
A Supplement

Here we provide proofs of the statements made in the main text as well as further figures of numerical
experiments and a more detailed discussion of heteroskedasticity effects regarding causal discovery.

A.1 Proof of Effects 1 and 2

A.1.1 Proof of Effect 1:

Proof. Let (Xi, Yi)i=1,...,n be an independent sample with Pearson correlation coefficient ρ, and we
assume the linear model Yi = Xiβ + h(Zi)ϵi, where Zi and ϵi are independent and standard normal,
and h is the noise scaling function.

Note that w.l.o.g. we assume only Y to be heteroskedastic w.r.t. Z.

Testing whether the Pearson correlation between X and Y is zero is equivalent to testing whether the
slope parameter β is equal to zero.

Under the null hypothesis, calculating Var(h(Zi)ϵi|Xi) gives

Var(h(Zi)ϵi|Xi) = E[h2(Zi)ϵ
2
i |Xi] = E[h2(Zi)ϵ

2
i ] = E[h2(Zi)] = E[h2(Z1)]

using the independence of Zi and Xi, the fact that ϵi is standard normal, and that the Zi are identically
distributed. Therefore, this is a homoskedastic problem.

A.1.2 Discussion of Effect 2:

We start by discussing the homoskedastic case to see where non-constant variance of noise leads to
problems within the t-test. Let (Xi, Yi)i=1,...,n be an independent sample from a bivariate normal
distribution with Pearson correlation coefficient ρ, and we assume the linear model Yi = Xiβ0 + ϵi,
where ϵi is standard normal, then

β0 = ρ

√
Var(Y )

Var(X)
.

This also is true for the finite sample estimators of these entities, since

ρ̂ =

∑
XiYi√∑
X2

i

∑
Y 2
i

and

β̂ = β0 +

∑
Xiεi∑
X2

i

= β0 +

∑
Xi(Yi −Xiβ0)∑

X2
i

=

∑
XiYi∑
X2

i

= ρ̂

√∑
Y 2
i∑

X2
i

.

Furthermore, the following relationship holds for the estimator of the studentized correlation coeffi-
cient and the estimator of the slope parameter β0

ρ̂

√
n− 2√
1− ρ̂2

= β̂

√ ∑
X2

i
1
n

∑
(Yi − β̂Xi)2

. (4)

For homoskedastic noise the second factor is an estimator of the standard error of β̂, which we derive
by using the mean of the squared residual as an estimator for the error variance. We know that

β̂ =

∑
XiYi∑
X2

i

=

∑
Xi(β0Xi + ϵi)∑

X2
i

= β0 +

∑
Xiϵi∑
X2

i

and thus

Var(β̂) = Var
(∑Xiϵi∑

X2
i

)
. (5)
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If we assume the design to be fixed and Var(ϵi) = σ2 to be constant, this simplifies to

Var(β̂) =

∑
X2

i Var(ϵi)

(
∑

X2
i )

2
=

σ2
∑

X2
i

(
∑

X2
i )

2
.

Therefore we use the following estimator

V̂ar(β̂) =
1
n

∑
(Yi − β̂Xi)

2

∑
X2

i

. (6)

We now assume that Y is heteroskedastic, i.e. the model takes the form

Yi = Xiβ0 + h(Zi)ϵi,

We need to show

E


 β̂OLS
√

̂Var(β̂OLS)


 ≤ E


 β̂WLS
√

̂Var(β̂WLS)


 ,

where β̂OLS is the OLS estimator for the slope parameter and β̂WLS is its WLS version.

Since OLS and WLS generally return similar values for the slope estimator (especially for large n)
and both are unbiased estimators for β0, we focus on the denominator.

We get E

[
β0√
̂Var(β̂OLS)

]
≤ E

[
β0√
̂Var(β̂WLS)

]
from the reduced efficiency of the OLS regression on

heteroskedastic data, i.e. from
Var(β̂OLS) ≥ Var(β̂WLS),

if we assume that the estimators (6) for Var(β̂OLS) and Var(β̂WLS) are unbiased. The unbiasedness
is clear for the WLS-case, as well as for the case where the heteroskedasticity in X is independent
from the one in Y , see Effect 1. In the case of heteroskedasticity in Y that is dependent on X , the
estimator might be biased. If it is over-estimating Var(β), the power is also reduced. The situation of
under-estimating the variance can, in fact, quasi-increase power but comes with the major drawback
of increased probability of type I error.

