shows that sequence length 16K outperforms length 512 by 4.3 points on MIMIC, and that
length 8K outperforms length 512 by 8.5 points on ECtHR. The discrepancies may be due to subtle
distribution shifts: MIMIC-III contains specialized medical text and thus may be more susceptible
to a distribution shift in the document length, whereas ECtHR contains general language.

Table 5: Long Document performance (micro 𝐹1)
at different sequence lengths using FLASHATTEN-
TION.

512 1024 2048 4096 8192 16384
MIMIC-III [49] 52.8 50.7 51.7 54.6 56.4 57.1

ECtHR [6] 72.2 74.3 77.1 78.6 80.7 79.2

Table 6: We report the first Transformer model that
can achieve non-random performance on Path-X
and Path-256.

Model Path-X Path-256
Transformer 7 7

Linformer [88] 7 7
Linear Attention [52] 7 7

Performer [13] 7 7
Local Attention [83] 7 7

Reformer [53] 7 7
SMYRF [20] 7 7

FLASHATTENTION 61.4 7
Block-sparse FLASHATTENTION 56.0 63.1

Path-X and Path-256. The Path-X and Path-256 benchmarks are challenging tasks from the
long-range arena benchmark designed to test long context. The task is to classify whether two points
in a black and white 128×128 (or 256×256) image have a path connecting them, and the images
are fed to the transformer one pixel at a time. In prior work, all transformer models have either run
out of memory, or only achieved random performance [83]. There has been a search for alternative
architectures that can model such long context [39]. We present here the first result of Transformer
models being able to solve Path-X and Path-256 (Table 6). We pretrain a transformer on Path-64,
and then transfer to Path-X by spatially interpolating the positional embeddings. FLASHATTENTION
achieves 61.4 accuracy on Path-X. Additionally, block-sparse FLASHATTENTION enables the
Transformers to scale to sequence length 64K, achieving 63.1 accuracy4 on Path-256.

8

Attention Memory Usage

Sequence Length

Attention Runtime (Fwd Pass + Bwd Pass)

Sequence Length

Ru
nt

im
e

(m
s)

M
em

or
y

Fo
ot

pr
in

t (
G

B)

256 8K 16K 32K 64K128 256 512 1024 2048 4096

101

102

10

20

FlashAttention
Block-Sparse FlashAttention

PyTorch Attention

Megatron Attention

Linformer Attention

OpenAI Sparse Attention

8192

100

Crossover Points

20x

2x

Figure 3: Left: runtime of forward pass + backward pass. Right: attention memory usage.

4.3 Benchmarking Attention
We vary sequence length and measure runtime and memory usage of FLASHATTENTION and
block-sparse FLASHATTENTION against various attention baselines on one A100 GPU with 40 GB
HBM, with dropout and a padding mask. We compare against reference implementations for exact
attention, approximate attention, and sparse attention. We report a subset of baselines in the main
body; Appendix E contains more baselines and full details.

Runtime. Figure 3 (left) reports the runtime in milliseconds of the forward + backward pass
of FLASHATTENTION and block-sparse FLASHATTENTION compared to the baselines in exact,
approximate, and sparse attention (exact numbers in Appendix E). Runtime grows quadratically
with sequence length, but FLASHATTENTION runs significantly faster than exact attention baselines,
up to 3× faster than the PyTorch implementation. The runtimes of many approximate/sparse
attention mechanisms grow linearly with sequence length, but FLASHATTENTION still runs faster
than approximate and sparse attention for short sequences due to fewer memory accesses. The
approximate attention runtimes begin to cross over with FLASHATTENTION at sequences between
512 and 1024. On the other hand, block-sparse FLASHATTENTION is faster than all implementations
of exact, sparse, and approximate attention that we know of, across all sequence lengths.

Memory Footprint. Figure 3 (right) shows the memory footprint of FLASHATTENTION and
block-sparse FLASHATTENTION compared to various exact, approximate, and sparse attention
baselines. FLASHATTENTION and block-sparse FLASHATTENTION have the same memory footprint,
which grows linearly with sequence length. FLASHATTENTION is up to 20× more memory efficient
than exact attention baselines, and is more memory-efficient than the approximate attention
baselines. All other algorithms except for Linformer run out of memory on an A100 GPU before
64K, and FLASHATTENTION is still 2× more efficient than Linformer.

5 Limitations and Future Directions
We discuss limitations of our approach and future directions. Related work is given in Appendix A.

Compiling to CUDA. Our current approach to building IO-aware implementations of attention
requires writing a new CUDA kernel for each new attention implementation. This requires writing
the attention algorithm in a considerably lower-level language than PyTorch, and requires significant
engineering effort. Implementations may also not be transferrable across GPU architectures. These
limitations suggest the need for a method that supports writing attention algorithms in a high-level
language (e.g., PyTorch), and compiling to IO-aware implementations in CUDA—similar to efforts
such as Halide in image processing [73].

IO-Aware Deep Learning. We believe that the IO-aware approach can extend beyond attention.
Attention is the most memory-intensive computation in Transformers, but every layer in a deep
network touches GPU HBM. We hope our work inspires IO-aware implementations of additional
modules. We discuss these potential extensions in Appendix D.

Multi-GPU IO-Aware Methods. Our IO-aware implementation of attention is optimal within
constants for computing attention on a single GPU. However, the attention computation may be par-

4Path-256 requires longer sequences but has relatively shorter paths than Path-X, so it is easier to obtain a
higher accuracy.

9

allelizable across multiple GPUs [75]. Using multiple GPUs adds an additional layer to IO analysis—
accounting for data transfer between GPUs. We hope our work inspires future work in this direction.

Societal Impacts. As Transformer-based foundation models grow in size and data, our work seeks
to understand how to train these large models more efficiently. This may allow a general community
with limited access to computational resources to train and understand those foundation models.
Our method is applicable to all Transformer-based models, which have a variety of applications, both
positive and negative. For example, language modeling may make it easier to spread misinformation,
while image classification models may make automatic surveillance easier. Alleviating these risks
requires addressing application-specific issues such as privacy, bias, and discrimination.

Acknowledgments

Our implementation uses Apex’s FMHA code (https://github.com/NVIDIA/apex/tree/
master/apex/contrib/csrc/fmha) as a starting point. We thank Young-Jun Ko for the in-depth
explanation of his FMHA implementation and for his thoughtful answers to our questions about
CUDA. We thank Sabri Eyuboglu, Megan Leszczynski, Laurel Orr, Yuhuai Wu, Beidi Chen, and
Xun Huang for their constructive feedback and suggestions on early drafts of the paper. We thank
Markus Rabe and Charles Staats for helpful discussion of their attention algorithm.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF
under Nos. CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301
(RTML); ARL under No. W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under
No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480: Understanding
and Applying Non-Euclidean Geometry in Machine Learning; N000142012275 (NEPTUNE);
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF,
Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP
& HAI-Azure Cloud Credits for Research program, the Stanford Data Science Initiative (SDSI),
Department of Defense (DoD) through the National Defense Science and Engineering Graduate
Fellowship (NDSEG) Program, and members of the Stanford DAWN project: Facebook, Google, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.
Atri Rudra’s research is supported by NSF grant CCF-1763481.

References
[1] Alok Aggarwal and S Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] Irwan Bello. LambdaNetworks: Modeling long-range interactions without attention. arXiv
preprint arXiv:2102.08602, 2021.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[4] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James
Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set of
basic linear algebra subprograms (blas). ACM Transactions on Mathematical Software, 28(2):
135–151, 2002.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Aletras. Neural legal judgment prediction
in English. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4317–4323, Florence, Italy, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1424. URL https://www.aclweb.org/anthology/P19-1424.

[7] Ilias Chalkidis, Manos Fergadiotis, Dimitrios Tsarapatsanis, Nikolaos Aletras, Ion An-
droutsopoulos, and Prodromos Malakasiotis. Paragraph-level rationale extraction through
regularization: A case study on european court of human rights cases. In Proceedings of

10

https://github.com/NVIDIA/apex/tree/master/apex/contrib/csrc/fmha
https://github.com/NVIDIA/apex/tree/master/apex/contrib/csrc/fmha
https://www.aclweb.org/anthology/P19-1424

the Annual Conference of the North American Chapter of the Association for Computational
Linguistics, Mexico City, Mexico, 2021. Association for Computational Linguistics.

[8] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif.
Kernel operations on the gpu, with autodiff, without memory overflows. Journal of Machine
Learning Research, 22(74):1–6, 2021. URL http://jmlr.org/papers/v22/20-275.html.

[9] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[10] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594, 2018.

[12] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[13] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations
(ICLR), 2020.

[14] Xiang Dai, Ilias Chalkidis, Sune Darkner, and Desmond Elliott. Revisiting transformer-based
models for long document classification. arXiv preprint arXiv:2204.06683, 2022.

[15] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

[16] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast
algorithms for linear transforms using butterfly factorizations. In International Conference
on Machine Learning (ICML), 2019.

[17] Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. In International Conference on Learning Representations (ICLR), 2020.

[18] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Ré. Pixelated butterfly: Simple and efficient sparse training for neural network models. In
International Conference on Learning Representations (ICLR), 2022.

[19] Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning (ICML), 2022.

[20] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient
attention using asymmetric clustering. Advances in Neural Information Processing Systems,
33:6476–6489, 2020.

[21] Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-
pronged progress in structured dense matrix vector multiplication. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1060–1079. SIAM, 2018.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[23] Peter J Denning. The working set model for program behavior. Communications of the ACM,
11(5):323–333, 1968.

11

http://jmlr.org/papers/v22/20-275.html

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. 2019.

[25] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

[27] Y Eidelman and I Gohberg. On a new class of structured matrices. Integral Equations and
Operator Theory, 34(3):293–324, 1999.

[28] Jean Feydy, Joan Glaunès, Benjamin Charlier, and Michael Bronstein. Fast geometric learning
with symbolic matrices. Advances in Neural Information Processing Systems, 33, 2020.

[29] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[30] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2018.

[31] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing
the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

[32] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[33] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. In International Conference on Machine Learning (ICML), 2022.

[34] Aaron Gokaslan, Vanya Cohen, Pavlick Ellie, and Stefanie Tellex. Openwebtext corpus, 2019.

[35] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venka-
trao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation operator generaliz-
ing group-by, cross-tab, and sub-totals. Data mining and knowledge discovery, 1(1):29–53, 1997.

[36] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

[37] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in neural information processing systems
(NeurIPS), 2020.

[38] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in Neural Information Processing Systems, 34, 2021.

[39] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

[40] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

[41] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In International Conference
on Learning Representations, 2016.

[42] John Hennessy and David Patterson. Memory hierarchy design. Computer Architecture: A
Quantitative Approach, pages 390–525, 2003.

[43] Sara Hooker. The hardware lottery. arXiv preprint arXiv:2009.06489, 2020.

[44] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V Le. Transformer quality in linear time.
arXiv preprint arXiv:2202.10447, 2022.

12

[45] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. Data movement
is all you need: A case study on optimizing transformers. Proceedings of Machine Learning
and Systems, 3:711–732, 2021.

[46] Zhe Jia and Peter Van Sandt. Dissecting the Ampere GPU architecture via microbenchmarking.
GPU Technology Conference, 2021.

[47] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the nvidia
Volta GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.

[48] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the
graphcore IPU architecture via microbenchmarking. arXiv preprint arXiv:1912.03413, 2019.

[49] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

[50] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1–12, 2017.

