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Abstract

While neural architecture search (NAS) has enabled automated machine learning
(AutoML) for well-researched areas, its application to tasks beyond computer vision
is still under-explored. As less-studied domains are precisely those where we expect
AutoML to have the greatest impact, in this work we study NAS for efficiently
solving diverse problems. Seeking an approach that is fast, simple, and broadly
applicable, we fix a standard convolutional network (CNN) topology and propose
to search for the right kernel sizes and dilations its operations should take on. This
dramatically expands the model’s capacity to extract features at multiple resolutions
for different types of data while only requiring search over the operation space. To
overcome the efficiency challenges of naive weight-sharing in this search space,
we introduce DASH, a differentiable NAS algorithm that computes the mixture-
of-operations using the Fourier diagonalization of convolution, achieving both a
better asymptotic complexity and an up-to-10x search time speedup in practice.
We evaluate DASH on ten tasks spanning a variety of application domains such
as PDE solving, protein folding, and heart disease detection. DASH outperforms
state-of-the-art AutoML methods in aggregate, attaining the best-known automated
performance on seven tasks. Meanwhile, on six of the ten tasks, the combined
search and retraining time is less than 2x slower than simply training a CNN
backbone that is far less accurate.

1 Introduction

The success of deep learning for computer vision and natural language processing has spurred
growing interest in enabling similar breakthroughs for other domains such as biology, healthcare,
and physical sciences. Consequently, there is enormous potential for neural architecture search to
help automate model development in these diverse areas. However, while extensive NAS research
has been devoted to improving the search speed [1, 2] and automatically attaining state-of-the-art
performance on vision datasets such as CIFAR and ImageNet [3], the resulting algorithms have
subpar performance beyond the tasks on which they were developed. For example, in the analysis of
NAS-Bench-360 [4], a recent benchmark designed for improving task diversity in NAS evaluation,
the authors showed a significant gap between models found by NAS methods, such as DARTS [2]
and DenseNAS [5], and hand-crafted expert architectures on a number of distinct applications.

To improve the generalizability of AutoML methods, recent works such as AutoML-Zero [6] and XD-
operations [7] propose to relax the inductive biases encoded in the standard search spaces. However,
the former is not designed for practical deployment, and the latter is too expensive to execute even
for simple problems like CIFAR-100 (Fig. 1b). Hence we ask: is there an approach that can provide

sufficient expressivity to yield high accuracy across multiple domains, while still retaining the faster

search and the more efficient final models of discrete architecture search?
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Figure 1: (a) Comparing the aggregate performance of the
best AutoML methods (task-wise), hand-designed models,
and DASH on ten diverse tasks via performance profiles
(defined in Section 4.1). Larger values (larger fractions
of tasks on which a method is within log ⌧ -factor of the
best) are better. (b) Runtime for Wide ResNet, DARTS,
XD, and DASH on CIFAR-100. XD is too expensive to
be applied to other tasks considered in this work [4, 7].

In this work, we answer in the affirmative
by introducing a novel NAS method called
DASH (Diverse-task Architecture SearcH). In
order to attain multi-domain capability, DASH
adapts standard CNN backbones to various
learning problems by finding substitutes for
their layer operations. Concretely, we con-
sider a search space of cross-scale dilated con-
volutions which are effective for multi-scale
feature extraction [8, 9] and context aggrega-
tion [10, 11]. Our key difference from past
search spaces is that we explicitly consider fil-
ters with a wide range of kernel sizes and dila-

tions—while most NAS methods only handle
kernels with maximum size 5 and dilation
rate 2, our proposed operator space includes
not only the conventional small kernels but
also significantly larger ones with size 15 or
dilation 127 (Fig. 2). This design choice is
motivated by the fact that large kernels can
capture input relations for dense prediction problems [12], model long-range dependencies for se-
quence tasks [13, 14], and resemble global-attention in Transformers [15]. Thus, DASH’s cross-scale
search space enables adaptation to diverse downstream tasks, unlike prior NAS work which targets
image classification and assumes that small kernels are sufficient.

However, efficiently searching for an appropriate kernel configuration in this expansive cross-scale
search space is non-trivial. Indeed, for existing NAS algorithms, the cost of exploring a combi-
natorially large set of operators is substantial. Even for weight-sharing methods that are known
for efficiency, e.g., DARTS [16], the computational complexity scales directly with the number of
kernels considered and quadratically with the largest kernel size. To overcome this obstacle, DASH
explores multi-scale convolutions via three techniques—the first two exploit mathematical properties
of convolutions, and the last one takes advantage of fast matrix multiplication on GPUs. Specifically:

1. Using the linearity of convolutions, we mix several convolutions by computing one convolution
equipped with a combined kernel rather than applying each filter separately and aggregating
multiple outputs. While the number of convolution computations required by the naive aggregation
of |K| possible kernel sizes and |D| possible dilations is O(|K||D|), our approach has O(1)
complexity, independent of the search space size.