A.2 Proof of Theorem 1

A.2.1 Assumptions

Consider random variables X = (X1, . . . , Xn)
T , Y = (Y1, . . . , Yn)

T and Zk = (Zk
1 , . . . , Z

k
n)

T for
k = 1, . . . , d, where n is the number of samples. Denote the design matrix of the regressor variable
by Z = (Z1, . . . , Zd) ∈ Rn×d. We assume that all variables are centered and generated according to
the model

X = Z · α+ εX

Y = Z · β + εY

with error variables εX = (εX1 , . . . , εXn )T , εY = (εY1 , . . . , ε
Y
n )

T . We make the following assump-
tions:

(A1) The error vectors εX , εY have zero mean and diagonal covariance matrices ΣX =
diag(σ2

X,1, . . . , σ
2
X,n), ΣY = diag(σ2

Y,1, . . . , σ
2
Y,n). Similarly, for any k, the regressor

variables Zk = (Zk
1 , . . . , Z

k
n)

T have diagonal covariance matrices.
(A2) The matrix ZTZ is almost surely positive definite, of full rank d, and we have that

lim
n→∞

ZTZ

n
= Q

converges entrywise in probability to a matrix Q. Note that the k, ℓ-entry of ZTZ is∑n
i=1 Z

k
i Z

ℓ
i .
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(A3) We have well defined asymptotic average variances

lim
n→∞

1

n

n∑

i=1

σ2
X,i = σ2

X

lim
n→∞

1

n

n∑

i=1

σ2
Y,i = σ2

Y

and the limits

lim
n→∞

1

n

n∑

i=1

(Zk
i )

2σ2
X,i, lim

n→∞
1

n

n∑

i=1

(Zk
i )

2σ2
Y,i for k = 1, . . . , d

exist in probability.
(A4) The variances of each variable are bounded by a constant independent of the sampling index

i.
(A5) For parent-dependent heteroskedasticity, let H be the heteroskedasticity-inducing parent.

Denote by Si the set of λ nearest neighbours of Xi (or Yi respectively) in H-value. In
the case of sampling index dependent heteroskedasticity, Si denotes the set of nearest
neighbours in sampling index value.
We assume

λ → ∞,
λ

n
→ 0 as n → ∞.

Furthermore, the limit of the variances averaged over the nearest neighbours exists and
converges to the right value, i.e.

lim
n→∞

1

λ

∑

rj∈Si

σ2
X,j = σ2

X,i, lim
n→∞

1

λ

∑

rj∈Si

σ2
Y,j = σ2

Y,i.

A.2.2 Proof

We will now sketch the proof of consistency of the estimator for the partial correlation ρX,Y |Z in the
case where we regress on only one variable, i.e. d = 1. The result can however easily be generalized
to higher dimensions although the computations become slightly more involved. Recall that in the
first step of ParCorr-WLS, we compute the residuals

rXi = (α− α̂)Zi + εXi , rYi = (β − β̂)Zi + εYi ,

where α̂, β̂ are OLS-estimates of α, β. More precisely, recall that α̂ is given by the formula

α̂ = α+

∑n
i=1 Ziεi∑n
i=1 Z

2
i

.

Hence, using Slutsky’s theorem, we compute that

E[(rXi )2|Z] =
Z2
i∑n

j=1 Z
2
j

(∑n
j=1 Z

2
j σ

2
X,j∑n

j=1 Z
2
j

+ σ2
X,i

)
+ σ2

X,i

which converges in probability as 1
n (C ·Z2

i +σ2
X,i)+σ2

X,i where C is a constant. Recall the definition
of the set of nearest neighbours Si from assumption (A5). Following the results in Hall and Carroll
[1989], we establish the convergence of σ̂2

X,i =
1
λ

∑
rj∈Si

r2j . Furthermore, we see that the smoothed
variances of the residuals behave asymptotically as

σ̂2
X,i =

1

λ

∑

rj∈Si

r2j ≈ 1

λ

∑

rj∈Si

E[r2j |Z]

=
1

λ

∑

rj∈Si

(
C · Z2

j + σ2
X,j

n
+ σ2

X,j

)

≈ σ2
X,i.
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After estimation of the variances, we determine the residuals of the WLS regression with weight
matrix ŴX which is equivalent to the OLS regression after scaling all variables by ŴX . In other
words, we define

RX
i = (α− α̃)ŴXZi + ŴXεi,

where α̃ is the OLS-estimator w.r.t. the regressor ŴXZ and the error variable ŴX ε̃. Define ŴY and
RY

i analogously.

The following asymptotic moment formulas can be computed from the definition of RX
i , RY

i .

Lemma 3. Assume (A1)-(A5). Then E[RX
i |Z] = 0 and for large n

E[
(
RX

i

)2 |Z] ≈ 1 +
Z2
i + 2Zi∑n
j=1 Z

2
j

E[
(
RX

i

)4 |Z] ≈ 3 +
p(Zi)(∑n
j=1 Z

2
j

)4 ,

where p is a polynomial of degree 4. In particular, by (A2),(A5) and the fact that for Gaussians higher
moments are functions of the variance, Var(

(
RX

i

)2
) ≤ K for some constant K > 0 independent of

i. The same statements hold for the residuals RY
i .