[51] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

[52] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are RNNs: Fast autoregressive transformers with linear attention. In International Conference
on Machine Learning, pages 5156–5165. PMLR, 2020.

[53] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
The International Conference on Machine Learning (ICML), 2020.

[54] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite BEDRT for self-supervised learning of language representations. In
The International Conference on Learning Representations (ICLR), 2020.

[55] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan,
Lin Gan, Guangwen Yang, and Depei Qian. The deep learning compiler: A comprehensive
survey. IEEE Transactions on Parallel and Distributed Systems, 32(3):708–727, 2020.

[56] Valerii Likhosherstov, Krzysztof Choromanski, Jared Davis, Xingyou Song, and Adrian Weller.
Sub-linear memory: How to make performers slim. arXiv preprint arXiv:2012.11346, 2020.

[57] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[58] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[59] Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke
Zettlemoyer. Luna: Linear unified nested attention. Advances in Neural Information Processing
Systems, 34, 2021.

[60] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius, David
Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training
benchmark. Proceedings of Machine Learning and Systems, 2:336–349, 2020.

[61] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what {COST}? In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[62] Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv
preprint arXiv:1805.02867, 2018.

13

[63] MLCommons. Mlperf 1.1 training results, 2021. URL https://mlcommons.org/en/
training-normal-11/.

[64] NVIDIA. Nvidia Tesla V100 GPU architecture, 2017.

[65] NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.

[66] NVIDIA. Nvidia H100 tensor core GPU architecture, 2022.

[67] D Stott Parker. Random butterfly transformations with applications in computational linear
algebra. 1995.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[69] Markus N Rabe and Charles Staats. Self-attention does not need 𝑂 (𝑛2) memory. arXiv preprint
arXiv:2112.05682, 2021.

[70] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[71] Jack Rae and Ali Razavi. Do transformers need deep long-range memory? In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, Online, July 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.acl-main.672.

[72] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. In The International Conference on Learning
Representations (ICLR), 2020.

[73] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

[74] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. Database management systems,
volume 3. McGraw-Hill New York, 2003.

[75] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 5(2):201–226, 2013.

[76] Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans,
and Bo Dai. Combiner: Full attention transformer with sparse computation cost. Advances
in Neural Information Processing Systems, 34, 2021.

[77] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. Transactions of the Association for Computational
Linguistics, 9:53–68, 2021.

[78] Amit Sabne. XLA: Compiling machine learning for peak performance. 2020.

[79] Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity
by fine-tuning. arXiv preprint arXiv:2005.07683, 2020.

[80] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[81] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. In Advances in Neural Information Processing Systems, pages 3088–3096, 2015.

[82] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive
attention span in transformers. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2019.

14

https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-normal-11/
https://www.aclweb.org/anthology/2020.acl-main.672

[83] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

[84] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732, 2020.

[85] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[87] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

[88] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[89] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[90] Michael E Wolf and Monica S Lam. A data locality optimizing algorithm. In Proceedings
of the ACM SIGPLAN 1991 conference on Programming language design and implementation,
pages 30–44, 1991.

[91] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online, October 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[92] David P Woodruff. Optimal space lower bounds for all frequency moments. In SODA, volume 4,
pages 167–175. Citeseer, 2004.

[93] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention
with lightweight and dynamic convolutions. In The International Conference on Learning
Representations (ICLR), 2019.

[94] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li,
and Vikas Singh. Nyströmformer: A nystöm-based algorithm for approximating self-attention.
In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, volume 35, page 14138, 2021.

[95] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 558–567, 2021.

[96] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. Advances in Neural Information Processing Systems, 33, 2020.

[97] Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang,
and Josh Susskind. An attention free transformer. arXiv preprint arXiv:2105.14103, 2021.

[98] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34, 2021.

15

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.2
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix E
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix E
(c) Did you report error bars (e.g., with respect to the random seed after running

experiments multiple times)? [Yes] See Section 4
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4
and Appendix E

(b) Did you mention the license of the assets? [Yes] See Appendix E
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

A Related Work
IO-Aware Runtime Optimization. The broad concept of optimizing for reading and writing to
fast/slow memory has a long history in computer science and has been known by many names. We
draw the most direct connection to the literature of analyzing I/O complexity in this work [1], but
concepts of memory hierarchies are fundamental and has appeared in many forms, from the working
set model [23], to data locality [90], to the Roofline model of arithmetic intensity [89], to analyses
of scalability [61], to standard textbook treatments of computer architecture [42]. We hope that this
work encourages the community to adopt these ideas in more parts of the deep learning stack.

Efficient ML Models with Structured Matrices. Matrix multiply is the core computational
bottleneck of most machine learning models. To reduce the computational complexity, there have
been numerous approaches to learn over a more efficient set of matrices. These matrices are called
structured matrices, which have subquadratic (𝑜(𝑛2) for dimension 𝑛×𝑛) number of parameters and
runtime. Most common examples of structured matrices are sparse and low-rank matrices, along
with fast transforms commonly encountered in signal processing (Fourier, Chebyshev, sine/cosine,
orthogonal polynomials). There have been several more general classes of structured matrices
proposed in machine learning: Toeplitz-like [81], low-displacement rank [51], quasi-separable [27]).
The butterfly pattern we use for our block-sparse attention is motivated by the fact that butterfly
matrices [16, 67] and their products have been shown to be able to express any structured matrices
with almost optimal runtime and number of parameters [17, 21]. However, even though structured
matrices are efficient in theory, they have not seen wide adoption since it is hard to translate their
efficiency to wall-clock speedup since dense unconstrained matrix multiply has very optimize
implementation, a phenomenon known as the hardware lottery [43]. Extensions of butterfly
matrices [18, 19] aimed to make butterfly matrices more hardware-friendly.

Sparse Training. Our block-sparse FLASHATTENTION can be seen as a step towards making
sparse model training more efficient. Sparse models have seen success in compressing models for
inference (pruning) by sparsifying the weight matrices [25, 40, 41, 57, 79]. For model training,
the lottery tickets hypothesis [30–32] suggests that there are a set of small sub-networks derived
from a larger dense network that performs as well as the original dense network. Out block-sparse
FLASHATTENTION can also be seen as a fixed lottery ticket in the context of attention: we fix the
sparsity pattern to be the butterfly pattern through training, and observe that it performs almost as
well as the (dense) FLASHATTENTION on the Long-range Arena tasks.

Efficient Transformer. Transformer-based models have become the most widely-used architecture in
natural language processing [24] and computer vision [26, 95]. However, one of their computational
bottlenecks is that their time and memory scales quadratic in the sequence length. There are numerous
approaches to overcome this bottleneck, including approximation with hashing (i.e., sparse) such
as Reformer [53] and Smyrf [20] and with low-rank approximation such as Performer [13, 56]. One
can even combine sparse and low-rank approximation for better accuracy (e.g., Longformer [3], Big-
Bird [96], Scatterbrain [9], Long-short transformer [98], Combiner [76]). Other approaches include
compressing along the sequence dimension to attend to multiple tokens at once [54, 59, 82, 93]. One
can also attend over the states from previous sequences to help lengthen the context (e.g., Transformer-
XL [15] and Compressive Transformer [72]). We recommend the survey [84] for more details.

There are several lines of work on developing other modules instead of attention to model longer
context. HiPPO [37] and its extensions, most notably S4 [33, 38, 39] projects the history on a
polynomial basis, allowing accurate reconstruction of the history through state-space models. They
combine the strengths of CNNs (efficient training), RNNs (efficient inference), and continuous
models (robust to change in sampling rates). LambdaNetworks [2], AFT [97] and FLASH [44] are
other attempts at replacing attention in the context of image classification and language modeling.

B Algorithm Details
We first derive the forward and backward passes of attention and show that they can be computed in a
memory-efficient manner (requiring extra memory linear instead of quadratic in the sequence length).
Though they reduce the amount of extra memory required, naively they still incur quadratic HBM
accesses, resulting in slower execution speed. We describe the FLASHATTENTION algorithm to
implement both the forward and the backward passes on GPUs that reduces HBM accesses, leading
to both faster runtime and smaller memory footprint.

17

B.1 Memory-efficient forward pass
The main challenge in making attention memory-efficient is the softmax that couples the columns
of K (and columns of V). Our approach is to compute the softmax normalization constant separately
to decouple the columns. This technique [62] has been used in the literature [53, 69] to show that
attention computation does not need quadratic extra memory (though the number of HBM accesses
is still quadratic, resulting in slow run-time).

For simplicity, we omit here the max-shifting step during softmax. The full algorithm in Appendix B.3
contains all the steps.

Recall that given input sequences Q,K,V∈R𝑁×𝑑 , we want to compute the attention output O∈R𝑁×𝑑:
S=QK> ∈R𝑁×𝑁 , P=softmax(S) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 .

We have that 𝑆𝑖 𝑗 = 𝑞𝑇𝑖 𝑘 𝑗 where 𝑞𝑖 and 𝑘 𝑗 are the 𝑖-th and 𝑗-th columns of Q and K respectively.
Define the normalization constants of softmax:

𝐿𝑖 =
∑︁
𝑗

𝑒𝑞
𝑇
𝑖
𝑘 𝑗 . (1)

Let 𝑣 𝑗 be the 𝑗-th column of V, then the 𝑖-th columns of the output is

𝑜𝑖 =𝑃𝑖:V=
∑︁
𝑗

𝑃𝑖 𝑗𝑣 𝑗 =
∑︁
𝑗

𝑒𝑞
𝑇
𝑖
𝑘 𝑗

𝐿𝑖
𝑣 𝑗 . (2)

We see that once 𝐿𝑖 is computed, we can compute 𝑜𝑖 without extra memory by repeatedly summing
𝑒
𝑞𝑇
𝑖

𝑘 𝑗

𝐿𝑖
𝑣 𝑗 . Therefore the forward pass can be computed with 𝑂 (𝑛) extra memory:

1. Compute 𝐿𝑖 for all 𝑖 according to Eq. (1), which takes 𝑂 (𝑛) extra memory.

2. Compute 𝑜𝑖 for all 𝑖 according to Eq. (2), which takes 𝑂 (𝑑) extra memory.

B.2 Memory-efficient backward pass
We derive the backward pass of attention and show that it can also be computed with linear memory.
Rabe and Staats [69] suggests that the backward pass can be done without quadratic extra memory
by applying gradient checkpointing to the memory-efficient forward pass. We instead derive the
backward pass explicitly and show how it can be computed in a memory-efficient manner.

Suppose that there is a scalar loss function 𝜙, and let the output gradient be dO∈R𝑛×𝑑 (where dO
denotes 𝜕𝜙

𝜕O). We want to compute the input gradients dQ,dK,dV∈R𝑛×𝑑 (where dQ,dK,dV denote
𝜕𝜙

𝜕Q ,
𝜕𝜙

𝜕K ,
𝜕𝜙

𝜕V respectively).

The gradient dV is easy to see. Applying reverse-mode autodiff by hand (aka the chain rule), we
obtain (in matrix notation) dV=P𝑇 dO. Thus:

𝑑𝑣 𝑗 =
∑︁
𝑖

𝑃𝑖 𝑗𝑑𝑜𝑖 =
∑︁
𝑖

𝑒𝑞
𝑇
𝑖
𝑘 𝑗

𝐿𝑖
𝑑𝑜𝑖 . (3)

Since we already computed 𝐿𝑖 , 𝑑𝑣 𝑗 can be computed without extra memory by repeated summing.