2. Using the diagonalization of convolutions, we relegate a major portion of the computation to
element-wise multiplication in the Fourier domain, minimizing the effect of the largest kernel
size on the complexity of our algorithm. For instance, a standard 1D convolution requires O(nk)
operations to convolve a size-k kernel with a length-n input, but a Fourier convolution takes only
O(n log n), a critical improvement that makes searching over large kernels significantly easier.

3. Our final strategy is to use Kronecker products of undilated kernels and small sparse matrices to
compute dilated kernels quickly on GPUs. This brings an additional two-fold speedup on top of
the previous techniques.

Aside from these innovations, DASH employs the standard weight-sharing scheme of training a
supernet, discretizing to obtain a model, and retraining the model for end tasks [2]. We analyze the
asymptotic complexity of the first two techniques and verify the practical utility when all three are
combined together. In particular, DASH achieves a ten-fold speedup in total for differentiable NAS
over the multi-scale search space. Moreover, we show that searching over large kernels is necessary
to solve diverse problems and that each technique on its own cannot scale in this large-kernel setting.

In terms of accuracy performance, we evaluate DASH on ten datasets spanning multiple application
areas such as PDE solving, protein folding, and disease prediction from NAS-Bench-360 [4]. As
shown in Fig. 1, DASH yields models with better aggregate performance than those returned by
leading AutoML methods as well as hand-designed task-specific architectures. As for individual tasks,
DASH beats all past automated approaches on seven of the ten problems and exceeds hand-designed
models on seven, simultaneously maintaining strong efficiency relative to weight-sharing methods
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like DARTS. The empirical success of DASH implies that CNNs with appropriate kernels can be
competitive baselines for problems where expert architectures are not available. Our code is made
public at https://github.com/sjunhongshen/DASH.

2 Related Work

Neural architecture search (NAS) aims to automate the design of neural networks. Recently, there has
been significant progress in both search space design [17, 2, 7] and search strategy development [1,
18, 2, 19, 3]. However, these methods are mostly evaluated on image classification or segmentation,
with a few focusing on new applications such as image restoration [20], audio classification [21], and
machine translation [22]. Problems beyond the vision and language domains are less-explored.

In this work, we seek to improve the generalizability of NAS by a morphism-based approach [23,
24, 7] that adapts existing CNN backbones to target tasks. We specifically focus on expanding the
operation space to multiple types of convolutions, simultaneously varying the kernel size and the
dilation factor. Past work in related directions has at most studied the easier problem of altering
dilation alone, and only for vision tasks [25]. Therefore, although convolution has been an integral
part of NAS, how to search over a large set of convolutional operators remains an open problem. In
the following, we identify four types of solutions from existing work and illustrate their limitations.

Differentiable Architecture Search (DARTS) We can treat convolutions as ordinary operators and
apply a scalable NAS algorithm. In particular, DARTS [2] introduces continuous relaxation to the
weight-sharing paradigm [1] and allows us to gain information about many networks efficiently by
training a combined supernet. The algorithm relaxes the discrete set of operations at each edge in a
computational graph as a softmax so the search process is end-to-end differentiable and amenable to
regular optimizers. After search, it discretizes the weights to output a valid architecture. The original
DARTS search space contains only four convolutions with kernel sizes no larger than 5 and dilation
rates no larger than 2. While this small search space might be enough for low-resolution image input,
it is insufficient for diverse tasks such as high-dimensional time series problems [4]. Although one
could add more convolutions one-by-one to the operator set to augment performance, this approach
scales poorly, as reflected in the limited search spaces of similar methods like AMBER [26]. In fact,
AMBER has to shift the kernel size up to achieve good performance on long-sequence genomic data.

MergeNAS and RepVGG An alternative way to explore the convolutional search space is to take
advantage of the operator’s linearity. That is, we can first mix the kernels and then apply convolution
once, unlike DARTS which computes each convolution separately and outputs the aggregated result
to the next layer. This kernel-mixing strategy, which we call mixed-weights and will formally define
in Section 3.2, has been employed by MergeNAS [27] and RepVGG [28] to improve architecture
search robustness and VGG inference speed, respectively. It works well for a few small kernels.
However, we will show later that similar to DARTS, mixed-weights on its own is also insufficient for
searching over a diverse set of large kernels which is crucial to solving a wide range of problems.