Lemma 4. Assume (A1)-(A5). Then, the estimator

ρ̂X,Y |Z = ρ(RX , RY ) =
1
n

∑n
i=1 R

X
i RY

i√
1
n

∑n
i=1(R

X
i )2

√
1
n

∑n
i=1(R

Y
i )

2

consistently estimates ρX,Y |Z .

Proof. By Slutsky’s theorem, it suffices to prove that the three sums in the definition of ρ̂X,Y |Z
converge in probability and to compute the limits. Convergence follows from the law of large
numbers and the variance bounds Var(

(
RX

i

)2
) ≤ K,Var(

(
RY

i

)2
) ≤ K ′ of Lemma 3. The limit of

the numerator is equal to limn→∞ 1
n

∑n
i=1 E[RX

i RY
i ], so we compute this quantity first conditioned

on Z. This yields for large n

1

n

n∑

i=1

E[RX
i RY

i |Z] ≈ 1

n

n∑

i=1

ρX,Y |Z

(
1 +

3Z2
i∑n

j=1 Z
2
j

)
≈ ρX,Y |Z .

Hence limn→∞ 1
n

∑n
i=1 E[R

X
i RY

i ] = ρX,Y |Z . To compute limn→∞ 1
n

∑n
i=1 E[(R

X
i )2] we use the

first formula of Lemma 3 to see that

1

n

n∑

i=1

E[(RX
i )2|Z] ≈ 1 +

1

n

n∑

i=1

(
Z2
i + 2Zi∑n
j=1 Z

2
j

)
= 1 +

1

n

(
1 +

2
n

∑n
i=1 Zi

1
n

∑n
j=1 Z

2
j

)
≈ 1,

so that limn→∞ 1
n

∑n
i=1 E[(R

X
i )2] = 1.

A similar computation yields limn→∞ 1
n

∑n
i=1 E[(R

Y
i )

2] = 1, so that indeed ρ̂X,Y |Z → ρX,Y |Z as
n → ∞ in probability.

A.3 Proof of Theorem 2

Proof. Assumption 5 allows us to apply ParCorr-WLS in every conditional independence test within
the PC algorithm. Using Theorem 1, we get the result.

A.4 Extension of Theorem 2 to different heteroskedasticity forms

As discussed in section 4.2, the PC algorithm with ParCorr-OLS is not consistent. If we use ParCorr-
WLS with a consistent estimate for the variance of the residual in every conditional independence
test, we can make the PC algorithm consistent.
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The scope of the current work is a situation where heteroskedastic noise can be dependent on one of
the parents of the node or on the sampling index. However, only for the stricter set of assumptions for
Theorem 2 we can prove consistency, namely only for sample-index dependent heteroskedasticity.

In the following, we will discuss different situations of heteroskedasticity affecting variables involved
in the CI tests within the PC algorithm. In some of these situations, we are able to apply our proposed
ParCorr-WLS CI test, thus obtaining consistency. However, in other situations we are not able to
use background knowledge about heteroskedasticity and therefore suffer the same problems as in the
standard version of the PC algorithm with ParCorr-OLS.

Let us look at the following cases.

Case 1: The heteroskedasticity in X is independent of that in Y . In case of direct heteroskedas-
ticity, we apply ParCorr-WLS. However, if we encounter a situation where the heteroskedasticity
in either X or Y is caused indirectly through a parent, compare figure 4, we lack the background
knowledge about it, and therefore apply ParCorr-OLS. Due to Effect 1, we get type I error control for
both ParCorr-OLS and ParCorr-WLS. With regard to type II errors, by Effect 2 it is clear that the
power of ParCorr-OLS is reduced.

In a setting where the sample size is large enough to get a reasonable weight approximation for WLS,
we can only gain detection power by using ParCorr-WLS within the PC algorithm.

Case 2: There is dependence between the heteroskedasticity in X and that in Y . If X and Y are
uncorrelated, i.e. ρX,Y |Z = 0, and the heteroskedasticity of at least one of them is directly induced
by a parent or by the sampling index, then we apply WLS whereby we remove the heteroskedasticity
and are in Case 1 or in the homoskedastic case again.

If the heteroskedasticity is indirect, meaning one of the parents of X and/or Y , that is not included
in the conditioning set, is heteroskedastic, our expert knowledge doesn’t include this information
and we perform ParCorr-OLS. By Effect 1, we know that this suffers from inflated false positives.
However, if the link is not removed in this step of the PC algorithm, the conditioning set will be
increased in subsequent steps. This means at some point it will include the parent that caused the
indirect heteroskedasticity, if the link did not get removed before. When this happens we again will
be in Case 1 or in the homoskedastic case.