The gradients dQ and dK are a little more complicated. We go through the gradients dP and dS
first. From Eq. (2), we have that dP=dOV𝑇 , and so:

𝑑𝑃𝑖 𝑗 =𝑑𝑜
𝑇
𝑖 𝑣 𝑗 .

Recall that 𝑃𝑖: = softmax(𝑆𝑖:). Using the fact that the Jacobian of 𝑦 = softmax(𝑥) is diag(𝑦) − 𝑦𝑦𝑇 ,
we have that

𝑑𝑆𝑖:= (diag(𝑃𝑖:)−𝑃𝑖:𝑃𝑇𝑖:)𝑑𝑃𝑖:=𝑃𝑖:◦𝑑𝑃𝑖:−(𝑃𝑇𝑖: 𝑑𝑃𝑖:)𝑃𝑖:,
where ◦ denotes pointwise multiplication.

Define

𝐷𝑖 =𝑃
𝑇
𝑖: 𝑑𝑃𝑖:=

∑︁
𝑗

𝑒𝑞
𝑇
𝑖
𝑘 𝑗

𝐿𝑖
𝑑𝑜𝑇𝑖 𝑣 𝑗 =𝑑𝑜

𝑇
𝑖

∑︁
𝑗

𝑒𝑞
>
𝑖
𝑘 𝑗

𝐿𝑖
𝑣 𝑗 =𝑑𝑜

𝑇
𝑖 𝑜𝑖 , (4)

then
𝑑𝑆𝑖:=𝑃𝑖:◦𝑑𝑃𝑖:−𝐷𝑖𝑃𝑖:.

Hence
𝑑𝑆𝑖 𝑗 =𝑃𝑖 𝑗𝑑𝑃𝑖 𝑗−𝐷𝑖𝑃𝑖 𝑗 =𝑃𝑖 𝑗 (𝑑𝑃𝑖 𝑗−𝐷𝑖).

18

Now we can get the gradients dQ and dK. Recall that 𝑆𝑖 𝑗 =𝑞𝑇𝑖 𝑘 𝑗 , so

𝑑𝑞𝑖 =
∑︁
𝑗

𝑑𝑆𝑖 𝑗 𝑘 𝑗 =
∑︁
𝑗

𝑃𝑖 𝑗 (𝑑𝑃𝑖 𝑗−𝐷𝑖)𝑘 𝑗 =
∑︁
𝑗

𝑒𝑞
𝑇
𝑖
𝑘 𝑗

𝐿𝑖
(𝑑𝑜𝑇𝑖 𝑣 𝑗−𝐷𝑖)𝑘 𝑗 . (5)

Similarly,

𝑑𝑘 𝑗 =
∑︁
𝑖

𝑑𝑆𝑖 𝑗𝑞𝑖 =
∑︁
𝑖

𝑃𝑖 𝑗 (𝑑𝑃𝑖 𝑗−𝐷𝑖)𝑞𝑖 =
∑︁
𝑖

𝑒𝑞
𝑇
𝑖
𝑘 𝑗

𝐿𝑖
(𝑑𝑜𝑇𝑖 𝑣 𝑗−𝐷𝑖)𝑞𝑖 . (6)

Therefore the backward pass can also be computed with 𝑂 (𝑛) extra memory:

1. Compute 𝑑𝑣 𝑗 for all 𝑗 according to Eq. (3), which takes 𝑂 (𝑑) extra memory.

2. Compute 𝐷𝑖 for all 𝑖 according to Eq. (4), which takes 𝑂 (𝑛) extra memory.

3. Compute 𝑑𝑞𝑖 for all 𝑖 according to Eq. (5), which takes 𝑂 (𝑑) extra memory.

4. Compute 𝑑𝑘 𝑗 for all 𝑗 according to Eq. (6), which takes 𝑂 (𝑑) extra memory.

B.3 FLASHATTENTION: Forward Pass
We describe the full details of FLASHATTENTION forward pass. Given input sequences
Q,K,V∈R𝑁×𝑑 , we want to compute the attention output O∈R𝑁×𝑑:

S=𝜏QK> ∈R𝑁×𝑁 , Smasked=MASK(𝑆) ∈R𝑁×𝑁 , P=softmax(Smasked) ∈R𝑁×𝑁 ,

Pdropped=dropout(P,𝑝drop), O=PdroppedV∈R𝑁×𝑑 ,

where 𝜏 ∈R is some softmax scaling (typically 1√
𝑑

), MASK is some masking function that sets some
entries of the input to −∞ and keep other entries the same (e.g., key padding mask when sequences
in the batch don’t have the same lengths and are padded), and dropout(𝑥,𝑝) applies dropout to 𝑥 ele-
mentwise (i.e., output 𝑥

1−𝑝 with probability 1−𝑝 and output 0 with probability 𝑝 for each element 𝑥).

The full algorithm is in Algorithm 2. We save the output O, the softmax statistics ℓ and 𝑚, and the
pseudo-random number generator state R for the backward pass.

Algorithm 2 FLASHATTENTION Forward Pass

Require: Matrices Q,K,V ∈R𝑁×𝑑 in HBM, on-chip SRAM of size 𝑀, softmax scaling constant
𝜏 ∈R, masking function MASK, dropout probability 𝑝drop.

1: Initialize the pseudo-random number generator state R and save to HBM.
2: Set block sizes 𝐵𝑐 =

⌈
𝑀
4𝑑
⌉
,𝐵𝑟 =min

(⌈
𝑀
4𝑑
⌉
,𝑑
)
.

3: Initialize O= (0)𝑁×𝑑 ∈R𝑁×𝑑 ,ℓ= (0)𝑁 ∈R𝑁 ,𝑚= (−∞)𝑁 ∈R𝑁 in HBM.
4: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1,...,Q𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

5: Divide O into 𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, divide ℓ into 𝑇𝑟 blocks ℓ𝑖 ,...,ℓ𝑇𝑟 of size
𝐵𝑟 each, divide 𝑚 into 𝑇𝑟 blocks 𝑚1,...,𝑚𝑇𝑟 of size 𝐵𝑟 each.

6: for 1≤ 𝑗 ≤𝑇𝑐 do
7: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
8: for 1≤ 𝑖≤𝑇𝑟 do
9: Load Q𝑖 ,O𝑖 ,ℓ𝑖 ,𝑚𝑖 from HBM to on-chip SRAM.

10: On chip, compute S𝑖 𝑗 =𝜏Q𝑖K𝑇
𝑗
∈R𝐵𝑟×𝐵𝑐 .

11: On chip, compute Smasked
𝑖 𝑗

=MASK(S𝑖 𝑗).
12: On chip, compute �̃�𝑖 𝑗 = rowmax(Smasked

𝑖 𝑗
) ∈ R𝐵𝑟 , P̃𝑖 𝑗 = exp(Smasked

𝑖 𝑗
− �̃�𝑖 𝑗) ∈ R𝐵𝑟×𝐵𝑐

(pointwise), ℓ̃𝑖 𝑗 = rowsum(P̃𝑖 𝑗) ∈R𝐵𝑟 .
13: On chip, compute 𝑚new

𝑖
=max(𝑚𝑖 ,�̃�𝑖 𝑗) ∈R𝐵𝑟 , ℓnew

𝑖
=𝑒𝑚𝑖−𝑚new

𝑖 ℓ𝑖+𝑒�̃�𝑖 𝑗−𝑚new
𝑖 ℓ̃𝑖 𝑗 ∈R𝐵𝑟 .

14: On chip, compute P̃dropped
𝑖 𝑗

=dropout(P̃𝑖 𝑗 ,𝑝drop).
15: Write O𝑖←diag(ℓnew

𝑖
)−1 (diag(ℓ𝑖)𝑒𝑚𝑖−𝑚new

𝑖 O𝑖+𝑒�̃�𝑖 𝑗−𝑚new
𝑖 P̃dropped

𝑖 𝑗
V 𝑗) to HBM.

16: Write ℓ𝑖←ℓnew
𝑖

, 𝑚𝑖←𝑚new
𝑖

to HBM.
17: end for
18: end for
19: Return O,ℓ,𝑚,R.

19

B.4 FLASHATTENTION: Backward Pass
We describe the full details of FLASHATTENTION backward pass. Given input sequences
Q,K,V ∈R𝑁×𝑑 , the output O ∈R𝑁×𝑑 , and the output gradient dO, we want to compute the input
gradients dQ,dK,dV∈R𝑁×𝑑 .

We first describe the standard attention backward pass in Algorithm 3 for completeness.

Algorithm 3 Standard Attention Backward Pass

Require: Matrices Q,K,V,dO∈R𝑁×𝑑 , P∈R𝑁×𝑁 in HBM.
1: Load P,dO by blocks from HBM, compute dV=P>dO∈R𝑁×𝑑 , write dV to HBM.
2: Load dO,V by blocks from HBM, compute dP=dOV> ∈R𝑁×𝑁 , write dP to HBM.
3: Read P,dP from HBM, compute dS ∈R𝑁×𝑁 where 𝑑𝑆𝑖 𝑗 = 𝑃𝑖 𝑗 (𝑑𝑃𝑖 𝑗 −

∑
𝑙𝑃𝑖𝑙𝑑𝑃𝑖𝑙), write dS to

HBM.
4: Load dS and K by blocks from HBM, compute dQ=dSK, write dQ to HBM.
5: Load dS and Q by blocks from HBM, compute dK=dS>Q, write dK to HBM.
6: Return dQ,dK,dV.

We now make two observations about FLASHATTENTION backward pass:

1. We do not need to store the dropout mask of size 𝑂 (𝑁2) from the forward pass. Instead, we
can save the pseudo-random number generator states from the forward pass and re-generate
the dropout mask in the backward pass. This allows us to only use 𝑂 (𝑁) extra memory.

2. When computing the softmax gradient, we use Eq. (4) to compute 𝐷𝑖 = 𝑃
>
𝑖:𝑑𝑃𝑖: without

reducing over 𝑃𝑖: and 𝑑𝑃𝑖: of size 𝑁 (they might not fit into SRAM). Instead we can rewrite
𝐷𝑖 =𝑑𝑜

>
𝑖
𝑜𝑖 and compute the dot product between vectors of size 𝑑.

The full FLASHATTENTION backward pass algorithm is in Algorithm 4. Conceptually it is just a
block version of the derivation in Appendix B.2.

We see that similar to the forward pass, the backward pass performs 𝑂 (𝑁2) FLOPs and only requires
𝑂 (𝑁) extra memory beyond inputs, output, output gradient, and input gradients.

We analyze the IO-complexity of the backward pass, similar to the forward pass (Theorem 2).
Theorem 5. Let 𝑁 be the sequence length, 𝑑 be the head dimension, and 𝑀 be size of SRAM with
𝑑 ≤𝑀 ≤ 𝑁𝑑. Standard attention (Algorithm 0) backward pass requires Θ(𝑁𝑑+𝑁2) HBM accesses,
while FLASHATTENTION backward pass (Algorithm 4) requires Θ(𝑁2𝑑2𝑀−1) HBM accesses.

The proof is in Appendix C.

B.5 Comparison with Rabe and Staats [69]
We describe here some similarities and differences between our FLASHATTENTION algorithm and
the algorithm of Rabe and Staats [69].

Conceptually, both FLASHATTENTION and Rabe and Staats [69] operate on blocks of the attention
matrix using the well-established technique of tiling (or softmax scaling) [53, 62]. To reduce the
memory footprint, both methods avoid storing the large attention matrix in the forward pass and
recompute it in the backward pass.