Expressive Diagonalization (XD) Apart from linearity, XD-operations [7] propose to utilize the
convolutional theorem in architecture search. In particular, XD expresses the convolution acting on
input x with filter w as K diag(Lw)Mx, where K,L,M are appropriate discrete Fourier transforms,
and constructs an expansive search space by replacing these transforms with searched kaleidoscope
matrices [29]. Although this new search space includes all types of convolutions, the search process
is unacceptably long even for simple benchmarking tasks such as CIFAR-100 (Fig. 1b), let alone
the more complex set of diverse problems that we consider in this paper. In addition, the output
architectures of XD are as inefficient as the supernet due to the absence of a discretization step.

Single-Path NAS Lastly, Single-Path NAS [30] defines a large filter and uses its subsets for smaller
filters. This DARTS-based method compensates operator heterogeneity for efficiency during search.
It does not handle search spaces with many large kernels and is not evaluated on diverse tasks.

Outside the field of AutoML, there is also emerging interest in designing general-purpose models such
as Perceiver IO [31] and Frozen Pretrained Transformer [32]. However, these Transformer-based mod-
els do not adapt the network to the target tasks and are generally harder to train compared with CNNs.
In Table 2, we evaluate Perceiver IO and show that its performance is not ideal. Recent works also pro-
pose to learn the kernel sizes for CNNs from the data [33], but they take an entirely different approach
from NAS by multiplying the response of a convolution layer with a learnable Gaussian mask.
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Algorithm 1 DASH

Input: training data Z, loss function l, the set of kernel sizes K, the set of dilation rates D, and
subsampling ratio p
Initialize the backbone and replace each Conv layer with the mixed operation AggConvK,D
while not converged do

Subsample p|Z| training points uniformly at random
Compute forward pass using Equation 4
Descend the architecture parameters ↵ by r↵l(w,↵) and the model weights w by rwl(w,↵)

end while
Select arg maxk2K,d2D ↵k,d for each AggConv layer
Tune retraining hyperparameters on a validation subset of the training data
Retrain the discretized model with all training data

3 Methods

Now, we describe the details of DASH (Algorithm 1). We first explain how DASH leverages existing
networks to initialize the supernet and generate different models for diverse tasks. Then, we formally
define the multi-scale convolution search space and propose a fast way to search this space using
the three efficiency-motivated techniques mentioned earlier. Finally, we outline the procedure for
discretizing the search space and retraining the searched model.

3.1 Decoupling Topology and Operations

Every architecture is a mapping from model weights to functions and can be described by a directed
acyclic graph G(V,E). Each edge in E is characterized by (u, v,Op), where u, v 2 V are nodes
and Op is an operation applied to u. Node v aggregates the outputs of its incoming edges. NAS
aims to automatically select the edge operations and the graph topology to optimize some objective.
For each edge, Op is chosen from a search space S = {Opa |a 2 A} where a 2 A are architecture
parameters. In past work, A usually indexes a small set of operations. For instance, the DARTS
search space specifies Adiscrete = {1, . . . , 8} with S = {Zero, Id, MaxPool3⇥3, AvgPool3⇥3,
Conv3⇥3, Conv5⇥5, DilatedConv3⇥3,2, DilatedConv5⇥5,2}. However, A can also be defined
systematically to identify operator properties, e.g., {(kernel size k, dilation d)} for convolutions.

A common way to determine the network topology is to search for blocks of operations and stack
several blocks together. In this work, we take a different, morphism-based approach [23, 24, 7]: we
use existing networks as backbones and replace certain layers in the backbone with the searched
operations. Specifically, we select a set of architectures to accommodate both 2D and 1D datasets.
Convolutional layers with different kernels can then be plugged into these networks. An advantage
of decoupling topology and operation search is flexibility: the searched operators can vary from the
beginning to the end of a network, so features at different granularities can be processed differently.

We pick Wide ResNets (WRNs) [34, 35] as the backbone networks due to their simplicity and effec-
tiveness in image and sequence modeling. Before search, the supernet is initialized to the backbone.
Then, all Conv layers are substituted with an operator AggConvK,D (short for aggregated convo-
lution) that represents the new search space which we now define. For simplicity, our mathematical
discussion will stick to the 1D case, though our experiments are on both 1D and 2D data.

