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A Appendix1

A.1 Additional Analysis2

A.1.1 Training the Expansion without Deformable Convolution Layer:3

In our proposed Expansion, a deformable convolution layer with a learning offset branch is imple-4

mented with a loss maximization optimization to gradually sample the exterior object regions as5

much as possible. One may think a loss maximization optimization can also come to such an impact.6

We argue that training without introducing more sampling freedom cause no expansion at all. We7

conduct an additional experiment to support our argument as shown in Figure 2. We can observe8

that training the network with the loss maximization optimization by excluding the deformation9

transformation causes the network to deactivate the discriminative regions, which are activated by the10

original baseline model, and the expansion impact can not be observed. Besides, we obtain 40.3%11

mIoU scores v.s. 48.4% mIoU scores in terms of the initial CAM seeds on PASCAL VOC 2012 train12

set for the new experiment and the original baseline model, respectively. This demonstrates that the13

deformable convolution layer provides more sampling freedom for the network to pay more attention14

to other less discriminative regions, instead of dis-activating the most discriminative ones, thanks to15

the learning “shifts”, supported by the learning offset branch inside the deformation transformation.16

A.1.2 Loss Maximization Controller α Visualizations:17

To better illustrate the detailed Expansion training scheme, we then provide more training visualiza-18

tions to show up the results. Note that we follow the same training details as mentioned in Section 4.219

to train the Expansion model. The examples are shown in Figure 3. We can see that too small values20

cannot enable the learning offset fields shift to other less discriminative regions, and too large values21

results in large loss driven and the learning offset fields degrade to attend on background regions.22

Empirically, we choose a balancing setting (α = 0.01) to achieve high-recall and less background23

regions.24

A.1.3 Training Status of the Regular Convolution inside Deformable Convolution layer:25

In all our experiments, we utilize the convolutional weights obtained from our baseline model to26

be the regular convolutional weights inside the deformable convolution layer, which is fixed during27

the training. We conduct an ablative study that we allow these weights to be updated as well. And28

we fail to capture high-recall target object regions because this degrades to the common deformable29

convolution layer, sharing the similar results with the experiments in Section A.1.1.30
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Method DTe FL DTs Larea CAM seed mIoU (%)

Baseline 48.4

Expansion w/o (DTe + FL) + Shrinkage ✓ ✓ 48.5
Expansion w/o DTe + Shrinkage ✓ ✓ ✓ 49.1
Expansion w/o FL + Shrinkage ✓ ✓ ✓ 51.8

Expansion + Shrinkage w/o (DTs + Larea) ✓ ✓ 50.1
Expansion + Shrinkage w/o DTs ✓ ✓ ✓ 50.9
Expansion + Shrinkage w/o Larea ✓ ✓ ✓ 52.8

Expansion + Shrinkage ✓ ✓ ✓ ✓ 53.6

Table 1: Ablation studies with some components removed in our approach. DTe and DTs denote
the offset learning branch in the deformable convolution layers in our Expansion and Shrinkage,
respectively. FL is the feature clipping operation and Larea denotes the area loss regularization. The
DTe and FL enforce the network pay attention to suspicious object regions as much as possible in
Expansion, while the DTs and Larea enforce the network to boost the precision of the results in
Shrinkage to generate high-quality localization maps.

A.1.4 More Examples:31

Figure 4 and Figure 5 present the examples of the initial localization maps for the PASCAL VOC32

2012 and MS COCO 2014 dataset, respectively. Additionally, Figure 6 presents examples of the33

segmentation maps predicted by our final semantic segmentation model.34

A.1.5 Precision and Recall Comparisons.35

Our proposed Expansion stage aims to recover the entire objects as much as possible, by sampling the36

exterior object regions beyond the most discriminative ones to obtain the high-recall object regions.37

And the proposed Shrinkage is devised to exclude the false positive regions, and thus further enhance38

the precision of the located object regions. As shown in Table 2, we can see that the Expansion39

provides high-recall CAM seeds while the Shrinkage further enhances the precision of the located40

regions, producing high-quality initial localization maps.41

A.1.6 More Comparisons with other SOTAs.42

In this part, we make more comparisons with other SOTAs, DRS [26] nad EPS [33]. DRS [26]43

also adopts two-phase refinement of the localization maps, including a "Discriminative Region44

Suppression" classification training step and a further "Localization Map Refinement Learning" step.45

Noting that because of their aggressive discriminative region suppression operation behind various46

convolutional layers, they suffers from too much noise coming from the inevitable much background47

activations. They have to take advantage of the saliency cues [35] for further post-processing to48

achieve decent localization maps in the section "Weakly-Supervised Semantic Segmentation" in their49

paper, though they adopt a regressive "Localization Map Refinement Learning" to alleviate such an50

issue. Our approach focuses on the WSSS pipeline without introducing any other saliency prior.51