The first major difference is that Rabe and Staats [69] focuses on the reducing the total memory foot-
print (maximum amount of GPU memory required) while FLASHATTENTION focuses on reducing
memory accesses (the number of memory reads/writes). As mentioned in Section 2, the amount
of memory access is the primary determining factor of runtime. Reducing memory accesses also
necessarily reduces the total amount of memory required (e.g., if an operation incurs 𝐴 memory ac-
cesses, then its total memory requirement is at most 𝐴). As a result, FLASHATTENTION is faster than
standard attention (2-4×) while Rabe and Staats [69] is around the same speed or slightly slower than
standard attention. In terms of total memory required, both methods offer substantial memory saving.

The second difference between the two methods is the way information is summarized from each
block to pass to the next block. Rabe and Staats [69] summarizes each block with its temporary output
along with the softmax normalization statistics. At the end of the forward pass, the temporary outputs
of all the blocks are combined using the statistics to produce the final output. FLASHATTENTION

20

Algorithm 4 FLASHATTENTION Backward Pass

Require: Matrices Q,K,V,O,dO ∈ R𝑁×𝑑 in HBM, vectors ℓ,𝑚 ∈ R𝑁 in HBM, on-chip SRAM
of size 𝑀, softmax scaling constant 𝜏 ∈R, masking function MASK, dropout probability 𝑝drop,
pseudo-random number generator state R from the forward pass.

1: Set the pseudo-random number generator state to R.
2: Set block sizes 𝐵𝑐 =

⌈
𝑀
4𝑑
⌉
,𝐵𝑟 =min

(⌈
𝑀
4𝑑
⌉
,𝑑
)
.

3: Divide Q into 𝑇𝑟 =
⌈
𝑁
𝐵𝑟

⌉
blocks Q1,...,Q𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

4: Divide O into 𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, divide dO into 𝑇𝑟 blocks dO𝑖 ,...,dO𝑇𝑟

of size 𝐵𝑟 ×𝑑 each, divide ℓ into 𝑇𝑟 blocks ℓ𝑖 ,...,ℓ𝑇𝑟 of size 𝐵𝑟 each, divide 𝑚 into 𝑇𝑟 blocks
𝑚1,...,𝑚𝑇𝑟 of size 𝐵𝑟 each.

5: Initialize dQ = (0)𝑁×𝑑 in HBM and divide it into 𝑇𝑟 blocks dQ1,...,dQ𝑇𝑟
of size 𝐵𝑟 ×𝑑 each.

Initialize dK= (0)𝑁×𝑑 ,dV= (0)𝑁×𝑑 in HBM and divide dK,dV in to 𝑇𝑐 blocks dK1,...,dK𝑇𝑐

and dV1,...,dV𝑇𝑐 , of size 𝐵𝑐×𝑑 each.
6: for 1≤ 𝑗 ≤𝑇𝑐 do
7: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
8: Initialize ˜dK 𝑗 = (0)𝐵𝑐×𝑑 ,d̃V 𝑗 = (0)𝐵𝑐×𝑑 on SRAM.
9: for 1≤ 𝑖≤𝑇𝑟 do

10: Load Q𝑖 ,O𝑖 ,dO𝑖 ,dQ𝑖 ,ℓ𝑖 ,𝑚𝑖 from HBM to on-chip SRAM.
11: On chip, compute S𝑖 𝑗 =𝜏Q𝑖K𝑇

𝑗
∈R𝐵𝑟×𝐵𝑐 .

12: On chip, compute Smasked
𝑖 𝑗

=MASK(S𝑖 𝑗).
13: On chip, compute P𝑖 𝑗 =diag(𝑙𝑖)−1exp(Smasked

𝑖 𝑗
−𝑚𝑖) ∈R𝐵𝑟×𝐵𝑐 .

14: On chip, compute dropout mask Z𝑖 𝑗 ∈ R𝐵𝑟×𝐵𝑐 where each entry has value 1
1−𝑝drop

with
probability 1−𝑝drop and value 0 with probability 𝑝drop.

15: On chip, compute Pdropped
𝑖 𝑗

=P𝑖 𝑗 ◦Z𝑖 𝑗 (pointwise multiply).

16: On chip, compute ˜dV 𝑗← ˜dV 𝑗+(Pdropped
𝑖 𝑗

)>dO𝑖 ∈R𝐵𝑐×𝑑 .

17: On chip, compute dPdropped
𝑖 𝑗

=dO𝑖V>𝑗 ∈R𝐵𝑟×𝐵𝑐 .

18: On chip, compute dP𝑖 𝑗 =dPdropped
𝑖 𝑗

◦Z𝑖 𝑗 (pointwise multiply).
19: On chip, compute 𝐷𝑖 = rowsum(dO𝑖◦O𝑖) ∈R𝐵𝑟 .
20: On chip, compute dS𝑖 𝑗 =P𝑖 𝑗 ◦(dP𝑖 𝑗−𝐷𝑖) ∈R𝐵𝑟×𝐵𝑐 .
21: Write dQ𝑖←dQ𝑖+𝜏dS𝑖 𝑗K 𝑗 ∈R𝐵𝑟×𝑑 to HBM.
22: On chip, compute ˜dK 𝑗← ˜dK 𝑗+𝜏dS>𝑖 𝑗Q𝑖 ∈R𝐵𝑐×𝑑 .
23: end for
24: Write dK 𝑗← ˜dK 𝑗 ,dV 𝑗← ˜dV 𝑗 to HBM.
25: end for
26: Return dQ,dK,dV.

instead incrementally updates the output (Algorithm 1 line 1) after processing each block, so only one
copy of the output is needed (instead of 𝐾 copies for 𝐾 blocks). This means that FLASHATTENTION
has smaller total memory requirement compared to Rabe and Staats [69].

The final major difference is the way the backward pass is computed. Rabe and Staats [69] uses
gradient checkpointing to recompute the attention matrix and the temporary output of each block.
FLASHATTENTION instead simplifies the backward pass analytically (Appendices B.2 and B.4).
It only recomputes the attention matrix and does not recompute the temporary output of each block.
This reduces the memory requirement for the backward pass and yields speedup.

C Proofs
Proof of Theorem 1. We first count the number of FLOPs and extra memory required.

The dominating FLOPs are from matrix multiplication. In the inner loop, (Algorithm 1 line 1), we com-
pute Q𝑖K>𝑗 ∈R𝐵𝑟×𝐵𝑐 for Q𝑖 ∈R𝐵𝑟×𝑑 and K 𝑗 ∈R𝐵𝑐×𝑑 , which takes 𝑂 (𝐵𝑟𝐵𝑐𝑑) FLOPs. We also com-
pute (Algorithm 1 line 1) P̃𝑖 𝑗V 𝑗 ∈R𝐵𝑟×𝑑 for P̃𝑖 𝑗 ∈R𝐵𝑟×𝐵𝑐 and V 𝑗 ∈R𝐵𝑐×𝑑 , which takes 𝑂 (𝐵𝑟𝐵𝑐𝑑)

21

FLOPs. We execute the inner loops 𝑇𝑐𝑇𝑟 =
⌈
𝑁
𝐵𝑐

⌉⌈
𝑁
𝐵𝑟

⌉
times. Therefore the total number of FLOPs is

𝑂

(
𝑁2

𝐵𝑐𝐵𝑟
𝐵𝑟𝐵𝑐𝑑

)
=𝑂 (𝑁2𝑑).

In terms of extra memory required, we see that we need 𝑂 (𝑁) memory to store the statistics (ℓ,𝑚).
We now prove the algorithm’s correctness by induction on 𝑗 for 0≤ 𝑗 ≤𝑇𝑐 . Let K: 𝑗 ∈R 𝑗𝐵𝑐×𝑑 be the
first 𝑗𝐵𝑐 rows of K, and similarly V: 𝑗 ∈R 𝑗𝐵𝑐×𝑑 the the first 𝑗𝐵𝑐 rows of V. Let S:,: 𝑗 =QK>: 𝑗 ∈R𝑁× 𝑗𝐵𝑐 ,
and P:,: 𝑗 = softmax(S:,: 𝑗) ∈ R𝑁× 𝑗𝐵𝑐 (softmax applied row-wise). Let 𝑚 𝑗 ,ℓ (𝑗) ,O(𝑗) be the values
of 𝑚,ℓ,O in HBM after the 𝑗-th iteration of the outer loop (Algorithm 1 line 1). (Note that these
values of 𝑚,ℓ,O are updated after each iteration of the outer loop.) We want to show that after the
𝑗-th iteration of the outer loop, we have computed in HBM:
𝑚 (𝑗) = rowmax(S:,: 𝑗) ∈R𝑁 , ℓ (𝑗) = rowsum(exp(S:,: 𝑗−𝑚 (𝑗))) ∈R𝑁 , O(𝑗) =P:,: 𝑗V: 𝑗 ∈R𝑁×𝑑 .

Based on our initialization (Algorithm 1 line 1), this claim is true for 𝑗 =0 (i.e., before the any iteration
of the outer loop is executed). Suppose that the claim holds for some 𝑗 =0,...,𝑇𝑐−1. We want to show
that the claim also holds for 𝑗+1. Indeed, when we update the statistics in the inner loop (Algorithm 1
line 1) on the (𝑗+1)-th iteration of the outer loop, we update 𝑚 (𝑗+1) =max(𝑚 (𝑗) ,�̃�) where �̃� ∈R𝑁

is the row-max of S:, 𝑗: 𝑗+1, the slice of S from column 𝑗𝐵𝑐 to column (𝑗+1)𝐵𝑐−1. This implies that
𝑚 (𝑗+1) = rowmax(S:,: 𝑗+1) ∈R𝑁 .

Similarly, we update
ℓ (𝑗+1) =𝑒𝑚

(𝑗)−𝑚(𝑗+1) ℓ (𝑗)+𝑒�̃�−𝑚(𝑗+1) ℓ̃,
where ℓ̃= rowsum(exp(S:, 𝑗: 𝑗+1−�̃�)) ∈R𝑁 . By the same algebraic manipulation in Section 3.1, we
obtain:

ℓ (𝑗+1) = rowsum(exp(S:,: 𝑗+1−𝑚 (𝑗+1))) ∈R𝑁 .

Let V 𝑗: 𝑗+1 be the slice of V from column 𝑗𝐵𝑐 to column (𝑗+1)𝐵𝑐−1, we also update:
O(𝑗+1) =diag(ℓ (𝑗+1))−1 (diag(ℓ (𝑗))𝑒𝑚(𝑗)−𝑚(𝑗+1)O(𝑗)+𝑒�̃�−𝑚(𝑗+1) exp(S 𝑗: 𝑗+1−�̃�)V 𝑗: 𝑗+1)

=diag(ℓ (𝑗+1))−1 (diag(ℓ (𝑗))𝑒𝑚(𝑗)−𝑚(𝑗+1)P:,: 𝑗V: 𝑗+𝑒−𝑚
(𝑗+1)

exp(S 𝑗: 𝑗+1)V 𝑗: 𝑗+1)

=diag(ℓ (𝑗+1))−1 (diag(ℓ (𝑗))𝑒𝑚(𝑗)−𝑚(𝑗+1) diag(ℓ (𝑗))exp(S:,: 𝑗−𝑚 (𝑗))V: 𝑗+𝑒−𝑚
(𝑗+1)

exp(S 𝑗: 𝑗+1)V 𝑗: 𝑗+1)

=diag(ℓ (𝑗+1))−1 (𝑒−𝑚(𝑗+1) exp(S:,: 𝑗)V: 𝑗+𝑒−𝑚
(𝑗+1)

exp(S 𝑗: 𝑗+1)V 𝑗: 𝑗+1)
=diag(ℓ (𝑗+1))−1 (exp(S:,: 𝑗−𝑚 (𝑗+1))V: 𝑗+exp(S 𝑗: 𝑗+1−𝑚 (𝑗+1))V 𝑗: 𝑗+1)

=diag(ℓ (𝑗+1))−1
(
exp

([
S:,: 𝑗 S 𝑗: 𝑗+1

]
−𝑚 (𝑗+1)

)) [V: 𝑗
V 𝑗: 𝑗+1

]
=softmax(S: 𝑗+1)V: 𝑗+1.