3.2 Efficiently Searching for Multi-Scale Convolutions

A convolution filter is specified by the kernel size k and the dilation rate d (we do not consider stride
which does not change the filter shape). The effective filter size is (k � 1)d + 1 with nonzero entries
separated by d � 1 zeros. Let Convk,d be the convolution with kernel size k, dilation rate d, cin

input channels, and cout output channels. Given input data with shape n, let K be our interested set
of kernel sizes, D the set of dilations. We define the AggConvK,D search space as

SAggConvK,D
= {Convk,d |k 2 K, d 2 D}. (1)
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Table 1: Complexity of different methods for computing AggConv. For notation, K̄ := |D| ·
P

k2K k,
D̄ := maxk,d(k � 1)d+ 1. A detailed analysis is provided in Appendix A.2.

Method MULTs ADDs

mixed-results (Eqn. 2) (cincoutK̄ + cout|K||D|)n (cincoutK̄ + cout|K||D|)n
mixed-weights (Eqn. 3) cincout(K̄ + D̄n) cincoutD̄(|K||D| + n)

DASH (Eqn. 4) cincout(K̄ + n) + O(cincoutn log n) cincout(|K||D|D̄ + n) + O(cincoutn log n)

Hence, A = K ⇥D in previous notations. SAggConvK,D
contains a collection of convolutions with

receptive field size ranging from kmin to dmax(kmax � 1) + 1, which allows us to discover models
that process the input with varying resolution at each layer.

To retain the efficiency of discrete NAS, we apply the continuous relaxation scheme of DARTS
to SAggConvK,D

, which mixes all operations in the space using architecture parameters {↵k,d 2

4|K||D||(k, d) 2 K ⇥D}
1, so the output of each edge in the computational graph is

AggConvK,D(x) :=
X

k2K

X

d2D

↵k,d · Conv(wk,d)(x). (2)

Here {wk,d|(k, d) 2 K ⇥D} are the kernel weights. The resulting supernet can be trained end-to-
end, and our hope is that after search, the most important operation is assigned the highest weight.
However, the complexity of computing the above summation directly, a baseline algorithmic approach
we call mixed-results , is O(cincout(|K||D| + K̄)n), where K̄ := |D|

P
k2K k. Mixed-results can

be expensive when we increase the maximum element in K or D with larger input size n. To improve
upon it, we propose three techniques which build up to the efficiency-oriented DASH.

3.2.1 Technique 1: Mixed-Weights

Since convolution is linear, instead of computing |K||D| convolutions, we can combine the kernels
and compute convolution once. We call this approach mixed-weights:

AggConvK,D(x) = Conv

 
X

k2K

X

d2D

↵k,d · w
0
k,d

!
(x). (3)

Here w
0 is the properly padded version of w (appending 0’s at the end of each dimension) so that

filters of different sizes can be added. The aggregated kernel has size D̄ := maxk,d(k � 1)d + 1 and
the n-dependent term of the complexity of mixed-weights is cincoutD̄n. Hence, it removes the direct
dependence of the leading-order term on |K||D|, the search space size, that mixed-results had.

3.2.2 Technique 2: Fourier Convolution

If we wish to increase the kernel size and dilation with the input size, the complexity of mixed-weights
will still grow implicitly with the search space size through the dependence on D̄. To address this
issue, we combine the kernel re-weighting idea with another technique motivated by the convolution
theorem. Given a kernel w, recall that Conv(w)(x) = F

�1 diag(Fw
0)Fx, where F is the discrete

Fourier transform (DFT) and diag(z) is a diagonal matrix with entries z. In other words, convolution
involves multiplying the DFT of the kernel by that of the input. Since the DFT can be applied in time
O(n log n) using the Fast Fourier Transform (FFT) and apart from that we only need element-wise
multiplication, this yields an efficient approach to reducing dependence on the combined kernel size
D̄. While Roberts et al. [7] replaced the DFTs with a continuous set of matrices for XD-operations,
our approach can be viewed as replacing the middle DFT with a discrete set of matrices for the
purpose of efficiency. Accordingly, DASH computes AggConvK,D as follows:

AggConvK,D(x) = F
�1 diag

 
F

 
X

k2K

X

d2D

↵k,d · w
0
k,d

!!
Fx. (4)

Note that while the kernel changes for each Convk,d, the input does not. Hence, we also save time
by transforming the input to the frequency domain only once.

14 denotes the probability simplex.
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Figure 2: log10 time for one search epoch vs. number
of ops in SAggConvK,D

. We vary the search space by
letting K = {2p+ 1|1  p  c}, D = {2q � 1|1 
q  c} and increasing c from 1 to 7.