The main challenge, or in other words the reason why we cannot prove consistency for this more
general form of heteroskedasticity, arises if X and Y are correlated. If at least one of them is affected
by direct heteroskedasticity, then we again apply WLS whereby we remove the heteroskedasticity
and are in Case 1 or in the homoskedastic case as above.

But, if the heteroskedasticity is indirect in both X and Y , then we apply ParCorr-OLS. Since the
power for this test is very low in this situation, and we do not obtain a consistent estimator for the
standard deviation of the regression parameter, we potentially remove the link between X and Y .
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Figure 4: Illustration of Case 1. The dashed line indicates the relationship between X and Y which
we are testing. On the left, only X is affected by direct heteroskedasticity introduced by H . In
this situation, we would apply ParCorr-WLS since the information about this heteroskedasticity is
included in the expert knowledge. On the other hand, in case of indirect heteroskedasticity (right), we
do not know about the heteroskedasticity in X because we do not know whether U causes X before
running the causal discovery algorithm. Therefore, we would apply ParCorr-OLS, which potentially
leads to reduced power.

Figure 5: Illustration of Case 2. Here X and Y are both affected by the same kind of (indirect)
heteroskedasticity. On the left, the heteroskedasticity is directly introduced by parent H . In this
situation, we would apply ParCorr-WLS since the information about this heteroskedasticity is included
in the expert knowledge. On the other hand, in case of indirect heteroskedasticity (middle and right),
we do not know about the heteroskedasticity in X and Y because we do not know whether U causes
X and/or Y beforehand. Therefore, we would apply ParCorr-OLS. If there is no ground truth link
between X and Y (middle), this could lead to the wrong detection of a link. However, this means
that we would enlarge the conditioning set by including U in a later PC algorithm step. Thereby,
the heteroskedasticity is removed. If X and Y are dependent as indicated by the solid line (right),
applying ParCorr-OLS might lead to missing this link, i.e. to inconsistency in the PC algorithm.

A.5 Additional Plots
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Figure 6: Visualizations of the skedasticity functions h that depend on the confounder Z for strength
s = 5, compare equation 3.

Figure 7: Visualizations of the skedasticity functions h that depend on the sampling index for strength
s = 5, compare equation 3.

Figure 8: Performance of partial correlation CI tests for dependence (c = 0.5) and conditional
independence (c = 0) between X and Y given Z. Shown are KS (left) and AUPC (right) for different
strengths s of noise but the noise is homoskedastic. In other words, we consider the skedasticity
function hX ≡ s. This figure illustrates that the power of ParCorr-WLS and ParCorr-OLS reduces in
the same way on increasingly noisy but homoskedastic data.
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Figure 9: Performance of partial correlation CI tests for dependence (c = 0.5) and conditional
independence (c = 0) between X and Y given Z. In all plots the heteroskedasticity is a function
of the sampling index and only affects X (left two columns) or both X and Y (right two columns).
Shown are KS (top row) and AUPC (bottom row) for different strengths of heteroskedasticity for
linear (left), periodic (right) noise scaling functions. The ground truth weights are used for WLS, or
the weights are estimated using the window approach with window length 10 as detailed in section
4.1. A sample size of 500 is used and the experiments are repeated 100 times.

Figure 10: Performance of partial correlation CI tests for dependence (c = 0.5) and conditional
independence (c = 0) between X and Y given Z. We compare our method to ParCorr-OLS and the
non-parametric CI test CMIknn [Runge, 2018]. In all plots the heteroskedasticity is a function of Z
and only affects X (left two columns) or both X and Y (right two columns). Shown are KS (top row)
and AUPC (bottom row) for different strengths of heteroskedasticity for linear noise scaling functions.
The ground truth weights are used for WLS, or the weights are estimated using the window approach
with window length 10 as detailed in section 4.1. A sample size of 500 is used and the experiments
are repeated 50 times. For CMIknn we use 0.1 as the number of nearest-neighbors around each
sample point, otherwise the default values are used.
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Figure 11: Results for the PC algorithm with the standard ParCorr-OLS CI test compared to that
with the proposed ParCorr-WLS test. Shown are edgemark precision ( right) and recall (left) for
increasing strengths of heteroskedasticity. The graph has 10 nodes and 10 edges, a sample size of
500 is used. The significance level α is set to 0.05. The experiment is repeated 500 times. Errorbars
show standard errors. Estimated weights with a window length of 5 or ground truth weights are used
for WLS.
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