We then see that the claim is also true for 𝑗+1. By induction, the claim is true for all 𝑗 =0,...,𝑇𝑐 .

When 𝑗 =𝑇𝑐 , we conclude that the final value of O in HBM is softmax(S)V=softmax(QK>)V.

�

Proof of Theorem 2. We first analyze the IO complexity of standard attention implementation. The
inputs Q,K,V ∈R𝑁×𝑑 reside in HBM, and the at the end of the algorithm the output O ∈R𝑁×𝑑 is
written to HBM.

In the first step of computing the matrix multiply S=QK>, the inputs Q,K are read from HBM and
the output S∈R𝑁×𝑁 is written to HBM (Algorithm 0 line 0). This incurs Θ(𝑁𝑑+𝑁2) HBM accesses.

In the second step of computing P = softmax(S), the input S is read from HBM and the output P
is written to HBM (Algorithm 0 line 0). This incurs Θ(𝑁2) HBM accesses.

In the last step of computing O=PV, the inputs P,V are read from global memory and the output
O is written to HBM (Algorithm 0 line 0). This incurs Θ(𝑁𝑑+𝑁2) HBM accesses.

Overall, standard attention implementation requires Θ(𝑁𝑑+𝑁2) global memory accesses.

We now analyze the IO complexity of streaming attention.

Following Algorithm 1, we see that each element of K and V is loaded from HBM once (Algorithm 1
line 1). We make 𝑇𝑐 passes over Q and O, each pass loading all of Q and all of O to HBM
(Algorithm 1 line 1). Therefore the number of HBM accesses is Θ(𝑁𝑑+𝑁𝑑𝑇𝑐)=Θ(𝑁𝑑𝑇𝑐).

22

We derive the conditions on the block sizes 𝐵𝑐 and 𝐵𝑟 . We need the blocks K 𝑗 and V 𝑗 of size 𝐵𝑐×𝑑
to fit into on-chip memory, which translates to:

𝐵𝑐𝑑=𝑂 (𝑀)⇔𝐵𝑐 =𝑂

(
𝑀

𝑑

)
.

Similarly, we need the blocks Q𝑖 ,O𝑖 of size 𝐵𝑟×𝑑 to fit into on-chip memory, which translates to:

𝐵𝑟 𝑑=𝑂 (𝑀)⇔𝐵𝑟 =𝑂

(
𝑀

𝑑

)
.

Finally, we need the block S𝑖 𝑗 of size 𝐵𝑟×𝐵𝑐 to fit into on-chip memory, which translates to:
𝐵𝑟𝐵𝑐 =𝑂 (𝑀).

We therefore set:

𝐵𝑐 =Θ

(
𝑀

𝑑

)
, 𝐵𝑟 =Θ

(
min

(
𝑀

𝑑
,
𝑀

𝐵𝑐

))
=Θ

(
min

(
𝑀

𝑑
,𝑑

))
.

We then have:

𝑇𝑐 =
𝑁

𝐵𝑐

=Θ

(
𝑁𝑑

𝑀

)
.

As a result, the number of HBM accesses is:

Θ(𝑁𝑑𝑇𝑐)=Θ
(
𝑁2𝑑2

𝑀

)
.

�

Proof of Proposition 3. For contradiction, suppose that there exists an algorithm that computes exact
attention where the number for HBM access for all 𝑀 ∈ [𝑑,𝑁𝑑] is

𝑜

(
𝑁2𝑑2

𝑀

)
.

In the regime of 𝑀 =Θ(𝑁𝑑), this results in the number of HBM accesses:

𝑜

(
𝑁2𝑑2

𝑁𝑑

)
=𝑜(𝑁𝑑).

However, the input to attention (matrices Q,K,V) and the output O have size 𝑁𝑑 and they start
out being in HBM, so if the algorithm computes exact attention it must incur at least Ω(𝑁𝑑) HBM
accesses. This is a contradiction. �

Proof of Theorem 5. The IO complexity of the attention backward is very similar to the IO
complexity of the attention forward (Theorem 2). Here we provide a sketch of the proof.

We first analyze the IO complexity of standard attention backward pass. The inputs Q,K,V,dO∈R𝑁×𝑑

reside in HBM, and the at the end of the algorithm the outputs dQ,dK,dV∈R𝑁×𝑑 are written to HBM.

At each step of the standard attention backward pass, one needs to load inputs of size 𝑁𝑑 or 𝑁2

from HBM, and needs to write the outputs of size 𝑁2 or 𝑁𝑑 to HBM. This incurs Θ(𝑁𝑑+𝑁2) HBM
accesses.

We now analyze the IO complexity of FLASHATTENTION backward pass.

Similar to Theorem 2, we see that each element of K and V is loaded from HBM once. Each element
of dK and dV is only written to HBM once. We make 𝑇𝑐 passes over Q,O,dO, each pass loading all
of Q,O,dO to HBM. We also make 𝑇𝑐 passes over dQ, each pass reading/writing all of dQ from/to
HBM. Therefore the number of HBM accesses is Θ(𝑁𝑑+𝑁𝑑𝑇𝑐)=Θ(𝑁𝑑𝑇𝑐).
As in the proof of Theorem 2, the constraints on the block sizes are that:

𝐵𝑐 =Θ

(
𝑀

𝑑

)
, 𝐵𝑟 =Θ

(
min

(
𝑀

𝑑
,𝑑

))
.

We then have:

𝑇𝑐 =
𝑁

𝐵𝑐

=Θ

(
𝑁𝑑

𝑀

)
.

As a result, the number of HBM accesses is:

Θ(𝑁𝑑𝑇𝑐)=Θ
(
𝑁2𝑑2

𝑀

)
.

�

23

D Extension Details
D.1 Block-sparse FLASHATTENTION

We describe the full block-sparse FLASHATTENTION algorithm in Algorithm 5. The algorithm is
identical to Algorithm 2, except that we skip zero blocks.

Algorithm 5 Block-Sparse FLASHATTENTION Forward Pass

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM, on-chip SRAM of size 𝑀 , softmax scaling constant 𝜏 ∈
R, masking function MASK, dropout probability 𝑝drop, block sizes 𝐵𝑐 =

⌈
𝑀
4𝑑
⌉
,𝐵𝑟 =min

(⌈
𝑀
4𝑑
⌉
,𝑑
)
,

block sparsity mask 𝑀 ∈ {0,1}𝑁 /𝐵𝑟×𝑁 /𝐵𝑐 ..
1: Initialize the pseudo-random number generator state R and save to HBM.
2: Initialize O= (0)𝑁×𝑑 ∈R𝑁×𝑑 ,ℓ= (0)𝑁 ∈R𝑁 ,𝑚= (−∞)𝑁 ∈R𝑁 in HBM.
3: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1,...,Q𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

4: Divide O into 𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, divide ℓ into 𝑇𝑟 blocks ℓ𝑖 ,...,ℓ𝑇𝑟 of size
𝐵𝑟 each, divide 𝑚 into 𝑇𝑟 blocks 𝑚1,...,𝑚𝑇𝑟 of size 𝐵𝑟 each.

5: for 1≤ 𝑗 ≤𝑇𝑐 do
6: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
7: for 1≤ 𝑖≤𝑇𝑟 do
8: if 𝑀𝑖 𝑗 ≠0 then
9: Load Q𝑖 ,O𝑖 ,ℓ𝑖 ,𝑚𝑖 from HBM to on-chip SRAM.

10: On chip, compute S𝑖 𝑗 =𝜏Q𝑖K𝑇
𝑗
∈R𝐵𝑟×𝐵𝑐 .

11: On chip, compute Smasked
𝑖 𝑗

=MASK(S𝑖 𝑗).
12: On chip, compute �̃�𝑖 𝑗 = rowmax(Smasked

𝑖 𝑗
) ∈ R𝐵𝑟 , P̃𝑖 𝑗 = exp(Smasked

𝑖 𝑗
− �̃�𝑖 𝑗) ∈ R𝐵𝑟×𝐵𝑐

(pointwise), ℓ̃𝑖 𝑗 = rowsum(P̃𝑖 𝑗) ∈R𝐵𝑟 .
13: On chip, compute 𝑚new

𝑖
=max(𝑚𝑖 ,�̃�𝑖 𝑗) ∈R𝐵𝑟 , ℓnew

𝑖
=𝑒𝑚𝑖−𝑚new

𝑖 ℓ𝑖+𝑒�̃�𝑖 𝑗−𝑚new
𝑖 ℓ̃𝑖 𝑗 ∈R𝐵𝑟 .

14: On chip, compute P̃dropped
𝑖 𝑗

=dropout(P̃𝑖 𝑗 ,𝑝drop).
15: Write O𝑖←diag(ℓnew

𝑖
)−1 (diag(ℓ𝑖)𝑒𝑚𝑖−𝑚new

𝑖 O𝑖+𝑒�̃�𝑖 𝑗−𝑚new
𝑖 P̃dropped

𝑖 𝑗
V 𝑗) to HBM.

16: Write ℓ𝑖←ℓnew
𝑖

, 𝑚𝑖←𝑚new
𝑖

to HBM.
17: end if
18: end for
19: end for
20: Return O,ℓ,𝑚,R.

We prove the IO-complexity of block-sparse FLASHATTENTION.

Proof of Proposition 4. The proof is very similar to the proof of Theorem 2. For the block-sparse
case, notice that we only need to load blocks corresponding to nonzero blocks. As a result, the
number of HBM accesses are scaled by 𝑠, the fraction of nonzero blocks in the block-sparsity mask.
However, for small values of 𝑠, we would still need to write the result O ∈ R𝑁×𝑑 . Therefore the
number of HBM accesses is

Θ

(
𝑁𝑑+ 𝑁

2𝑑2

𝑀
𝑠

)
.

�

D.2 Potential Extensions
We discuss here a few potential extensions of the IO-aware approach to speed up deep learning
training.

Multi-GPU Attention. Large language models are trained on hundreds or thousands of GPUs,
and one typically splits the attention computation between 4-8 GPUs on the same node [80]. This
introduces another level of memory hierarchy: beside GPU SRAM and GPU HBM, we also have the
HBM of other GPUs. For very long sequences, the different GPUs on the same node can cooperate
to compute attention by taking into account the asymmetry of different levels of memory hierarchy.

24

Sparse MLP layers. Typical dense MLP layers are compute-bound and not memory-bound. To
improve their efficiency, MLP layers with sparse weight matrices can be used [18]. However,
many sparse MLP layers are instead memory-bound, and their speedup is often not proportional
to the sparsity. We believe that an IO-aware implementation can alleviate this issue and realize the
benefits of sparsity. We are excited about future work in this direction, to reduce the computational
requirement of large models and improve their wall-block runtime.