Figure 3: log10 time for one search epoch vs. in-
put length of single-channel 1D data. We fix K =
{3, 5, 7, 9, 11}, D = {1, 3, 7, 15, 31} and test n 2
{25, . . . , 212}.

In Table 1, we report the theoretical complexities of the baselines and DASH, the latter leveraging
both Technique 1 and 2. It is easy to obtain the operation complexities of mixed-weights and
mixed-results. For DASH, the number of multiplications and additions can be attributed to the inner
weight sum and multi-channel product (the first term) as well as three FFTs (the second). A detailed
analysis is provided in Appendix A.2. We see that mixed-weights is favorable to mixed-results when
D̄ < K̄ = O(|D|k2

max), which occurs with large kernels and a few dilations. On the other hand, only
DASH completely separates the dominant terms containing cincoutn from the size of the search space
and its elements, replacing them by O(log n), which is small for any realistic n. As we increase
kmax and dmax for larger inputs, this will also lead to a slower asymptotic increase in complexity,
making DASH an attractive choice for the multi-scale search space where D̄ is large by design to
extract possible long-range dependencies in the data.

3.2.3 Technique 3: Kronecker Dilation

To efficiently implement the kernel summation in mixed-weights and DASH on a GPU, we introduce
our final technique: after initializing wk,d for each Convk,d separately, we use a Kronecker product
⌦ to transform the undilated kernels into dilated forms. For example, to compute a 2D convolution
with dilation d, we introduce the sparse pattern matrix P 2 Rd⇥d whose entries are all 0’s except for
the upper-left entry P1,1 = 1:

P =

2

664

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

3

775 . (5)

Then, wk,d = wk,1 ⌦ P. Beyond the theoretical gains shown in Wu et al. [36], this dilation strategy
is empirically faster than the standard way of padding 0’s into wk,1 (Fig. 2 and 3). After dilating the
kernels, we sum them together, zero-pad to match the input size, and apply the FFTs.

3.2.4 Ablation Study for the Proposed Techniques

To check that our asymptotic analysis leads to actual speedups and perform an ablation study on the
proposed techniques, we evaluate the three methods on single-channel 1D input (experiment details
are in Appendix A.3). Since both mixed-weights and DASH require kernel summation, which can be
implemented with Kronecker dilation (Technique 3), we compare five methods in total.

Fig. 2 illustrates the combined forward- and backward-pass time in log scale for one search epoch
vs. the size of SAggConvK,D

when n = 1000. For small D̄, the FFT overhead makes DASH runtime
slightly longer but the difference is negligible. However, as D̄ increases, the DASH curves grow much
slower whereas the runtimes for the other methods scale with the number of operations. In Fig. 3, we
fix K and D to study how runtime is affected by input size n. Both mixed-results and mixed-weights
become extremely inefficient for large n’s which commonly occur in time-series or signal processing.
Surprisingly, DASH’s runtime does not increase much with n. We hypothesize that this is due to
wallclock-time being dominated by data-passing at that speed.
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In general, Technique 1 on its own scales poorly for the considered search space. This is why methods
like MergeNAS [27] cannot be used in our setting. Though XD makes use of Technique 2, it considers
a parametrized space with infinitely many operations that need to be continuously evolved and is
too expensive to be applied to tasks beyond CIFAR-100 (c.f. Fig. 1b). Technique 3 contributes to
2⇥ speedups for both mixed-weights and DASH. Overall, DASH (Kronecker) leads to about 10⇥
search-time speedups compared to the mixed-results scheme of DARTS for both the large operation
space and large input size regimes. Hence, we use this version of DASH in later experiments.

3.3 The Full Pipeline: Architecture Search, Hyperparameter Optimization, and Retraining

Having shown the main techniques for searching a large space of kernel patterns, we now detail the full
search and model development pipeline. Given a dataset, we set K = {3 + d(p� 1)|1  p  pmax}

for kernel sizes and D = {2q
� 1|1  q  qmax} for dilations. For 2D input, we set d to 2, pmax to

4, and qmax to 4. For longer 1D sequence data, we set d = 4, pmax = 5, and qmax = 4. For instance,
CIFAR has size 3⇥ 32⇥ 32 where 3 is the number of channels and n = 32. The corresponding K is
{3, 5, 7, 9} and D is {1, 3, 7, 15}. To normalize architecture parameters into a probability distribution,
we adopt the soft Gumbel Softmax activation, similar to Xie et al. [18].