For fair comparisons with DRS [26] and EPS [33], we also introduce saliency cues [35] for further52

post-processing on the generated PASCAL VOC 2012 pseudo groundtruths and apply the same53

segmentation network settings as DRS [26]. As can be seen in Table 3, when implementing stronger54

segmentation network settings and saliency map refinement, our final WSSS results are consistently55

better than DRS[26] (71.4% v.s. 71.2% mIoU on VOC2012 val and 71.8% v.s. 71.4% mIoU on56

VOC2012 test), noting that our previous experimental results in the original paper come from a57

smaller segmentation network and no additional saliency information prior refinement is performed.58

When compared with EPS[33], we choose the best reported results in their paper. Our new reported59

results are also better than EPS[33] in VOC2012 val (71.4% v.s. 71.0% mIoU). On the other hand,60

to show the impact of saliency map based post-processing used in DRS[26], we provide another61

experiment in Table 4 to compare DRS [26] and our approach in the settings of using and not using62

saliency cues prior, respectively.63
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Method Prec. Recall F1-score

IRN CVPR ’19 [1] 66.0 66.4 66.2
Chang et al. CVPR ’20 [2] 61.0 77.2 68.1
Expansion (Ours) 41.1 90.9 56.6
Shrinkage (Ours) 67.1 79.5 72.7

Table 2: Comparison of precision (Prec.), recall, and F1-score on PASCAL VOC 2012 train images.

Method Segmentation Network saliency map val test

DRS [26] DeepLab-ASPP V3 (ResNet-101) ✓ 71.2% 71.4%
EPS [33] DeepLab-ASPP V3 (ResNet-101) ✓ 71.0% 71.8%
ESOL (Ours) DeepLab-ASPP V3 (ResNet-101) ✓ 71.4% 71.8%

Table 3: More Comparisons with other methods in terms of the final Semantic Segmentation
performance.

Method benchmark saliency map seed mIoU (%)

DRS [26] VOC2012 ✓ 63.6%
DRS [26] VOC2012 X 36.0%
ESOL (Ours) VOC2012 ✓ 67.1%
ESOL (Ours) VOC2012 X 53.6%

Table 4: More Comparisons with other methods in terms of the initial localization maps.
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Figure 1: Precision and Recall Curve during two-phases and comparison with other SOTAs. This is obtained
via setting various threshold values to calculate the corresponding precision and recall. Here we only make
comparison with the methods applying refinement procedure for the fairness. Our proposed Expansion method
generates high-recall results compared with other methods while the proposed Shrinkage improve the precision
and obtain final high-quality localization maps.
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(a) Image (c) DT (d) Expansion(b) CAM
(e) Baseline 

inverse optimization

Figure 2: Comparisons of localization maps on PASCAL VOC 2012 training images. (a) Input Images. (b)
Original baseline CAMs. (c) DT denotes Expansion training without feature clipping strategy. (d) Expansion
results. (e) Baseline applied inverse optimization only.

(a) Image (b) CAM (c) Expanding
𝜶 = 𝟎.𝟎𝟎𝟏

(d) Expanding
𝜶 = 𝟎.𝟎𝟎𝟓

(e) Expanding
𝜶 = 𝟎.𝟎𝟏

(f) Expanding
𝜶 = 𝟎.𝟎𝟓

(g) Expanding
𝜶 = 𝟎.𝟏

(h) Expanding
𝜶 = 𝟏.𝟎

Figure 3: Examples in terms of the sensitivity analysis of the loss maximization controller α. (a) denotes the
input images, (b) denotes original baseline CAMs, (c) → (h) means different α values visualization results.
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(a) Image (c) DT(b) CAM (d) Expansion (e) Shrinkage (e) GT

Figure 4: Examples of localization maps on PASCAL VOC 2012 training images. (a) Input Images. (b) Original
baseline CAMs. (c) DT denotes Expansion training without feature clipping strategy. (d) Expansion results. (e)
Shrinkage results. (f) Ground Truth.
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(a) Image (b) CAM (d) Expansion (e) Shrinkage (e) GT

Figure 5: Examples of localization maps on MS COCO 2014 training images. (a) Input Images. (b) Original
baseline CAMs. (c) Expansion results. (d) Shrinkage results. (e) Ground Truth.
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(a) Image           Pred GT (b) Image           Pred GT
Figure 6: Examples of semantic segmentation prediction. (a) Input Images, predictions and ground truths on
PASCAL VOC 2012 val set. (b) Input Images, predictions and ground truths on MS COCO 2014 val set.
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