Kernel machine learning. Our approach in FLASHATTENTION relies on the fact that the 𝑁 ×𝑁
attention matrix is a function of a low-rank matrix QK> (of rank 𝑑 � 𝑁). As a result, we can
repeatedly load the inputs Q,K and recompute the block of the attention matrix that we need,
significantly reducing HBM access. As similar scenario happens in kernel machine learning: each
element 𝐾𝑖 𝑗 of the 𝑁×𝑁 kernel matrix K is a function of two vectors of size 𝑑�𝑁 , as it measures
the similarity between two datapoints 𝑥𝑖 and 𝑥 𝑗 . The KeOps library [8, 28] is a successful example of
how reducing memory reads/writes can speed up kernel operations. We hope that this will motivate
kernel methods that focus more on reducing IOs instead of just FLOPs.

E Full Experimental Results
E.1 BERT
We train BERT-large following the training procedure and hyperparameters of the reference MLPerf
1.1 implementation. In particular, we use the LAMB optimizer with learning rate 3.75e-3, with batch
size 448, trained for at most 7100 steps. The training is stopped once the validation accuracy (for
masked language modeling) reaches the target 72.0%, and the wall-clock run-time is measured. We
train with FP16 precision using Apex AMP (with O2 optimization level).

We compare our results with the reported training speed from Nvidia that was submitted to MLPerf
1.1 (Table 1).

We use the same train / validation data split provided by MLPerf 1.1 reference implementation. In
particular, we evaluate on the same 10000 validation examples as the baseline from Nvidia.

We train the model on 8×A100-80GB GPUs. Each training run takes between 16 and 19 minutes,
and we average the results of 10 runs.

We see a memory saving of 1.8𝑡𝑖𝑚𝑒𝑠 (from 58GB to 32GB) for the same batch size.

In Table 7, we additionally compare against the commonly used Huggingface implementation.
FLASHATTENTION is 3.2× faster than this implementation.

Table 7: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to
reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8×A100 GPUs.

BERT Implementation Training time (minutes)
Huggingface [91] 55.6 ± 3.9

Nvidia MLPerf 1.1 [63] 20.0 ± 1.5
FLASHATTENTION (ours) 17.4 ± 1.4

E.2 GPT-2
We use the standard implementations of GPT-2 [70] from Huggingface transformers library and
from Nvidia’s Megatron-LM repo. We follow the training recipe of the Megatron-LM repo.

We use an effective batch size of 512, and use gradient accumulation to fit into available GPU
memory. We use the AdamW optimizer, with learning rate 6e-4 for GPT-2 small and 1.5e-4 for
GPT-2 medium, and weight decay of 0.1. All models are trained with the same hyperparameters
for 400K steps. We run all implementations with mixed-precision training (PyTorch AMP).

We use the Openwebtext dataset, with the GPT-2 BPE tokenizer. We randomly select 0.5% of
the dataset as the validation set, with the rest being used as training set. This random selection of
validation set is done once, and all models are evaluated on the same validation set.

We train the model on 8×A100-40GB GPUs, and we measure the wall-clock training time. Training
GPT-2 small takes between 2.7-9.5 days, and training GPT-2 medium takes between 6.9-21.0 days
(Table 2).

For GPT-2 small, we see a memory saving of 3.5𝑡𝑖𝑚𝑒𝑠 (from 39GB to 11GB) for the same batch
size of 16 (which means we could run FLASHATTENTION with 4× larger device batch size while
keeping the global batch size of 512 the same).

25

In Fig. 4, we plot of the validation perplexity throughout training of GPT-2 small/medium, using
either HuggingFace implementation or our FLASHATTENTION implementation. We see that
FLASHATTENTION behaves the same as the baseline implementation and the validation perplexity
curves of the two implementations almost lie on top of each other.

100k 200k 300k
Training steps

10

15

20

25

30

Va
l p

er
pl

ex
ity

GPT-2-small HuggingFace
GPT-2-small FlashAttention
GPT-2-medium HuggingFace
GPT-2-medium FlashAttention

Figure 4: Validation perplexity of GPT-2 small/medium using two implementations. We confirm
that FLASHATTENTION yields the same validation curves as the baseline implementation from
HuggingFace.

We additionally compare the speedup of FlashAttention as we scale the number of GPUs from 1
to 8, for GPT-2 Small. All the training hyperparameters are kept the same. As we change the number
of GPUs, we change the number of gradient accumulations to keep the global batch size the same
(512). We use PyTorch DistributedDataParallel when there are more than 1 GPUs. Table 8 shows
that the speedup is consistent, around 3.5-3.7×.

Table 8: Training speedup (in wallclock-time) of FlashAttention compared to Huggingface implementation on
GPT-2 small as we vary the number of GPUs, measured on A100-SXM4-40GB GPUs. The speedup varies from
3.7× to 3.5×.

FLASHATTENTION vs. Huggingface on GPT-2 Small 1 GPU 2 GPUs 4 GPUs 8 GPUs
Wallclock-time speedup 3.7× 3.6× 3.6× 3.5×

Long Document Classification. For MIMIC-III and ECtHR, we follow the hyperparameters of Dai
et al. [14].

E.3 LRA details
We follow the hyperparameters from the Long-range arena paper [83], the Long-range arena
repo (https://github.com/google-research/long-range-arena), and the Nyströmformer
reproduction [94]. To be generous to the baseline methods, if we are unable to reproduce the
performance of any baseline for any of the five tasks, we report the better performance from Tay
et al. [83] or Xiong et al. [94] for that baseline on that task.

After hyperparameter tuning, almost all of the attention methods achieve similar accuracy on all
of the five LRA tasks.

We run all methods with mixed-precision training, except for Performer (not stable with mixed
precision) and Local Attention (implementation does not support FP16).

To calculate the overall wallclock-time speedup, we take the geometric mean of the wallclock-time
speedup of each of the five tasks.

Path-X For Path-X and Path-256, we follow the hyperparameters from the PathFinder-32
experiments from the long-range arena paper[83]. For both, we first pretrain a model on Path-64.

26

https://github.com/google-research/long-range-arena

We take the checkpoint after 200 epochs, upsample its positional embedding (we duplicate the
positional embeddings gridwise in space), and fine-tune it on the downstream task for 200 epochs
with one epoch of linear warmup, and cosine decay of the learning rate. For Path-X, we take the best
performing checkpoint (according to val accuracy), and additionally fine-tune it for 200 epochs with
the same warmup and learning rate (this adds roughly 4 points of accuracy to FLASHATTENTION
for Path-X, but the model starts overfitting afterwards).

E.4 Faster Vision Transformer with FLASHATTENTION on ImageNet
On the popular vision benchmark, ImageNet [22], we show that FLASHATTENTION can also speedup
Vision Transformers (ViT) [26] by 1.5𝑡𝑖𝑚𝑒𝑠, where the sequence length is 196 (patch size 16×16
for 224×224 images). For longer sequences, FLASHATTENTION yields up to 3.5× speedup.

We use the ViT-base implementation from the widely-used library timm, and replace the standard
attention implementation with FLASHATTENTION. We follow the same training recipe as that of
DeiT [85], which improves on the original training recipe of ViT. We measure accuracy and training
time of both models (for 300 epochs) on 8×A100s. Table 9 shows that FLASHATTENTION achieves
up 1.5× speed-up compared to standard attention.

Table 9: Training time of ViT-base on ImageNet for 300 epochs, on 8×A100 GPUs. Even with relatively small
sequence length (196), FLASHATTENTION still yields 1.5x speedup.

ViT-base implementation ImageNet top-1 val accuracy Training time (hours)
timm 81.8% 29.1

FLASHATTENTION (ours) 81.8% 19.5

We also compare ViT-Large with smaller patch sizes (i.e., longer sequence lengths). Table 10 shows
that FLASHATTENTION yields 3.5× speedup and saves up to 3.6𝑥 memory, compared to standard
attention.

Table 10: Forward + Backward time of ViT-Large on a batch of 224×224 images an A100 GPU. With longer
sequence length, FLASHATTENTION yields 3.5x speedup and up to 3.6×memory saving.

ViT-Large implementation Sequence length Batch size Fwd + bwd time Memory
ViT-Large (timm) patch size 8 784 32 1400ms 36GB

ViT-Large (FLASHATTENTION) patch size 8 784 32 405ms (3.5×) 22GB
ViT-Large (timm) patch size 4 3136 2 1200ms 22GB

ViT-Large (FLASHATTENTION) patch size 4 3136 2 350ms (3.4×) 6GB

E.5 Comparison with Automatic Fusion
We compare FlashAttention with automatic fusion methods: NVFuser from Pytorch 1.12 (newest
version at the time of writing), AOT compiler from Functorch, and TVM [11]. For context, we also
include the runtime of standard implementation from Pytorch and the more optimized implementation
from Megatron-LM [80].

We benchmark for batch size 16, 32, and 64, sequence length 1024, 16 heads, head dimension 64,
with key-padding mask (and no dropout). The runtime is measured on an A100-SXM4-40GB GPU.
Table 11 shows that FLASHATTENTION is about 2-3× faster than these methods.

Table 11: Runtime (ms) of FLASHATTENTION compared to automatic fusion methods by sequence length, with
key padding masking, measured on an A100-SXM4-40GB GPU. Batch size 16, 32, and 64, sequence length 1024,
16 heads, head dimension 64. FLASHATTENTION is 2-3× faster than these methods.

Method Batch size 16 Batch size 32 Batch size 64
Fwd Bwd Total Fwd Bwd Total Fwd Bwd Total

Pytorch eager mode 4.1 5.0 9.1 8.1 9.5 17.6 16.1 19.0 35.1
Pytorch JIT (NVFuser) 2.8 4.8 7.6 5.5 9.5 15.0 11.0 18.7 29.7

AOT compiler (Functorch) 2.7 4.9 7.6 5.4 9.8 15.2 10.8 19.6 30.4
TVM 2.7 4.9 7.6 5.5 9.7 15.2 11.0 19.0 30.0

Megatron-LM 2.9 3.8 6.9 5.5 7.1 12.6 11.6 14.3 25.9
FLASHATTENTION 1.0 2.6 3.6 1.8 4.1 5.9 3.3 8.4 11.7

E.6 Comparison with Apex FMHA
We compare our method/implementation with Apex FMHA (https://github.com/NVIDIA/
apex/tree/master/apex/contrib/csrc/fmha).

27

https://github.com/NVIDIA/apex/tree/master/apex/contrib/csrc/fmha
https://github.com/NVIDIA/apex/tree/master/apex/contrib/csrc/fmha

Table 12: Runtime (ms) of FLASHATTENTION compared to FMHA by sequence length, with masking and dropout,
measured on an A100-SXM4-40GB GPU. Batch size 64, 16 heads, head dimension 64 (i.e., BERT-large size).

Attention Method 128 256 512
Apex FMHA forward 0.10 0.29 1.14

FLASHATTENTION forward 0.08 0.22 0.81
Apex FMHA backward 0.17 0.52 1.81

FLASHATTENTION backward 0.20 0.53 2.00
Apex FMHA forward + backward 0.27 0.81 2.95

FLASHATTENTION forward + backward 0.28 0.75 2.81

When we started this project, Apex FMHA was the fastest implementation of attention (that we knew
of), tailored for short sequences of length at most 512. In fact, almost all MLPerf submissions for
BERT training benchmark running on Nvidia GPUs use FMHA for their model code, as of MLPerf
1.1 [60]. Since FMHA targets BERT models, it only supports head dimension 64, and only runs
on A100 GPUs. FMHA fuses the attention computation dropout(softmax(MASK(QK>)))V into one
CUDA kernel. In the forward pass, it stores the attention matrix softmax(MASK(QK𝑇)) to HBM
to be used in gradient computation. As a result, it does not offer substantial memory saving (though
for shorter sequences memory footprint is often not a primary concern).