The backbone networks are as follows. For 2D tasks, we use WRN 16-1 as the search backbone to
accelerate supernet training and WRN 16-4 for retraining. For 1D tasks, we use 1D WRN [35] in the
entire pipeline. During search, we subsample the training data at each epoch. Given the loss for the
target task, DASH jointly optimizes the model weights and the architecture parameters using direct
gradient descent. This single-level optimization is more efficient than two-stage NAS, which finds
initial assignments for architecture parameters and trains the candidates from scratch.

After searching for a predefined number of epochs, we discretize the search space and pick Convk,d 2

SAggConvK,D
with the largest weight for each layer. The final model has a similar overall structure

to the backbone, but the intermediate operations are tailored to the target task. To improve training
stability, we additionally add a simple hyperparameter tuning stage between search and retraining
using grid search (configuration space shown in Appendix A.5.2).

For each setting, we train the discretized model on a subset of the training data for fewer epochs
so the tuning cost is a small fraction of the entire pipeline’s cost (Table 6), Then, we evaluate the
performance on a holdout validation set and select the configuration with the best validation score.
As a final step, we retrain the discretized model with the optimal hyperparameters on all training data
until convergence. Like other weight-sharing methods with discretization, our final model will be
more efficient than the supernet.

4 Evaluation

We evaluate the performance of DASH on diverse tasks using ten datasets from NAS-Bench-360 [4],
a benchmark spanning multiple application domains, input dimensions, and learning objectives.2
These include classical vision tasks such as CIFAR-100 where CNNs do well, scientific computing
tasks such as Darcy Flow where standard CNN backbones can perform poorly [7, 37], sequence tasks
such as DeepSEA where large dilations are preferred [13, 26], and many others. Thus, our evaluation
will not only test whether DASH can find good architectures in the proposed new search space, but
also investigate whether multi-scale convolution is a strong competitor for solving different problems.
In fact, our results show that DASH is a top choice for many tasks, obtaining in-aggregate the best
speed-accuracy trade-offs among the methods we evaluate (c.f. Fig. 5).

4.1 Baselines and Experimental Setup

For each NAS-Bench-360 task, we compare DASH with the following methods: DenseNAS [5]
and GAEA PC-DARTS [3], which represent general NAS; Auto-DeepLab [38] and AMBER [26],
which represent specialist NAS methods for dense prediction and 1D tasks, respectively; 1D temporal
convolutional network (TCN) [13], regular WRN, and WRN with hyperparameter tuner ASHA [39],
which represent natural NAS baselines; and Perceiver IO [31], which represents non-NAS general-
purpose models. While these results are available in Tu et al. [4], we additionally add a BABY DASH

2For completeness, we give a task summary in the Appendix.
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Table 2: Error rates (lower is better) on NAS-Bench-360 tasks across diverse application domains and problem
dimensions (the last three problems are 1D and the rest are 2D). DASH beats all the other NAS methods on 7/10
tasks and exceeds hand-designed expert models on 7/10 tasks. Scores of DASH are averaged over three trials.
Scores of the baselines are from Tu et al. [4]. See Table 5 in the Appendix A.6 for standard deviations.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) 0-1 error (%) relative `2 MAE8 1-AUROC 0-1 error (%) 1-mAP 1-F1 0-1 error (%) 1- AUROC

Expert 19.39 67.41 0.008 3.35 0.13 8.73 0.62 0.28 19.8 0.30

WRN 23.35 85.77 0.073 3.84 0.24 6.78 0.92 0.43 15.49 0.40
TCN - - - - - - - 0.57 16.21 0.44
WRN-ASHA 23.39 75.46 0.066 3.84 0.25 7.34 0.91 0.43 15.84 0.41
DARTS-GAEA 24.02 48.23 0.026 2.94 0.22 17.67 0.94 0.34 12.51 0.36
DenseNAS 25.98 72.99 0.10 3.84 0.38 10.17 0.64 0.40 13.81 0.40
Auto-DL - - 0.049 6.73 0.49 - - - - -
AMBER - - - - - - - 0.67 12.97 0.68
Perceiver IO 70.04 82.57 0.24 8.06 0.48 22.22 0.72 0.66 15.93 0.38

BABY DASH 25.56 63.45 0.016 3.94 0.16 8.28 0.62 0.37 13.29 0.37
DASH 24.37 71.28 0.0079 3.30 0.19 6.60 0.60 0.32 12.28 0.28

baseline: we run DASH in the DARTS convolution space with K = {3, 5} and D = {1, 2} to study
whether large kernel sizes and dilations are necessary to strong performance across-the-board. Finally,
we compare our method to the expert architectures selected by NAS-Bench-360. These models are
representatives of the best that hand-crafting has to offer.