We use FMHA code as a starting point, and apply two well-established techniques (tiling and
recomputation) to deal with long sequences and to save memory as mentioned in Section 3. As a result,
we can support much longer sequences (e.g., up to length 64K). We also support more head dimensions
(16, 32, 64, 128) and broader GPU types (all Turing and Ampere GPUs at the time of writing).

In Table 12, we compare the performance of FLASHATTENTION and Apex FMHA for short
sequences (as FMHA only supports sequence length at most 512). Generally FLASHATTENTION
is slightly faster than FMHA in the forward pass and slightly slower than FMHA in the backward
pass. This is because we do not store the attention matrix in the forward pass and recompute it in the
backward pass. Compared to FMHA, the overall runtime of FLASHATTENTION is about 4% slower
for sequence length 128, 8% faster for sequence length 256, and 5% faster for sequence length 512.

E.7 Roofline analysis
In Fig. 5, we include a roofline analysis of the FLASHATTENTION forward pass, taken from Nvidia
Nsight Compute (batch size 16, seqlen 512, 16 heads, head dimension 64) on an A100-SXM4-40GB
GPU.

Figure 5: Roofline analysis of FLASHATTENTION forward pass. While FLASHATTENTION substan-
tially speeds up attention, there is still some potential headroom to gain further speedup.

E.8 Speedup On Different Hardware and Configurations
Speedup varies between different types of GPU types and generations depending on HBM bandwidth
and SRAM size. In this section, we profile FLASHATTENTION speedup on different GPUs and
configurations.

28

Figure 6: Speedup over standard PyTorch attention at different sequence lengths, on A100.

A100 Figure 6 shows speedup on an A100 GPU with batch size 8, head dimension 64, and 12
attention heads, across different sequence lengths. We generally see 2-4× speedup, and we see more
speedup when using dropout and masking due to kernel fusion.

Figure 7: Speedup over standard PyTorch attention at different sequence lengths, on A100, with head
dimension 128.

A100, Head Dimension 128 Speedup also changes when we increase the head dimension. Each
block requires more memory, so we need to use smaller block sizes to fit into SRAM. Figure 7
shows speedup with head dimension 128 on an A100 (batch size 16, 12 heads). We see less speedup
overall—but we can still see significant speedup (up to 3×) with a causal mask, where half the blocks
are masked out.

RTX 3090 Figure 8 shows speedup on an RTX 3090 GPU. Here, we use batch size 12 with 12
attention heads. We observe slightly higher speedups on the RTX 3090 (between 2.5-4.5×), since
the memory bandwidth on an RTX 3090 is lower than on an A100 (roughly 900 GB/s vs. 1.5 TB/s).

T4 Figure 9 shows speedup on a T4 GPU. T4 SRAM is smaller than A100, so we need to make
the block sizes smaller in FLASHATTENTION. As a result, we observe less speedup on T4, which
matches the IO complexity analysis in Section 3.2. T4 GPUs are commonly used for inference, so
we also report speedup on the forward pass only.

29

Figure 8: Speedup over standard PyTorch attention at different sequence lengths, on RTX 3090.

Figure 9: Speedup over standard PyTorch attention at different sequence lengths, on T4. Top:
Combined forward pass + backward pass. Bottom: Forward pass only.

E.9 Full Benchmarking Results
We report the full benchmarking results and experimental details on A100.

30

Table 13: Pointers to results tables.
Dropout Masking Pass Table

Yes Yes Forward Table 14
Yes Yes Backward Table 15
Yes Yes Combined Table 16
No Yes Forward Table 17
No Yes Backward Table 18
No Yes Combined Table 19
Yes No Forward Table 20
Yes No Backward Table 21
Yes No Combined Table 22
No No Forward Table 23
No No Backward Table 24
No No Combined Table 25
No No Memory Usage (Combined) Table 26

Baselines We compare against reference implementations for exact attention from Py-
Torch/HuggingFace and Megatron, approximate attention, and sparse attention. For approximate
attention, we compare against reference implementations of Reformer [53], Local Attention [71],
Linformer Attention [88], Smyrf [20], and LongShortFormer (LSFormer) [98]. For sparse attention,
we compare against reference implementations of Block-Sparse Attention form OpenAI [12],
Longformer[3], and BigBird Attention [96]. For the approximate and sparse attention, we use a
compression ratio of 1/8, or a compressed sequence length of 256, whichever is smaller.

Setup We measure runtime and memory usage of the attention computation with 8 heads of
dimension 64, and batch size 16 on a machine with one A100 GPU with 40 GB of GPU HBM. We vary
sequence length in our experiments. We compute attention on random vectors for Q, K, and V (we
do not measure the projection from the hidden layer). For dropout, we use dropout 0.1; for masking,
we use a padding mask with uniformly-random mask lengths between the total sequence length and
the total sequence length minus 20. To measure runtime, we take the average of 100 measurements
of the attention call. We only measure memory footprint once, since it does not vary between runs.

We report timing results on the forward pass, backward pass, and combined forward + backward pass.
We measure each method with and without dropout, masking, or both—except for Block Sparse,
Longformer, and BigBird. These methods did not successfully run the backward pass with masking
due to a bug in external libraries, so we measured them without masking to be generous. We use
FP16 for all measurements, except for Local Attention, whose implementation only supports FP32.

For each baseline, we increase sequence length until it runs out of memory on the GPU, except for
the following exceptions: The Megatron implementation does not support sequence lengths longer
than 2048. Block-Sparse (OpenAI) does not support sequence lengths longer than 4096. Longformer
and BigBird do not support sequence lengths longer than 8092.

We measure memory usage on the combined forward + backward pass, without dropout or masking.

Results Table 13 summarizes all the experimental configurations and contains pointers to the
results tables.

31

Table 14: Forward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with dropout and masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.36 0.34 0.78 2.54 9.33 36.33 - - - -

Megatron 0.40 0.40 1.10 3.65 16.19 - - - - -
Reformer 2.03 3.15 5.67 11.02 22.59 46.14 97.38 212.13 - -

Local Attention 0.83 0.86 1.01 2.20 7.13 14.32 28.60 57.79 117.67 -
Linformer 0.67 0.52 0.69 0.71 1.65 3.18 6.15 12.16 24.17 52.39

Smyrf 2.27 2.34 3.91 7.44 14.71 29.22 58.27 116.41 - -
LSformer 1.18 1.27 1.34 3.38 11.40 22.55 44.95 89.76 179.66 -

Block Sparse 1.12 1.11 2.13 2.77 6.95 20.91 - - - -
Longformer 1.22 1.14 1.08 1.95 5.72 12.98 - - - -

BigBird 1.13 1.12 1.12 1.77 6.03 13.68 - - - -
FLASHATTENTION 0.04 0.06 0.21 0.82 2.85 10.41 41.74 167.19 670.76 2682.35

Block-Sparse FLASHATTENTION 0.06 0.06 0.06 0.12 0.44 0.86 1.70 3.29 6.55 13.34

Table 15: Backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with dropout and masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.37 0.49 1.66 5.81 22.32 87.67 - - - -

Megatron 0.35 0.32 0.77 2.42 8.43 - - - - -
Reformer 2.37 4.59 8.91 17.68 35.13 70.05 140.01 - - -

Local Attention 0.55 0.62 1.49 4.03 13.78 27.61 55.20 110.27 221.40 -
Linformer 0.89 0.80 0.81 0.93 2.48 4.75 9.29 18.27 36.53 -

Smyrf 1.41 2.83 5.43 10.72 21.25 42.31 84.48 168.95 - -
LSformer 1.75 1.76 3.01 7.50 20.07 39.08 76.39 150.82 - -

Block Sparse 1.29 1.28 2.18 3.04 7.27 21.16 - - - -
Longformer 1.27 1.31 1.29 2.04 5.24 10.74 25.95 - - -

BigBird 1.33 1.28 1.32 1.81 5.55 11.44 27.45 - - -
FLASHATTENTION 0.30 0.26 0.68 2.02 6.84 26.89 105.70 418.96 1666.89 6660.44

Block-Sparse FLASHATTENTION 0.30 0.27 0.29 0.59 1.50 2.94 5.82 11.85 23.98 47.61

Table 16: Forward pass + backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms
by sequence length, with dropout and masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.84 0.86 2.35 8.29 31.75 124.19 - - - -

Megatron 0.87 0.89 1.33 4.21 16.50 - - - - -
Reformer 4.30 7.76 14.60 28.74 57.79 116.34 237.57 - - -

Local Attention 1.40 1.60 2.06 6.06 20.94 42.01 84.08 168.48 339.45 -
Linformer 1.57 1.49 1.55 1.60 4.19 8.04 15.71 30.92 61.47 -

Smyrf 3.41 5.08 9.35 18.18 36.03 71.68 143.04 285.87 - -
LSformer 3.08 3.10 4.26 10.90 31.59 61.72 121.51 241.18 - -

Block Sparse 2.54 2.52 3.71 5.44 13.29 39.19 - - - -
Longformer 2.47 2.49 2.51 3.10 10.39 22.49 60.44 - - -

BigBird 2.51 2.49 2.52 3.40 10.97 23.89 63.28 - - -
FLASHATTENTION 0.43 0.41 0.95 2.55 9.56 37.49 147.75 586.61 2339.11 9341.30

Block-Sparse FLASHATTENTION 0.44 0.44 0.45 0.89 1.95 4.12 7.64 16.60 32.73 64.11

Table 17: Forward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.30 0.30 0.63 1.93 7.08 27.45 112.90 - - -

Megatron 0.45 0.41 0.43 1.52 5.80 - - - - -
Reformer 1.87 3.00 5.37 10.43 21.40 43.83 92.80 203.24 - -

Local Attention 0.70 0.81 1.02 2.09 6.64 13.34 26.77 54.02 110.11 -
Linformer 0.63 0.50 0.67 0.65 1.36 2.60 5.04 9.92 19.69 43.47

Smyrf 2.38 2.32 3.76 7.16 14.14 28.09 55.98 111.73 - -
LSformer 1.22 1.29 1.44 3.28 10.99 21.72 43.29 86.32 172.76 -

Block Sparse 0.96 1.04 1.66 2.16 5.41 16.15 - - - -
Longformer 0.99 0.98 0.99 1.56 4.79 11.07 32.98 - - -

BigBird 0.96 1.02 1.02 1.48 5.05 11.59 34.16 - - -
FLASHATTENTION 0.03 0.04 0.17 0.68 2.28 8.40 33.55 134.14 537.50 2150.88

Block-Sparse FLASHATTENTION 0.05 0.04 0.05 0.11 0.35 0.68 1.33 2.54 5.34 10.73

32

Table 18: Backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.44 0.46 1.53 5.33 20.34 79.87 - - - -

Megatron 0.29 0.31 0.65 1.95 6.49 - - - - -
Reformer 2.31 4.47 8.68 17.20 34.14 68.09 136.02 - - -

Local Attention 0.51 0.62 1.30 3.81 13.33 26.72 53.41 106.82 214.15 -
Linformer 0.76 0.81 0.94 0.87 2.24 4.25 8.35 16.38 32.67 72.11

Smyrf 1.34 2.77 5.30 10.46 20.73 41.27 82.41 164.86 - -
LSformer 1.66 1.61 3.09 7.42 19.68 38.35 74.92 147.86 - -