Each dataset is preprocessed and split using the NAS-Bench-360 script, with the training set being
used for search, hyperparameter tuning, and retraining. To construct the multi-scale search space, we
set K and D according to the rules in Section 3.3. We use the default SGD optimizer for the WRN
backbone and fix the learning rate schedule as well as the gradient clipping threshold for every task.
The entire DASH pipeline can be run on a single NVIDIA V100 GPU, which is also the system that
we use to report the runtime cost. Full experimental details can be found in the Appendix.

We evaluate the performance of all competing methods following the NAS-Bench-360 protocol. We
first report results of the target metric for each task by running the model of the last epoch on the test
data. Then, we report aggregate results via performance profiles [40], a technique that considers both
outliers and small performance differences to compare methods across multiple tasks robustly. In
such plots, each curve represents one method. The ⌧ on the x-axis denotes the fraction of tasks on
which a method is no worse than a ⌧ -factor from the best.

4.2 Results and Discussion

We present the accuracy results for each task in Table 2 and the performance profiles in Fig. 4.
Fig. 4 clearly demonstrates that DASH is superior to other competing methods in terms of aggregate
performance. In particular, it ranks first among all automated models for 7/10 tasks, among all expert

models for 7/10 tasks, and performs favorably when considering both accuracy and efficiency as
shown in Fig. 5. In addition, Table 3 shows that DASH outperforms DARTS in speed for all 10 tasks
(in several cases by an order of magnitude), and attains comparable efficiency with training vanilla
WRNs for 6/10 tasks (full-pipeline time is less than or about twice as long as the WRN training time).
In the following, we provide a detailed analysis of the experimental results.

DASH dominates automated methods. Compared to other automated methods, DASH has a
clear advantage in accuracy. Even for tasks where it does not beat the expert, e.g. ECG, DASH’s
performance is significantly better than other AutoML methods. It also outperforms specialist
methods Auto-DL and AMBER on dense prediction and 1D tasks, respectively. Although DARTS
does best on CIFAR-100 (the task for which it was designed), Spherical, and PSICOV, it is the worst
on NinaPro and FSD50K. Note that the underperformance of DASH on CIFAR-100 relative to WRN
(and on Spherical and Cosmic relative to BABY DASH) suggests suboptimality of the gradient descent
optimization procedure but not of the operation space, since WRN and BABY DASH are contained in
our search space. This indicates a future direction to improve optimization in the DASH search space.
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Figure 4: Performance profiles of general NAS meth-
ods and DASH on NAS-Bench-360. DASH being far in
the top left corner indicates it is rarely suboptimal and
is often the best.

Figure 5: Comparing � log ⌧ -suboptimality of speed
vs. accuracy on all tasks. DASH’s concentration in the
top right corner indicates its strong efficacy-efficiency
trade-offs relative to the other methods.

DASH dominates expert architectures. While the degree of sophistication of the expert networks
varies task by task, the performance of DASH on tasks such as Darcy Flow suggests that it is capable
of competing with highly specialized networks, e.g., Fourier Neural Operator [37] for PDE solving.
These results imply that DASH, and more generally the strategy of equipping backbone networks
with task-specific kernels, is a promising approach for tackling model development in new domains.
Meanwhile, DASH consistently outperforms Perceiver IO which represents non-automated general-
purpose models. We speculate that the poor performance of Perceiver IO is because it is developed
on more sophisticated natural language and multi-modal reasoning tasks and training Transformers is
generally difficult.

Table 3: Full-pipeline runtime in GPU hours for NAS-
Bench-360 (PSICOV results are omitted due to a dis-
crepancy in the implementation of data loading). DASH
is consistently faster than DARTS, and it is less than a
factor of two slower than simply training a WRN on six
of the ten tasks. DenseNAS is fast but its accuracy is
far less impressive. XD is too expensive to be applied
to tasks other than CIFAR-100 [7].