Block Sparse 1.24 1.25 2.04 2.91 6.78 19.67 - - - -
Longformer 1.27 1.23 1.24 1.85 4.99 10.21 24.89 - - -

BigBird 1.43 1.50 1.44 1.69 5.25 10.86 26.26 - - -
FLASHATTENTION 0.21 0.22 0.62 1.84 5.77 22.25 86.21 338.91 1343.91 5361.09

Block-Sparse FLASHATTENTION 0.22 0.22 0.26 0.57 1.55 3.13 5.98 12.21 23.49 47.85

Table 19: Forward pass + backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms
by sequence length, with masking. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.80 0.81 2.08 7.23 27.51 107.58 - - - -

Megatron 0.81 0.83 1.09 3.36 12.39 - - - - -
Reformer 4.16 7.46 14.06 27.68 55.66 112.15 229.37 - - -

Local Attention 1.39 1.68 2.08 5.83 20.04 40.16 80.44 161.35 325.11 -
Linformer 1.51 1.42 1.56 1.67 3.67 6.99 13.63 26.77 53.36 117.56

Smyrf 3.38 4.93 9.07 17.66 34.94 69.55 138.72 277.41 - -
LSformer 3.08 3.10 4.26 10.90 31.59 61.72 121.51 241.18 - -

Block Sparse 2.39 2.40 3.31 5.02 12.25 35.94 - - - -
Longformer 2.36 2.34 2.38 2.94 9.83 21.35 58.12 - - -

BigBird 2.35 2.35 2.37 3.25 10.36 22.57 60.63 - - -
FLASHATTENTION 0.32 0.30 0.83 2.37 7.95 30.77 119.98 473.65 1883.43 7513.01

Block-Sparse FLASHATTENTION 0.34 0.34 0.36 0.69 1.85 3.89 7.16 14.85 30.46 60.03

Table 20: Forward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with dropout. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.26 0.24 0.57 1.80 6.56 25.34 - - - -

Megatron 0.27 0.27 0.56 1.88 6.56 - - - - -
Reformer 1.83 2.96 5.31 10.33 21.19 43.42 91.96 201.34 - -

Local Attention 0.51 0.60 0.78 2.01 6.23 12.52 25.07 50.50 102.18 -
Linformer 0.47 0.37 0.49 0.52 1.37 2.65 5.12 10.13 20.25 44.16

Smyrf 2.12 2.01 3.15 5.97 11.83 23.36 46.48 92.72 - -
LSformer 1.28 1.33 1.51 3.39 11.40 22.54 44.96 89.85 179.73 -

Block Sparse 1.03 1.00 1.72 2.39 5.96 17.88 - - - -
Longformer 1.02 1.03 1.03 1.73 5.10 11.63 34.22 - - -

BigBird 0.99 1.03 1.01 1.58 5.36 12.27 35.56 - - -
FLASHATTENTION 0.10 0.10 0.22 0.83 2.81 10.38 41.63 167.01 668.74 2678.11

Block-Sparse FLASHATTENTION 0.54 0.51 0.68 0.61 0.67 1.10 1.89 3.71 7.18 14.41

Table 21: Backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length, with dropout. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.44 0.35 0.90 2.94 10.77 41.67 - - - -

Megatron 0.28 0.33 0.92 2.94 10.80 - - - - -
Reformer 2.24 4.34 8.39 16.62 33.02 65.77 131.52 - - -

Local Attention 0.51 0.58 1.41 3.71 12.96 25.98 51.94 103.72 207.78 -
Linformer 0.84 0.74 0.79 0.85 2.28 4.37 8.66 17.02 33.78 -

Smyrf 1.27 2.56 4.90 9.66 19.16 38.13 76.17 152.39 - -
LSformer 1.67 1.77 3.03 7.52 20.10 39.13 76.35 150.83 - -

Block Sparse 1.27 1.36 2.15 3.04 7.27 21.18 - - - -
Longformer 1.28 1.34 1.38 1.98 5.24 10.74 25.95 - - -

BigBird 1.48 1.47 1.50 1.81 5.57 11.38 27.43 - - -
FLASHATTENTION 0.15 0.18 0.58 1.86 6.50 26.21 104.27 416.10 1661.92 6643.01

Block-Sparse FLASHATTENTION 0.17 0.17 0.17 0.40 1.10 2.04 4.43 9.33 18.28 37.31

33

Table 22: Forward pass + backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms
by sequence length, with dropout. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.66 0.67 1.43 4.82 17.47 67.29 - - - -

Megatron 0.88 0.90 1.49 4.73 17.41 - - - - -
Reformer 4.06 7.28 13.68 26.98 54.27 109.39 223.80 - - -

Local Attention 1.09 1.40 1.99 5.61 19.23 38.62 77.30 154.63 311.12 -
Linformer 1.31 1.21 1.30 1.39 3.73 7.15 14.05 27.69 55.00 -

Smyrf 3.00 4.37 8.05 15.66 31.04 61.64 123.04 245.65 - -
LSformer 3.07 3.17 4.31 10.89 31.54 61.78 121.56 240.94 - -

Block Sparse 2.54 2.52 3.71 5.44 13.29 39.19 - - - -
Longformer 2.47 2.49 2.51 3.10 10.39 22.49 60.44 - - -

BigBird 2.51 2.49 2.52 3.40 10.97 23.89 63.28 - - -
FLASHATTENTION 0.35 0.36 0.80 2.52 9.16 36.70 146.13 583.45 2332.01 9323.63

Block-Sparse FLASHATTENTION 0.91 0.83 0.94 0.92 1.83 3.50 7.02 13.56 26.71 53.92

Table 23: Forward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.21 0.22 0.43 1.27 4.32 16.47 67.77 - - -

Megatron 0.24 0.26 0.42 1.33 4.28 - - - - -
Reformer 1.77 2.82 5.01 9.74 20.03 41.11 87.39 192.40 - -

Local Attention 0.48 0.57 0.80 1.90 5.76 11.56 23.13 46.65 94.74 -
Linformer 0.46 0.36 0.45 0.50 1.09 2.09 4.01 7.90 15.70 35.40

Smyrf 1.94 1.96 3.01 5.69 11.26 22.23 44.21 88.22 - -
LSformer 1.21 1.34 1.34 3.31 11.01 21.71 43.27 86.32 172.85 -

Block Sparse 0.96 1.04 1.66 2.16 5.41 16.15 - - - -
Longformer 0.99 0.98 0.99 1.56 4.79 11.07 32.98 - - -

BigBird 0.96 1.02 1.02 1.48 5.05 11.59 34.16 - - -
FLASHATTENTION 0.08 0.09 0.18 0.68 2.40 8.42 33.54 134.03 535.95 2147.05

Block-Sparse FLASHATTENTION 0.56 0.52 0.63 0.65 0.61 0.96 1.69 3.02 5.69 11.77

Table 24: Backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms by sequence
length. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.26 0.29 0.78 2.44 8.82 33.87 - - - -

Megatron 0.29 0.30 0.80 2.59 8.86 - - - - -
Reformer 2.18 4.21 8.14 16.12 32.02 63.84 127.60 - - -

Local Attention 0.51 0.64 1.28 3.60 12.52 25.08 50.22 100.23 200.66 -
Linformer 0.69 0.76 0.69 0.80 2.04 3.88 7.67 15.04 30.11 63.15

Smyrf 1.24 2.49 4.77 9.42 18.65 37.12 74.15 148.35 - -
LSformer 1.68 1.61 3.02 7.40 19.72 38.27 74.89 147.99 - -

Block Sparse 1.24 1.25 2.04 2.91 6.78 19.67 - - - -
Longformer 1.27 1.23 1.24 1.85 4.99 10.21 24.89 - - -

BigBird 1.43 1.50 1.44 1.69 5.25 10.86 26.26 - - -
FLASHATTENTION 0.11 0.16 0.52 1.62 5.45 21.57 84.75 336.00 1338.56 5343.19

Block-Sparse FLASHATTENTION 0.11 0.12 0.16 0.38 1.20 2.34 4.69 9.10 18.74 37.04

Table 25: Forward pass + backward pass runtime (ms) of various exact/approximate/sparse attention mechanisms
by sequence length. Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 0.67 0.70 1.18 3.67 13.22 50.44 - - - -

Megatron 0.74 0.65 1.23 3.80 13.21 - - - - -
Reformer 3.93 7.01 13.15 25.89 52.09 105.00 215.13 - - -

Local Attention 1.09 1.27 1.99 5.38 18.32 36.77 73.67 147.29 296.35 -
Linformer 1.31 1.25 1.30 1.29 3.20 6.10 11.93 23.39 46.72 100.52

Smyrf 2.98 4.23 7.78 15.12 29.96 59.45 118.60 237.02 - -
LSformer 3.03 3.05 4.26 10.70 30.77 60.15 118.33 234.94 - -

Block Sparse 2.39 2.40 3.31 5.02 12.25 35.94 - - - -
Longformer 2.36 2.34 2.38 2.94 9.83 21.35 58.12 - - -

BigBird 2.35 2.35 2.37 3.25 10.36 22.57 60.63 - - -
FLASHATTENTION 0.31 0.31 0.73 2.29 7.64 30.09 118.50 470.51 1876.08 7492.85

Block-Sparse FLASHATTENTION 0.74 0.77 0.82 0.88 1.71 3.21 6.56 12.60 24.93 50.39

34

Table 26: Memory usage (MB) of various exact/approximate/sparse attention mechanisms by sequence length.
Best in bold, second best underlined.

Attention Method 128 256 512 1024 2048 4096 8192 16384 32768 65536
PyTorch Attention 36 104 336 1184 4416 17024 - - - -

Megatron 36 104 336 1184 4416 - - - - -
Reformer 377 754 1508 3016 6033 12067 24134 - - -

Local Attention 53 110 232 592 1696 3392 6784 13568 27136 -
Linformer 25 52 114 287 832 1652 3292 6572 13132 26252

Smyrf 217 434 868 1737 3474 6947 13894 27788 - -
LSformer 72 152 333 796 2540 5068 10125 20240 - -

Block Sparse 33 82 228 408 910 2401 - - - -
Longformer 30 61 124 277 681 1370 2748 - - -

BigBird 33 66 131 294 708 1431 2872 - - -
FLASHATTENTION 22 44 104 209 418 836 1672 3344 6688 13376

Block-Sparse FLASHATTENTION 22 44 104 209 418 836 1672 3344 6690 13384

35

	Introduction
	Background
	Hardware Performance
	Standard Attention Implementation

	FlashAttention: Algorithm, Analysis, and Extensions
	An Efficient Attention Algorithm With Tiling and Recomputation
	Analysis: IO Complexity of FlashAttention
	Extension: Block-Sparse FlashAttention

	Experiments
	Faster Models with FlashAttention
	Better Models with Longer Sequences
	Benchmarking Attention

	Limitations and Future Directions
	Related Work
	Algorithm Details
	Memory-efficient forward pass
	Memory-efficient backward pass
	FlashAttention: Forward Pass
	FlashAttention: Backward Pass
	Comparison with rabe2021self

	Proofs
	Extension Details
	Block-sparse FlashAttention
	Potential Extensions

	Full Experimental Results
	BERT
	GPT-2
	LRA details
	Faster Vision Transformer with FlashAttention on ImageNet
	Comparison with Automatic Fusion
	Comparison with Apex FMHA
	Roofline analysis
	Speedup On Different Hardware and Configurations
	Full Benchmarking Results