Task DARTS DenseNAS WRN DASH

CIFAR-100 9.5 2.5 2 2.5

Spherical 16.5 2.5 2 5

Darcy Flow 6.5 0.5 0.5 5.3

Cosmic 21.5 2.5 4 6.8

NinaPro 0.5 0.2 0.2 0.3

FSD50K 37 4.5 4 29

ECG 140 6.5 5 1.3

Satellite 28 3 4.5 6.5

DeepSEA 39.5 2 1.5 10

Large kernels are needed. We also ablate the
large-k-large-d design of the search space by
comparing DASH with BABY DASH. We hypoth-
esize that for the same task, a small performance
gap between the two methods would indicate that
small kernels suffice for extracting local features,
whereas a major degradation in the quality of the
BABY DASH model can imply that the task needs
global modeling. Consequently, datasets such as
Darcy Flow and ECG provide compelling evi-
dence that kernels with large receptive fields play
an important role in solving real-life problems
and further back up the design of our multi-scale
convolutional search space. An example of the
series of WRN kernels found by DASH on Darcy
Flow is: Conv5,3 ! Conv3,1 ! Conv3,1 !
Conv3,15 ! Conv7,15 ! Conv9,7 !
Conv9,7 ! Conv3,7 ! Conv5,7 !
Conv5,15 ! Conv9,7 ! Conv3,7 ! Conv7,7.
We can see that large kernels are indeed selected
during search. More visualizations can be found
in Appendix A.8.

DASH is computationally efficient. In addition to prediction quality, we also care about the
efficiency of model selection. Table 3 provides the combined search and retraining time in GPU
hours for DARTS, DenseNAS, and DASH, as well as the training time for vanilla WRN 16-4 without
hyperparameter tuning (baseline results are taken from Tu et al. [4]). We also present the breakdown
of DASH’s full-pipeline runtime in Appendix A.7. A key observation is that the cost of DASH is
consistently below DARTS’ on all tasks and is similar to training a simple CNN for more than half of
them. Although DenseNAS stands out by speed, its practical performance is less impressive.

In Fig. 5, we visualize the trade-off between efficiency and effectiveness for each method and
task combination. Evidently, DASH takes an important step towards bridging the gap between the
efficiency of DARTS and the expressivity of XD in NAS. The fact that DASH can be trained at a
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low cost testifies that we need not sacrifice efficiency for adding more operations. In fact, we have
actually shown that DASH is both faster and more effective than DARTS in many tasks.

DASH works with other backbones and is backward compatible. Lastly, in addition to the Wide
ResNet backbone and NAS-Bench-360 tasks, we have also verified the efficacy of DASH on other
backbones including TCN [13] and ConvNeXt [15], and on large-scale datasets including ImageNet
in Appendix A.9. In particular, DASH is able to achieve a 1.4% increase in top-1 accuracy for
ImageNet on top of the ConvNeXt backbone. As the latter was itself developed in part via manual
tuning of the kernel size, this means that DASH outperforms human hand-tuning on ImageNet. These
results show that DASH is backbone-agnostic and also works well with computer vision tasks, making
it backward compatible with the original use cases of CNNs.

4.3 Limitations and Future Work

There are several open problems which we leave for future work. First, it is beneficial to study why
certain kernel patterns are chosen, as the selected operations can hint us at the intrinsic properties of
the datasets. Second, one can improve upon DASH, e.g., by including non-square convolutions for
2D problems, using a better optimization algorithm, or developing techniques that further reduces the
memory usage of performing a forward architecture search pass. One could also construct a more
comprehensive search space with high-level operators such as self-attention [41].

Meanwhile, although this paper focuses on NAS, which is an alternative to fine-tuning pretrained
models, the aggregated convolution can be a plug-and-play module for algorithms that search
for large-scale models. For instance, many Transformer models still depend on convolutions for
feature extraction and transformation, and their performance relies on the quality of the embedded
features. Since DASH is applicable to any architecture with a convolutional layer, it can be helpful for
such models, including Vision Transformer with a convolutional patching layer [42], Deformable
Transformer with a ResNet embedder [43], Swin Transformer with a convolutional decoder [44], and
many others.

Societal Impact This paper calls for ML community’s attention to less-studied application domains
and moves towards truly democratizing machine learning in real life. In terms of broader societal
impact, our work can exert a positive influence as it contributes to NAS efficiency and reduces the
computational burden on AutoML end-users. However, lowering the barrier for applying ML to a
wide range of tasks necessarily comes with the risk of misuse. Hence, it is imperative to develop
NAS methods with privacy, safety, and fairness guarantees.

5 Conclusion

In this paper, we argue that a crucial goal of NAS is to discover accessible models for diverse tasks.
To this end, we propose DASH, which efficiently searches for convolution patterns and integrates
them into existing backbones. DASH overcomes the computational limitations of differentiable NAS
and obtains high-quality models with accuracy comparable to or better than that of the handcrafted
networks on many tasks. Our experiments show that convolution can be a universal operator for many
under-explored areas. DASH is also a promising step towards developing general-purpose models
with more complicated structures.
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